1
|
Biber J, Gandor C, Becirovic E, Michalakis S. Retina-directed gene therapy: Achievements and remaining challenges. Pharmacol Ther 2025; 271:108862. [PMID: 40268248 DOI: 10.1016/j.pharmthera.2025.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Gene therapy is an innovative medical approach that offers new treatment options for congenital and acquired diseases by transferring, correcting, inactivating or regulating genes to supplement, replace or modify a gene function. The approval of voretigene neparvovec (Luxturna), a gene therapy for RPE65-associated retinopathy, has marked a milestone for the field of retinal gene therapy, but has also helped to accelerate the development of gene therapies for genetic diseases affecting other organs. Voretigene neparvovec is a vector based on adeno-associated virus (AAV) that delivers a functional copy of RPE65 to supplement the missing function of this gene. The AAV-based gene delivery has proven to be versatile and safe for the transfer of genetic material to retinal cells. However, challenges remain in treating additional inherited as well as acquired retinopathies with this technology. Despite the high level of activity in this field, no other AAV gene therapy for retinal diseases has been approved since voretigene neparvovec. Ongoing research focuses on overcoming the current restraints through innovative strategies like AAV capsid engineering, dual-AAV vector systems, or CRISPR/Cas-mediated genome editing. Additionally, AAV gene therapy is being explored for the treatment of complex acquired diseases like age-related macular degeneration (AMD) and diabetic retinopathy (DR) by targeting molecules involved in the pathobiology of the degenerative processes. This review outlines the current state of retinal gene therapy, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Josef Biber
- Department of Ophthalmology, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Catharina Gandor
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren 8952, Switzerland
| | - Elvir Becirovic
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren 8952, Switzerland
| | - Stylianos Michalakis
- Department of Ophthalmology, LMU University Hospital, LMU Munich, 80336 Munich, Germany.
| |
Collapse
|
2
|
McNeal TA, Weinberger J, Liman GLS, Ariagno TM, Wood DW, Santangelo TJ, Lennon CW. Controllable intein splicing and N-terminal cleavage at mesophilic temperatures. Front Bioeng Biotechnol 2025; 13:1543573. [PMID: 39991137 PMCID: PMC11842431 DOI: 10.3389/fbioe.2025.1543573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/14/2025] [Indexed: 02/25/2025] Open
Abstract
Inteins (intervening proteins) interrupt host proteins and are removed through a protein splicing reaction that ligates adjacent N- and C-exteins. The ability of inteins to specifically rearrange peptide bonds has proven exceptionally useful in protein engineering, thus, methods to control intein activity are of considerable interest. One particularly useful application of inteins is for the removal of an affinity tag following purification of a target protein through N-terminal cleavage (NTC). Typically, extended incubation at high temperature (greater than 50°C) or with an external nucleophile (e.g., dithiothreitol) is required to drive NTC, conditions that compromise the folding of many target proteins. Here, we characterize a variant of the Thermococcus kodakarensis RadA intein that can perform NTC at moderate temperatures in the absence of an external nucleophile. While we find that while NTC is largely inhibited during expression in Escherichia coli at 15°C, rapid and efficient NTC can be activated 37°C. Our results provide an alternative intein-based system - one that does not require either an external nucleophile or prolonged incubation at high temperature to stimulate NTC - that controls intein activity within a temperature range amenable to most mesophilic experimental organisms.
