1
|
Kalra L, Bee M. Auditory streaming and rhythmic masking release in Cope's gray treefrog. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:2319-2329. [PMID: 40167344 DOI: 10.1121/10.0036251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Auditory streaming involves perceptually assigning overlapping sound sequences to their respective sources. Although critical for acoustic communication, few studies have investigated the role of auditory streaming in nonhuman animals. This study used the rhythmic masking release paradigm to investigate auditory streaming in Cope's gray treefrog (Hyla chrysoscelis). In this paradigm, the temporal rhythm of a Target sequence is masked in the presence of a Distractor sequence. A release from masking can be induced by adding a Captor sequence that perceptually "captures" the Distractor into an auditory stream segregated from the Target. Here, the Target was a sequence of repeated pulses mimicking the rhythm of the species' advertisement call. Gravid females exhibited robust phonotaxis to the Target alone, but responses declined significantly when Target pulses were interleaved with those of a Distractor at the same frequency, indicating the Target's attractive temporal rhythm was masked. However, addition of a remote-frequency Captor resulted in a significant increase in responses to the Target, suggesting the Target could be segregated from a separate stream consisting of integrated Distractor and Captor sequences. This result sheds light on how auditory streaming may facilitate acoustic communication in frogs and other animals.
Collapse
Affiliation(s)
- Lata Kalra
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Mark Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
2
|
Wikle AW, Broder ED, Gallagher JH, Dominguez J, Carlson M, Vu Q, Tinghitella RM, Lee N. Neural and behavioral evolution in an eavesdropper with a rapidly evolving host. Curr Biol 2025; 35:1074-1084.e7. [PMID: 39983732 DOI: 10.1016/j.cub.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 02/23/2025]
Abstract
The diversification of animal communication systems is driven by the interacting effects of signalers, signal receivers, and the environment. Yet, the critical role of unintended receivers, like eavesdropping enemies, has been underappreciated. Furthermore, contemporary evolution of animal signals is rare, making it difficult to directly observe this process. Ormiine parasitoid flies rely exclusively on acoustic cues to locate singing male orthopteran hosts. In Hawaii, selection imposed by Ormia ochracea has led to recent and rapid diversification of their local host crickets' song. We use complementary lab and field experiments to understand how receiver psychology (sensory and cognitive mechanisms) evolves to accommodate a new host and the evolution of that host's signal. Receiver psychology is critical to our understanding of host-parasite coevolution and animal communication, as the sensory system establishes the limits of behavioral responses that exert selection on signals. We demonstrate that the neural auditory tuning and behavior of O. ochracea have evolved in Hawaii, and these differences likely facilitate the detection of novel host songs. Further, the recently evolved songs are highly variable among males, and flies prefer novel songs with particular spectral characteristics, enabling us to predict how eavesdroppers may shape host song evolution. To our knowledge, this is the first evidence for rapid evolution in the sensory tuning of an eavesdropper. Our work links the evolution of sensory systems, signals, and behavior, heeding the recent call for better integration of sensory and cognitive mechanisms of receivers into our understanding of the evolution of animal communication.
Collapse
Affiliation(s)
- Aaron W Wikle
- University of Denver, Biology, 2199 S University Blvd, Denver, CO 80208, USA
| | - E Dale Broder
- University of Denver, Biology, 2199 S University Blvd, Denver, CO 80208, USA; American University, Department of Biology, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - James H Gallagher
- University of Denver, Biology, 2199 S University Blvd, Denver, CO 80208, USA; University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jimena Dominguez
- St. Olaf College, Department of Biology, 1520 St Olaf Ave, Northfield, MN 55057, USA
| | - Mikayla Carlson
- St. Olaf College, Department of Biology, 1520 St Olaf Ave, Northfield, MN 55057, USA; St. Olaf College, Neuroscience Program, 1520 St Olaf Ave, Northfield, MN 55057, USA
| | - Quang Vu
- St. Olaf College, Neuroscience Program, 1520 St Olaf Ave, Northfield, MN 55057, USA
| | - Robin M Tinghitella
- University of Denver, Biology, 2199 S University Blvd, Denver, CO 80208, USA.