Collapse
Affiliation(s)
- Taylor A. McNeal
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| | - Joel Weinberger
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| | - Geraldy L. S. Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Tia M. Ariagno
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| | - David W. Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Christopher W. Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
3
|
Osiro KO, Duque HM, Sampaio de Oliveira KB, Melo NTM, Lima LF, Paes HC, Franco OL. Cleaving the way for heterologous peptide production: An overview of cleavage strategies. Methods 2025; 234:36-44. [PMID: 39638163 DOI: 10.1016/j.ymeth.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
One of the main bottlenecks for recombinant peptide production is choosing the proper cleavage method to remove fusion protein tags from target peptides. While these tags are crucial for inhibiting the activity of the target peptide during heterologous expression, incorporating a cleavage site is essential for their later removal, ensuring the pure sequencing of the peptide. This review evaluates different cleavage methods, including protease-mediated, self-cleavable protein, and chemical-mediated sites, regarding their advantages and limitations. For instance, intein, Npro EDDIE, enterokinase, factor Xa, SUMO, and CNBr are options for residue-free cleavage. Although protease-mediated cleavage is widely used, it can be expensive, due to its own cost added to the whole process. As an alternative, self-cleavable sites eliminate the requirement for proteinases. Another crucial step in defining the proper cleavage method is cost consideration, which relates to the purpose of peptide production. Here, we explore a range of cleavage approaches, meeting the needs of both cost-constrained applications and a more flexible budget. Overall, selecting the most suitable cleavage method should be based on careful consideration of toxicity, cost, accuracy, and specific application requirements to ensure a state-of-the-art approach.
Collapse
Affiliation(s)
- Karen Ofuji Osiro
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | | | - Nadielle Tamires Moreira Melo
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil; Colegiado de Clínica Médica da Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Hugo Costa Paes
- Colegiado de Clínica Médica da Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil; Pós-graduação em Patologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil.
| |
Collapse
|
4
|
Liman GLS, Lennon CW, Mandley JL, Galyon AM, Zatopek KM, Gardner AF, Santangelo TJ. Intein splicing efficiency and RadA levels can control the mode of archaeal DNA replication. SCIENCE ADVANCES 2024; 10:eadp4995. [PMID: 39292776 PMCID: PMC11409957 DOI: 10.1126/sciadv.adp4995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Inteins (intervening proteins), mobile genetic elements removed through protein splicing, often interrupt proteins required for DNA replication, recombination, and repair. An abundance of in vitro evidence implies that inteins may act as regulatory elements, whereby reduced splicing inhibits production of the mature protein lacking the intein, but in vivo evidence of regulatory intein excision in the native host is absent. The model archaeon Thermococcus kodakarensis encodes 15 inteins, and we establish the impacts of intein splicing inhibition on host physiology and replication in vivo. We report that a decrease in intein splicing efficiency of the recombinase RadA, a Rad51/RecA homolog, has widespread physiological consequences, including a general growth defect, increased sensitivity to DNA damage, and a switch in the mode of DNA replication from recombination-dependent replication toward origin-dependent replication.
Collapse
Affiliation(s)
- Geraldy L. S. Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Jaylin L. Mandley
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Alina M. Galyon
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Filo M, Gupta A, Khammash M. Anti-windup strategies for biomolecular control systems facilitated by model reduction theory for sequestration networks. SCIENCE ADVANCES 2024; 10:eadl5439. [PMID: 39167660 PMCID: PMC11338268 DOI: 10.1126/sciadv.adl5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Robust perfect adaptation, a system property whereby a variable adapts to persistent perturbations at steady state, has been recently realized in living cells using genetic integral controllers. In certain scenarios, such controllers may lead to "integral windup," an adverse condition caused by saturating control elements, which manifests as error accumulation, poor dynamic performance, or instabilities. To mitigate this effect, we here introduce several biomolecular anti-windup topologies and link them to control-theoretic anti-windup strategies. This is achieved using a novel model reduction theory that we develop for reaction networks with fast sequestration reactions. We then show how the anti-windup topologies can be realized as reaction networks and propose intein-based genetic designs for their implementation. We validate our designs through simulations on various biological systems, including models of patients with type I diabetes and advanced biomolecular proportional-integral-derivative (PID) controllers, demonstrating their efficacy in mitigating windup effects and ensuring safety.
Collapse
|
6
|
Anastassov S, Filo M, Khammash M. Inteins: A Swiss army knife for synthetic biology. Biotechnol Adv 2024; 73:108349. [PMID: 38552727 DOI: 10.1016/j.biotechadv.2024.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Inteins are proteins found in nature that execute protein splicing. Among them, split inteins stand out for their versatility and adaptability, presenting creative solutions for addressing intricate challenges in various biological applications. Their exquisite attributes, including compactness, reliability, orthogonality, low toxicity, and irreversibility, make them of interest to various fields including synthetic biology, biotechnology and biomedicine. In this review, we delve into the inherent challenges of using inteins, present approaches for overcoming these challenges, and detail their reliable use for specific cellular tasks. We will discuss the use of conditional inteins in areas like cancer therapy, drug screening, patterning, infection treatment, diagnostics and biocontainment. Additionally, we will underscore the potential of inteins in executing basic logical operations with practical implications. We conclude by showcasing their potential in crafting complex genetic circuits for performing computations and feedback control that achieves robust perfect adaptation.
Collapse
Affiliation(s)
- Stanislav Anastassov
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland
| | - Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland.
| |
Collapse
|
7
|
Gallot-Lavallée L, Jerlström-Hultqvist J, Zegarra-Vidarte P, Salas-Leiva DE, Stairs CW, Čepička I, Roger AJ, Archibald JM. Massive intein content in Anaeramoeba reveals aspects of intein mobility in eukaryotes. Proc Natl Acad Sci U S A 2023; 120:e2306381120. [PMID: 38019867 PMCID: PMC10710043 DOI: 10.1073/pnas.2306381120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.
Collapse
Affiliation(s)
- Lucie Gallot-Lavallée
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Jon Jerlström-Hultqvist
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala751 24, Sweden
| | - Paula Zegarra-Vidarte
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala751 24, Sweden
| | - Dayana E. Salas-Leiva
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Courtney W. Stairs
- Microbiology Group, Department of Biology, Lund University, Lund223 62, Sweden
| | - Ivan Čepička
- Department of Zoology, Charles University, Prague128 00, Czech Republic
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| |
Collapse
|
8
|
Wood DW, Belfort M, Lennon CW. Inteins-mechanism of protein splicing, emerging regulatory roles, and applications in protein engineering. Front Microbiol 2023; 14:1305848. [PMID: 38029209 PMCID: PMC10663303 DOI: 10.3389/fmicb.2023.1305848] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Protein splicing is a posttranslational process in which an intein segment excises itself from two flanking peptides, referred to as exteins. In the native context, protein splicing results in two separate protein products coupled to the activation of the intein-containing host protein. Inteins are generally described as either full-length inteins, mini-inteins or split inteins, which are differentiated by their genetic structure and features. Inteins can also be divided into three classes based on their splicing mechanisms, which differ in the location of conserved residues that mediate the splicing pathway. Although inteins were once thought to be selfish genetic elements, recent evidence suggests that inteins may confer a genetic advantage to their host cells through posttranslational regulation of their host proteins. Finally, the ability of modified inteins to splice and cleave their fused exteins has enabled many new applications in protein science and synthetic biology. In this review, we briefly cover the mechanisms of protein splicing, evidence for some inteins as environmental sensors, and intein-based applications in protein engineering.
Collapse
Affiliation(s)
- David W. Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, United States
| | - Christopher W. Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
9
|
Wang Y, Shi Y, Hellinga HW, Beese LS. Thermally controlled intein splicing of engineered DNA polymerases provides a robust and generalizable solution for accurate and sensitive molecular diagnostics. Nucleic Acids Res 2023; 51:5883-5894. [PMID: 37166959 PMCID: PMC10287962 DOI: 10.1093/nar/gkad368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
DNA polymerases are essential for nucleic acid synthesis, cloning, sequencing and molecular diagnostics technologies. Conditional intein splicing is a powerful tool for controlling enzyme reactions. We have engineered a thermal switch into thermostable DNA polymerases from two structurally distinct polymerase families by inserting a thermally activated intein domain into a surface loop that is integral to the polymerase active site, thereby blocking DNA or RNA template access. The fusion proteins are inactive, but retain their structures, such that the intein excises during a heat pulse delivered at 70-80°C to generate spliced, active polymerases. This straightforward thermal activation step provides a highly effective, one-component 'hot-start' control of PCR reactions that enables accurate target amplification by minimizing unwanted by-products generated by off-target reactions. In one engineered enzyme, derived from Thermus aquaticus DNA polymerase, both DNA polymerase and reverse transcriptase activities are controlled by the intein, enabling single-reagent amplification of DNA and RNA under hot-start conditions. This engineered polymerase provides high-sensitivity detection for molecular diagnostics applications, amplifying 5-6 copies of the tested DNA and RNA targets with >95% certainty. The design principles used to engineer the inteins can be readily applied to construct other conditionally activated nucleic acid processing enzymes.