| | - Norman Lee
- St. Olaf College, Department of Biology, 1520 St Olaf Ave, Northfield, MN 55057, USA; St. Olaf College, Neuroscience Program, 1520 St Olaf Ave, Northfield, MN 55057, USA.
| |
Collapse
|
3
|
Larter LC, Ryan MJ. Sensory-motor tuning allows generic features of conspecific acoustic scenes to guide rapid, adaptive, call-timing responses in túngara frogs. Proc Biol Sci 2024; 291:20240992. [PMID: 39319671 PMCID: PMC11423537 DOI: 10.1098/rspb.2024.0992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Male frogs court females from within crowded choruses, selecting for mechanisms allowing them to call at favourable times relative to the calls of rivals and background chorus noise. To accomplish this, males must continuously evaluate the fluctuating acoustic scene generated by their competitors for opportune times to call. Túngara frogs produce highly frequency- and amplitude-modulated calls from within dense choruses. We used similarly frequency- and amplitude-modulated playback tones to investigate the sensory basis of their call-timing decisions. Results revealed that different frequencies present throughout this species' call differed in their degree of call inhibition, and that lower-amplitude tones were less inhibitory. Call-timing decisions were then driven by fluctuations in inhibition arising from underlying frequency- and amplitude-modulation patterns, with tone transitions that produced steeper decreases in inhibition having higher probabilities of triggering calls. Interactions between the varied behavioural sensitivities to different conspecific call frequencies revealed here, and the stereotyped amplitude- and frequency-modulation patterns present in this species' calls, can explain previously surprising patterns observed in túngara frog choruses. This highlights the importance of understanding the specific sensory drivers underpinning conspecific signalling interactions, and reveals how sensory systems can mediate the interplay between signal perception and production to facilitate adaptive communication strategies.
Collapse
Affiliation(s)
- Luke C Larter
- Integrative Biology Department, University of Texas at Austin, 2515 Speedway , Austin, TX 78712, USA
| | - Michael J Ryan
- Integrative Biology Department, University of Texas at Austin, 2515 Speedway , Austin, TX 78712, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092 , Balboa, Republic of Panama
| |
Collapse
|
4
|
Reichert MS, Luttbeg B, Hobson EA. Collective signalling is shaped by feedbacks between signaller variation, receiver perception and acoustic environment in a simulated communication network. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230186. [PMID: 38768210 PMCID: PMC11391285 DOI: 10.1098/rstb.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 05/22/2024] Open
Abstract
Communication takes place within a network of multiple signallers and receivers. Social network analysis provides tools to quantify how an individual's social positioning affects group dynamics and the subsequent biological consequences. However, network analysis is rarely applied to animal communication, likely due to the logistical difficulties of monitoring natural communication networks. We generated a simulated communication network to investigate how variation in individual communication behaviours generates network effects, and how this communication network's structure feeds back to affect future signalling interactions. We simulated competitive acoustic signalling interactions among chorusing individuals and varied several parameters related to communication and chorus size to examine their effects on calling output and social connections. Larger choruses had higher noise levels, and this reduced network density and altered the relationships between individual traits and communication network position. Hearing sensitivity interacted with chorus size to affect both individuals' positions in the network and the acoustic output of the chorus. Physical proximity to competitors influenced signalling, but a distinctive communication network structure emerged when signal active space was limited. Our model raises novel predictions about communication networks that could be tested experimentally and identifies aspects of information processing in complex environments that remain to be investigated. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Michael S Reichert
- Department of Integrative Biology, Oklahoma State University , Stillwater, OK 74078, USA
| | - Barney Luttbeg
- Department of Integrative Biology, Oklahoma State University , Stillwater, OK 74078, USA
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati , Cincinnati, OH 45221, USA
| |
Collapse
|
5
|
Lugli M. Toward a general model for the evolution of the auditory sensitivity under variable ambient noise conditionsa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2236-2255. [PMID: 37819375 DOI: 10.1121/10.0021306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Ambient noise constrains the evolution of acoustic signals and hearing. An earlier fitness model showed that the trade-off between sound detection and recognition helps predict the best level of auditory sensitivity for acoustic communication in noise. Here, the early model is improved to investigate the effects of different noise masking conditions and signal-to-noise ratios (SNRs). It is revealed that low sensitivity is expected for acoustic communication over short distances in complex noisy environments provided missed sound recognition is costly. By contrast, high sensitivity is expected for acoustic communication over long distances in quieter habitats or when sounds are received with good SNRs under unfavorable noise conditions. High sensitivity is also expected in noisy environments characterized by one dominant source of noise with a fairly constant spectrum (running-water noise) or when sounds are processed using anti-masking strategies favoring the detection and recognition of sound embedded in noise. These predictions help explain unexpected findings that do not fit with the current view on the effects of environmental selection on signal and sensitivity. Model predictions are compared with those of models of signal detection in noisy conditions and results of empirical studies.