Collapse
Affiliation(s)
- You Wang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuqian Shi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Anastassov S, Filo M, Chang CH, Khammash M. A cybergenetic framework for engineering intein-mediated integral feedback control systems. Nat Commun 2023; 14:1337. [PMID: 36906662 PMCID: PMC10008564 DOI: 10.1038/s41467-023-36863-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The ability of biological systems to tightly regulate targeted variables, despite external and internal disturbances, is known as Robust Perfect Adaptation (RPA). Achieved frequently through biomolecular integral feedback controllers at the cellular level, RPA has important implications for biotechnology and its various applications. In this study, we identify inteins as a versatile class of genetic components suitable for implementing these controllers and present a systematic approach for their design. We develop a theoretical foundation for screening intein-based RPA-achieving controllers and a simplified approach for modeling them. We then genetically engineer and test intein-based controllers using commonly used transcription factors in mammalian cells and demonstrate their exceptional adaptation properties over a wide dynamic range. The small size, flexibility, and applicability of inteins across life forms allow us to create a diversity of genetic RPA-achieving integral feedback control systems that can be used in various applications, including metabolic engineering and cell-based therapy.
Collapse
Affiliation(s)
- Stanislav Anastassov
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Ching-Hsiang Chang
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.
| |
Collapse
|
11
|
SufB intein splicing in Mycobacterium tuberculosis is influenced by two remote conserved N-extein histidines. Biosci Rep 2022; 42:230724. [PMID: 35234249 PMCID: PMC8891592 DOI: 10.1042/bsr20212207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Inteins are auto-processing domains that implement a multistep biochemical reaction termed protein splicing, marked by cleavage and formation of peptide bonds. They excise from a precursor protein, generating a functional protein via covalent bonding of flanking exteins. We report the kinetic study of splicing and cleavage reaction in [Fe–S] cluster assembly protein SufB from Mycobacterium tuberculosis (Mtu). Although it follows a canonical intein splicing pathway, distinct features are added by extein residues present in the active site. Sequence analysis identified two conserved histidines in the N-extein region; His-5 and His-38. Kinetic analyses of His-5Ala and His-38Ala SufB mutants exhibited significant reductions in splicing and cleavage rates relative to the SufB wildtype (WT) precursor protein. Structural analysis and molecular dynamics (MD) simulations suggested that Mtu SufB displays a unique mechanism where two remote histidines work concurrently to facilitate N-terminal cleavage reaction. His-38 is stabilized by the solvent-exposed His-5, and can impact N–S acyl shift by direct interaction with the catalytic Cys1. Development of inteins as biotechnological tools or as pathogen-specific novel antimicrobial targets requires a more complete understanding of such unexpected roles of conserved extein residues in protein splicing.
Collapse
|
12
|
Abstract
Intervening proteins, or inteins, are mobile genetic elements that are translated within host polypeptides and removed at the protein level by splicing. In protein splicing, a self-mediated reaction removes the intein, leaving a peptide bond in place. While protein splicing can proceed in the absence of external cofactors, several examples of conditional protein splicing (CPS) have emerged. In CPS, the rate and accuracy of splicing are highly dependent on environmental conditions. Because the activity of the intein-containing host protein is compromised prior to splicing and inteins are highly abundant in the microbial world, CPS represents an emerging form of posttranslational regulation that is potentially widespread in microbes. Reactive chlorine species (RCS) are highly potent oxidants encountered by bacteria in a variety of natural environments, including within cells of the mammalian innate immune system. Here, we demonstrate that two naturally occurring RCS, namely, hypochlorous acid (the active compound in bleach) and N-chlorotaurine, can reversibly block splicing of DnaB inteins from Mycobacterium leprae and Mycobacterium smegmatis in vitro. Further, using a reporter that monitors DnaB intein activity within M. smegmatis, we show that DnaB protein splicing is inhibited by RCS in the native host. DnaB, an essential replicative helicase, is the most common intein-housing protein in bacteria. These results add to the growing list of environmental conditions that are relevant to the survival of the intein-containing host and influence protein splicing, as well as suggesting a novel mycobacterial response to RCS. We propose a model in which DnaB splicing, and therefore replication, is paused when these mycobacteria encounter RCS. IMPORTANCE Inteins are both widespread and abundant in microbes, including within several bacterial and fungal pathogens. Inteins are domains translated within host proteins and removed at the protein level by splicing. Traditionally considered molecular parasites, some inteins have emerged in recent years as adaptive posttranslational regulatory elements. Several studies have demonstrated CPS, in which the rate and accuracy of protein splicing, and thus host protein functions, are responsive to environmental conditions relevant to the intein-containing organism. In this work, we demonstrate that two naturally occurring RCS, including the active compound in household bleach, reversibly inhibit protein splicing of Mycobacterium leprae and Mycobacterium smegmatis DnaB inteins. In addition to describing a new physiologically relevant condition that can temporarily inhibit protein splicing, this study suggests a novel stress response in Mycobacterium, a bacterial genus of tremendous importance to humans.
Collapse
|
13
|
Wall DA, Tarrant SP, Wang C, Mills KV, Lennon CW. Intein Inhibitors as Novel Antimicrobials: Protein Splicing in Human Pathogens, Screening Methods, and Off-Target Considerations. Front Mol Biosci 2021; 8:752824. [PMID: 34692773 PMCID: PMC8529194 DOI: 10.3389/fmolb.2021.752824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/20/2023] Open
Abstract
Protein splicing is a post-translational process by which an intervening polypeptide, or intein, catalyzes its own removal from the flanking polypeptides, or exteins, concomitant with extein ligation. Although inteins are highly abundant in the microbial world, including within several human pathogens, they are absent in the genomes of metazoans. As protein splicing is required to permit function of essential proteins within pathogens, inteins represent attractive antimicrobial targets. Here we review key proteins interrupted by inteins in pathogenic mycobacteria and fungi, exciting discoveries that provide proof of concept that intein activity can be inhibited and that this inhibition has an effect on the host organism's fitness, and bioanalytical methods that have been used to screen for intein activity. We also consider potential off-target inhibition of hedgehog signaling, given the similarity in structure and function of inteins and hedgehog autoprocessing domains.
Collapse
Affiliation(s)
- Diana A Wall
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Seanan P Tarrant
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Christopher W Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
14
|
Weinberger Ii J, Lennon CW. Monitoring Protein Splicing Using In-gel Fluorescence Immediately Following SDS-PAGE. Bio Protoc 2021; 11:e4121. [PMID: 34541040 DOI: 10.21769/bioprotoc.4121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/02/2022] Open
Abstract
Inteins garner significant interest from both basic and applied researchers due to their unique catalytic abilities. Herein, we describe a protocol for accurately monitoring protein splicing without purification using in-gel fluorescence immediately following Tris-Glycine SDS-PAGE. Following expression in Escherichia coli, cells are lysed by sonication, cell supernatants are separated using Tris-Glycine SDS-PAGE, and superfolder GFP (sfGFP) fluorescence is directly visualized within gels. This method is rapid, with sfGFP immediately imaged following SDS-PAGE without staining. Further, sfGFP can be specifically detected in complex samples such as E. coli cell supernatants, proteins run at expected masses, and all steps can be performed at ambient temperature. This strategy is broadly applicable beyond the study of protein splicing and can be used for sensitive and specific visualization of superfolder sfGFP-tagged proteins in-gel.