Collapse
Affiliation(s)
- Marco Lugli
- Department of Chemistry, Life Sciences and Environmental Sustainability-Unit of Behavioral Biology, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Lee N, Vélez A, Bee M. Behind the mask(ing): how frogs cope with noise. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:47-66. [PMID: 36310303 DOI: 10.1007/s00359-022-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022]
Abstract
Albert Feng was a pioneer in the field of auditory neuroethology who used frogs to investigate the neural basis of spectral and temporal processing and directional hearing. Among his many contributions was connecting neural mechanisms for sound pattern recognition and localization to the problems of auditory masking that frogs encounter when communicating in noisy, real-world environments. Feng's neurophysiological studies of auditory processing foreshadowed and inspired subsequent behavioral investigations of auditory masking in frogs. For frogs, vocal communication frequently occurs in breeding choruses, where males form dense aggregations and produce loud species-specific advertisement calls to attract potential mates and repel competitive rivals. In this review, we aim to highlight how Feng's research advanced our understanding of how frogs cope with noise. We structure our narrative around three themes woven throughout Feng's research-spectral, temporal, and directional processing-to illustrate how frogs can mitigate problems of auditory masking by exploiting frequency separation between signals and noise, temporal fluctuations in noise amplitude, and spatial separation between signals and noise. We conclude by proposing future research that would build on Feng's considerable legacy to advance our understanding of hearing and sound communication in frogs and other vertebrates.
Collapse
Affiliation(s)
- Norman Lee
- Department of Biology, St. Olaf College, 1520 St. Olaf Ave, Northfield, MN, 55057, USA.
| | - Alejandro Vélez
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Mark Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, St. Paul, MN, 55108, USA.,Graduate Program in Neuroscience, University of Minnesota, Twin Cities, 321 Church Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
7
|
Gerhardt HC, Bee MA, Christensen-Dalsgaard J. Neuroethology of sound localization in anurans. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:115-129. [PMID: 36201014 DOI: 10.1007/s00359-022-01576-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
Albert Feng pioneered the study of neuroethology of sound localization in anurans by combining behavioral experiments on phonotaxis with detailed investigations of neural processing of sound direction from the periphery to the central nervous system. The main advantage of these studies is that many species of female frogs readily perform phonotaxis towards loudspeakers emitting the species-specific advertisement call. Behavioral studies using synthetic calls can identify which parameters are important for phonotaxis and also quantify localization accuracy. Feng was the first to investigate binaural processing using single-unit recordings in the first two auditory nuclei in the central auditory pathway and later investigated the directional properties of auditory nerve fibers with free-field stimulation. These studies showed not only that the frog ear is inherently directional by virtue of acoustical coupling or crosstalk between the two eardrums, but also confirmed that there are extratympanic pathways that affect directionality in the low-frequency region of the frog's hearing range. Feng's recordings in the midbrain also showed that directional information is enhanced by cross-midline inhibition. An important contribution toward the end of his career involved his participation in neuroethological research with a team of scientists working with frogs that produce ultrasonic calls.