Collapse
|
15
|
Villarreal LP, Witzany G. Social Networking of Quasi-Species Consortia drive Virolution via Persistence. AIMS Microbiol 2021; 7:138-162. [PMID: 34250372 PMCID: PMC8255905 DOI: 10.3934/microbiol.2021010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of cooperative quasi-species consortia (QS-C) thinking from the more accepted quasispecies equations of Manfred Eigen, provides a conceptual foundation from which concerted action of RNA agents can now be understood. As group membership becomes a basic criteria for the emergence of living systems, we also start to understand why the history and context of social RNA networks become crucial for survival and function. History and context of social RNA networks also lead to the emergence of a natural genetic code. Indeed, this QS-C thinking can also provide us with a transition point between the chemical world of RNA replicators and the living world of RNA agents that actively differentiate self from non-self and generate group identity with membership roles. Importantly the social force of a consortia to solve complex, multilevel problems also depend on using opposing and minority functions. The consortial action of social networks of RNA stem-loops subsequently lead to the evolution of cellular organisms representing a tree of life.
Collapse
|
16
|
Woods D, LeSassier DS, Egbunam I, Lennon CW. Construction and Quantitation of a Selectable Protein Splicing Sensor Using Gibson Assembly and Spot Titers. Curr Protoc 2021; 1:e82. [PMID: 33739627 DOI: 10.1002/cpz1.82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inteins (intervening proteins) are translated within host proteins and removed through protein splicing. Conditional protein splicing (CPS), where the rate and accuracy of splicing are highly dependent on environmental cues, has emerged as a novel form of post-translational regulation. While CPS has been demonstrated for several inteins in vitro, a comprehensive understanding of inteins requires tools to quantitatively monitor their activity within the cellular context. Here, we describe a method for construction of a splicing-dependent system that can be used to quantitatively assay for conditions that modulate protein splicing. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Construction of an intein-containing KanR2 library using Gibson assembly Basic Protocol 2: Phenotype determination using quantitative spot titers Support Protocol 1: Preparation of LB agar plates for spot titers Support Protocol 2: Preparation and transformation of competent M. smegmatis cells.
Collapse
Affiliation(s)
- Daniel Woods
- Wadsworth Center, New York State Department of Health, Albany, New York
| | | | | | | |
Collapse
|
17
|
Zhang N, Zhang S, He Y, Chen X, Zhang Y, Dong Z. Intein-mediated intracellular production of active microbial transglutaminase in Corynebacterium glutamicum. Enzyme Microb Technol 2020; 142:109680. [PMID: 33220868 DOI: 10.1016/j.enzmictec.2020.109680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
The microbial transglutaminase (mTGase) from Streptomyces mobaraense is widely used in the food industry. However, recombinant production of mTGase is challenging because the mTGase is synthesized as an inactive zymogen, and needs to be activated by proteolytic processing. In this study, self-cleaving intein Ssp DnaB was applied to activate the mTGase in Corynebacterium glutamicum. Premature cleavage of intein Ssp DnaB also occurred, but instead of suppressing premature cleavage, this phenomenon was used to produce active mTGase in C. glutamicum. Both SDS-PAGE analysis and mTGase activity assays indicated that the premature cleavage of intein Ssp DnaB activated the mTGase intracellularly in C. glutamicum. The subsequent N-terminal amino acid sequencing and site-directed mutagenesis studies further showed that the premature cleavage activated the mTGase intracellularly, in a highly specific manner. Moreover, the growth performance of C. glutamicum was not noticeably affected by the intracellular expression of active mTGase. Finally, the mTGase was produced in a 2 L bioreactor, with activity up to 49 U/mL, the highest intracellular mTGase activity ever reported. Using premature cleavage of intein Ssp DnaB to activate mTGase in C. glutamicum, we produced high levels of intracellular active mTGase. Moreover, this approach did not require any further processing steps, such as protease treatment or lengthy incubation, greatly simplifying the production of active mTGase. This efficient and simple approach has great potential for the large-scale industrial production of active mTGase.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shan Zhang
- SHENZHEN SIYOMICRO BIO-Tech CO., LTD, Shenzhen, 518116, People's Republic of China.
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
18
|
Lin Z, Zhao Q, Wang X, Zhou B, Xing L, Wang J, Pistolozzi M, Zhao L, Wang T. Engineered pH‐inducible intein
Mtu
ΔI‐CM variants with markedly reduced premature cleavage activity. AIChE J 2019. [DOI: 10.1002/aic.16806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhanglin Lin
- School of Biology and Biological EngineeringSouth China University of Technology Guangzhou China
- Department of Chemical EngineeringTsinghua University Beijing China
| | - Qing Zhao
- Department of Chemical EngineeringTsinghua University Beijing China
| | - Xu Wang
- Department of Chemical EngineeringTsinghua University Beijing China
| | - Bihong Zhou
- Department of Chemical EngineeringTsinghua University Beijing China
| | - Lei Xing
- Department of Chemical EngineeringTsinghua University Beijing China
| | - Jiangyun Wang
- Institute of BiophysicsChinese Academy of Sciences Beijing China
| | - Marco Pistolozzi
- School of Biology and Biological EngineeringSouth China University of Technology Guangzhou China
| | - Lei Zhao
- School of Biology and Biological EngineeringSouth China University of Technology Guangzhou China
| | - Tingting Wang
- School of Biology and Biological EngineeringSouth China University of Technology Guangzhou China
| |
Collapse
|
19
|
Lennon CW, Stanger MJ, Belfort M. Mechanism of Single-Stranded DNA Activation of Recombinase Intein Splicing. Biochemistry 2019; 58:3335-3339. [PMID: 31318538 DOI: 10.1021/acs.biochem.9b00506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inteins, or intervening proteins, are mobile genetic elements translated within host polypeptides and removed through protein splicing. This self-catalyzed process breaks two peptide bonds and rejoins the flanking sequences, called N- and C-exteins, with the intein scarlessly escaping the host protein. As these elements have traditionally been viewed as purely selfish genetic elements, recent work has demonstrated that the conditional protein splicing (CPS) of several naturally occurring inteins can be regulated by a variety of environmental cues relevant to the survival of the host organism or crucial to the invading protein function. The RadA recombinase from the archaeon Pyrococcus horikoshii represents an intriguing example of CPS, whereby protein splicing is inhibited by interactions between the intein and host protein C-extein. Single-stranded DNA (ssDNA), a natural substrate of RadA as well as signal that recombinase activity is needed by the cell, dramatically improves the splicing rate and accuracy. Here, we investigate the mechanism by which ssDNA exhibits this influence and find that ssDNA strongly promotes a specific step of the splicing reaction, cyclization of the terminal asparagine of the intein. Interestingly, inhibitory interactions between the host protein and intein that block splicing localize to this asparagine, suggesting that ssDNA binding alleviates this inhibition to promote splicing. We also find that ssDNA directly influences the position of catalytic nucleophiles required for protein splicing, implying that ssDNA promotes assembly of the intein active site. This work advances our understanding of how ssDNA accelerates RadA splicing, providing important insights into this intriguing example of CPS.
Collapse
Affiliation(s)
- Christopher W Lennon
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Matthew J Stanger
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| |
Collapse
|
20
|
Engineered toxin–intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat Biotechnol 2019; 37:755-760. [DOI: 10.1038/s41587-019-0105-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/13/2019] [Indexed: 01/21/2023]
|
21
|
Di Ventura B, Mootz HD. Switchable inteins for conditional protein splicing. Biol Chem 2018; 400:467-475. [DOI: 10.1515/hsz-2018-0309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Abstract
Synthetic biologists aim at engineering controllable biological parts such as DNA, RNA and proteins in order to steer biological activities using external inputs. Proteins can be controlled in several ways, for instance by regulating the expression of their encoding genes with small molecules or light. However, post-translationally modifying pre-existing proteins to regulate their function or localization leads to faster responses. Conditional splicing of internal protein domains, termed inteins, is an attractive methodology for this purpose. Here we discuss methods to control intein activity with a focus on those compatible with applications in living cells.