Collapse
Affiliation(s)
- H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 1479 Gortner Ave, St. Paul, MN, 55108, USA
- Graduate Program in Neuroscience, University of Minnesota-Twin Cities, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | | |
Collapse
|
8
|
Coss DA, Ryan MJ, Page RA, Hunter KL, Taylor RC. Can you hear/see me? Multisensory integration of signals does not always facilitate mate choice. Behav Ecol 2022. [DOI: 10.1093/beheco/arac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Females of many species choose mates using multiple sensory modalities. Multimodal noise may arise, however, in dense aggregations of animals communicating via multiple sensory modalities. Some evidence suggests multimodal signals may not always improve receiver decision-making performance. When sensory systems process input from multimodal signal sources, multimodal noise may arise and potentially complicate decision-making due to the demands on cognitive integration tasks. We tested female túngara frog, Physalaemus (=Engystomops) pustulosus, responses to male mating signals in noise from multiple sensory modalities (acoustic and visual). Noise treatments were partitioned into three categories: acoustic, visual, and multimodal. We used natural calls from conspecifics and heterospecifics for acoustic noise. Robotic frogs were employed as either visual signal components (synchronous vocal sac inflation with call) or visual noise (asynchronous vocal sac inflation with call). Females expressed a preference for the typically more attractive call in the presence of unimodal noise. However, during multimodal signal and noise treatments (robofrogs employed with background noise), females failed to express a preference for the typically attractive call in the presence of conspecific chorus noise. We found that social context and temporal synchrony of multimodal signaling components are important for multimodal communication. Our results demonstrate that multimodal signals have the potential to increase the complexity of the sensory scene and reduce the efficacy of female decision making.
Collapse
Affiliation(s)
- Derek A Coss
- Department of Biology, Salisbury University , Salisbury, MD 21801 , USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas at Austin , Austin, TX 78712 , USA
- Smithsonian Tropical Research Institute , Apartado 0843-03092 Balboa, Ancón , Republic of Panama
| | - Rachel A Page
- Smithsonian Tropical Research Institute , Apartado 0843-03092 Balboa, Ancón , Republic of Panama
| | - Kimberly L Hunter
- Department of Biology, Salisbury University , Salisbury, MD 21801 , USA
| | - Ryan C Taylor
- Department of Biology, Salisbury University , Salisbury, MD 21801 , USA
- Smithsonian Tropical Research Institute , Apartado 0843-03092 Balboa, Ancón , Republic of Panama
| |
Collapse
|
9
|
Clark FE, Dunn JC. From Soundwave to Soundscape: A Guide to Acoustic Research in Captive Animal Environments. Front Vet Sci 2022; 9:889117. [PMID: 35782565 PMCID: PMC9244380 DOI: 10.3389/fvets.2022.889117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sound is a complex feature of all environments, but captive animals' soundscapes (acoustic scenes) have been studied far less than those of wild animals. Furthermore, research across farms, laboratories, pet shelters, and zoos tends to focus on just one aspect of environmental sound measurement: its pressure level or intensity (in decibels). We review the state of the art of captive animal acoustic research and contrast this to the wild, highlighting new opportunities for the former to learn from the latter. We begin with a primer on sound, aimed at captive researchers and animal caregivers with an interest (rather than specific expertise) in acoustics. Then, we summarize animal acoustic research broadly split into measuring sound from animals, or their environment. We guide readers from soundwave to soundscape and through the burgeoning field of conservation technology, which offers new methods to capture multiple features of complex, gestalt soundscapes. Our review ends with suggestions for future research, and a practical guide to sound measurement in captive environments.
Collapse
Affiliation(s)
- Fay E. Clark
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- School of Psychological Science, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- *Correspondence: Fay E. Clark
| | - Jacob C. Dunn
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- Biological Anthropology, Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Li H, Schrode KM, Bee MA. Vocal sacs do not function in multimodal mate attraction under nocturnal illumination in Cope's grey treefrog. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
James LS, Taylor RC, Hunter KL, Ryan MJ. Evolutionary and Allometric Insights into Anuran Auditory Sensitivity and Morphology. BRAIN, BEHAVIOR AND EVOLUTION 2021; 97:140-150. [PMID: 34864726 DOI: 10.1159/000521309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
As species change through evolutionary time, the neurological and morphological structures that underlie behavioral systems typically remain coordinated. This is especially important for communication systems, in which these structures must remain coordinated both within and between senders and receivers for successful information transfer. The acoustic communication of anurans ("frogs") offers an excellent system to ask when and how such coordination is maintained, and to allow researchers to dissociate allometric effects from independent correlated evolution. Anurans constitute one of the most speciose groups of vocalizing vertebrates, and females typically rely on vocalizations to localize males for reproduction. Here, we compile and compare data on various aspects of auditory morphology, hearing sensitivity, and call-dominant frequency across 81 species of anurans. We find robust, phylogenetically independent scaling effects of body size for all features measured. Furthermore, after accounting for body size, we find preliminary evidence that morphological evolution beyond allometry can correlate with hearing sensitivity and dominant frequency. These data provide foundational results regarding constraints imposed by body size on communication systems and motivate further data collection and analysis using comparative approaches across the numerous anuran species.
Collapse
Affiliation(s)
- Logan S James
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Ryan C Taylor
- Smithsonian Tropical Research Institute, Balboa, Panama
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | - Kimberly L Hunter
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA,
- Smithsonian Tropical Research Institute, Balboa, Panama,
| |
Collapse
|
12
|
Zhang H, Zhu B, Zhou Y, He Q, Sun X, Wang J, Cui J. Females and males respond differently to calls impaired by noise in a tree frog. Ecol Evol 2021; 11:9159-9167. [PMID: 34257950 PMCID: PMC8258198 DOI: 10.1002/ece3.7761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Both human and nonhuman animals communicating acoustically face the problem of noise interference, especially anurans during mating activities. Previous studies concentrated on the effect of continuous noise on signal recognition, but it is still unknown whether different notes in advertisement calls impaired by noise affect female choice and male-male competition or not. In this study, we tested female preferences and male-evoked vocal responses in serrate-legged small tree frog (Kurixalus odontotarsus), by broadcasting the five-note advertisement call and the advertisement call with the second, third, or fourth note replaced by noise, respectively. In phonotaxis experiments, females significantly discriminated against the advertisement call with the fourth note impaired by noise, although they did not discriminate against other two calls impaired by noise, which indicates that the negative effect of noise on female preference is related to the order of impaired notes in the advertisement call. In playback experiments, males increased the total number of notes in response to noise-impaired calls compared with spontaneous calls. More interestingly, the vocal responses evoked by noise-impaired calls were generally similar to those evoked by complete advertisement calls, suggesting that males may recognize the noise-impaired calls as complete advertisement calls. Taken together, our study shows that different notes in advertisement calls replaced by noise have distinct effects on female choice and male-male competition.
Collapse
Affiliation(s)
- Haodi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bicheng Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Ya Zhou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiaoling He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoqian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Jianguo Cui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| |
Collapse
|
13
|
Lee N, Christensen-Dalsgaard J, White LA, Schrode KM, Bee MA. Lung mediated auditory contrast enhancement improves the Signal-to-noise ratio for communication in frogs. Curr Biol 2021; 31:1488-1498.e4. [PMID: 33667371 DOI: 10.1016/j.cub.2021.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
Environmental noise is a major source of selection on animal sensory and communication systems. The acoustic signals of other animals represent particularly potent sources of noise for chorusing insects, frogs, and birds, which contend with a multi-species analog of the human "cocktail party problem" (i.e., our difficulty following speech in crowds). However, current knowledge of the diverse adaptations that function to solve noise problems in nonhuman animals remains limited. Here, we show that a lung-to-ear sound transmission pathway in frogs serves a heretofore unknown noise-control function in vertebrate hearing and sound communication. Inflated lungs improve the signal-to-noise ratio for communication by enhancing the spectral contrast in received vocalizations in ways analogous to signal processing algorithms used in hearing aids and cochlear implants. Laser vibrometry revealed that the resonance of inflated lungs selectively reduces the tympanum's sensitivity to frequencies between the two spectral peaks present in conspecific mating calls. Social network analysis of continent-scale citizen science data on frog calling behavior revealed that the calls of other frog species in multi-species choruses can be a prominent source of environmental noise attenuated by the lungs. Physiological modeling of peripheral frequency tuning indicated that inflated lungs could reduce both auditory masking and suppression of neural responses to mating calls by environmental noise. Together, these data suggest an ancient adaptation for detecting sound via the lungs has been evolutionarily co-opted to create auditory contrast enhancement that contributes to solving a multi-species cocktail party problem.