Collapse
Affiliation(s)
- Barbara Di Ventura
- Faculty of Biology, University of Freiburg , 79104 Freiburg , Germany
- BIOSS – Centre for Biological Signalling Studies, University of Freiburg , 79104 Freiburg , Germany
| | - Henning D. Mootz
- Department Chemistry and Pharmacy , Institute of Biochemistry, University of Münster , Münster D-48149 , Germany
| |
Collapse
|
22
|
Abstract
Inteins are intervening proteins that undergo an autocatalytic splicing reaction that ligates flanking host protein sequences termed exteins. Some intein-containing proteins have evolved to couple splicing to environmental signals; this represents a new form of posttranslational regulation. Of particular interest is RadA from the archaeon Pyrococcus horikoshii, for which long-range intein-extein interactions block splicing, requiring temperature and single-stranded DNA (ssDNA) substrate to splice rapidly and accurately. Here, we report that splicing of the intein-containing RadA from another archaeon, Thermococcus sibericus, is activated by significantly lower temperatures than is P. horikoshii RadA, consistent with differences in their growth environments. Investigation into variations between T. sibericus and P. horikoshii RadA inteins led to the discovery that a nonconserved region (NCR) of the intein, a flexible loop where a homing endonuclease previously resided, is critical to splicing. Deletion of the NCR leads to a substantial loss in the rate and accuracy of P. horikoshii RadA splicing only within native exteins. The influence of the NCR deletion can be largely overcome by ssDNA, demonstrating that the splicing-competent conformation can be achieved. We present a model whereby the NCR is a flexible hinge which acts as a switch by controlling distant intein-extein interactions that inhibit active site assembly. These results speak to the repurposing of the vestigial endonuclease loop to control an intein-extein partnership, which ultimately allows exquisite adaptation of protein splicing upon changes in the environment. Inteins are mobile genetic elements that interrupt coding sequences (exteins) and are removed by protein splicing. They are abundant elements in microbes, and recent work has demonstrated that protein splicing can be controlled by environmental cues, including the substrate of the intein-containing protein. Here, we describe an intein-extein collaboration that controls temperature-induced splicing of RadA from two archaea and how variation in this intein-extein partnership results in fine-tuning of splicing to closely match the environment. Specifically, we found that a small sequence difference between the two inteins, a flexible loop that likely once housed a homing endonuclease used for intein mobility, acts as a switch to control intein-extein interactions that block splicing. Our results argue strongly that some inteins have evolved away from a purely parasitic lifestyle to control the activity of host proteins, representing a new form of posttranslational regulation that is potentially widespread in the microbial world.
Collapse
|
23
|
Iwaï H, Mikula KM, Oeemig JS, Zhou D, Li M, Wlodawer A. Structural Basis for the Persistence of Homing Endonucleases in Transcription Factor IIB Inteins. J Mol Biol 2017; 429:3942-3956. [PMID: 29055778 PMCID: PMC6309676 DOI: 10.1016/j.jmb.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022]
Abstract
Inteins are mobile genetic elements that are spliced out of proteins after translation. Some inteins contain a homing endonuclease (HEN) responsible for their propagation. Hedgehog/INTein (HINT) domains catalyzing protein splicing and their nested HEN domains are thought to be functionally independent because of the existence of functional mini-inteins without HEN domains. Despite the lack of obvious mutualism between HEN and HINT domains, HEN domains are persistently found at one specific site in inteins, indicating their potential functional role in protein splicing. Here we report crystal structures of inactive and active mini-inteins derived from inteins residing in the transcription factor IIB of Methanococcus jannaschii and Methanocaldococcus vulcanius, revealing a novel modified HINT fold that might provide new insights into the mutualism between the HEN and HINT domains. We propose an evolutionary model of inteins and a functional role of HEN domains in inteins.
Collapse
Affiliation(s)
- Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland.
| | - Kornelia M Mikula
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Jesper S Oeemig
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Dongwen Zhou
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mi Li
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|