Collapse
Affiliation(s)
- Norman Lee
- Department of Biology, St. Olaf College, Northfield, MN 55057, USA.
| | | | - Lauren A White
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Katrina M Schrode
- Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
A condition-dependent male sexual signal predicts adaptive predator-induced plasticity in offspring. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02968-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Rodríguez RL. Back to the Basics of Mate Choice: The Evolutionary Importance of Darwin’s Sense of Beauty. THE QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/711781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Coss DA, Hunter KL, Taylor RC. Silence is sexy: soundscape complexity alters mate choice in túngara frogs. Behav Ecol 2020. [DOI: 10.1093/beheco/araa091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Many animals acoustically communicate in large aggregations, producing biotic soundscapes. In turn, these natural soundscapes can influence the efficacy of animal communication, yet little is known about how variation in soundscape interferes with animals that communicate acoustically. We quantified this variation by analyzing natural soundscapes with the mid-frequency cover index and by measuring the frequency ranges and call rates of the most common acoustically communicating species. We then tested female mate choice in the túngara frog (Physalaemus pustulosus) in varying types of background chorus noise. We broadcast two natural túngara frog calls as a stimulus and altered the densities (duty cycles) of natural calls from conspecifics and heterospecifics to form the different types of chorus noise. During both conspecific and heterospecific chorus noise treatments, females demonstrated similar preferences for advertisement calls at low and mid noise densities but failed to express a preference in the presence of high noise density. Our data also suggest that nights with high densities of chorus noise from conspecifics and heterospecifics are common in some breeding ponds, and on nights with high noise density, the soundscape plays an important role diminishing the accuracy of female decision-making.
Collapse
Affiliation(s)
- Derek A Coss
- Department of Biology, Salisbury University, Salisbury, MD, USA
| | | | - Ryan C Taylor
- Department of Biology, Salisbury University, Salisbury, MD, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, Ancón, Republic of Panama
| |
Collapse
|
17
|
Tanner JC, Bee MA. Species Recognition Is Constrained by Chorus Noise, but Not Inconsistency in Signal Production, in Cope’s Gray Treefrog (Hyla chrysoscelis). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Gentry KE, Lewis RN, Glanz H, Simões PI, Nyári ÁS, Reichert MS. Bioacoustics in cognitive research: Applications, considerations, and recommendations. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 11:e1538. [PMID: 32548958 DOI: 10.1002/wcs.1538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
The multifaceted ability to produce, transmit, receive, and respond to acoustic signals is widespread in animals and forms the basis of the interdisciplinary science of bioacoustics. Bioacoustics research methods, including sound recording and playback experiments, are applicable in cognitive research that centers around the processing of information from the acoustic environment. We provide an overview of bioacoustics techniques in the context of cognitive studies and make the case for the importance of bioacoustics in the study of cognition by outlining some of the major cognitive processes in which acoustic signals are involved. We also describe key considerations associated with the recording of sound and its use in cognitive applications. Based on these considerations, we provide a set of recommendations for best practices in the recording and use of acoustic signals in cognitive studies. Our aim is to demonstrate that acoustic recordings and stimuli are valuable tools for cognitive researchers when used appropriately. In doing so, we hope to stimulate opportunities for innovative cognitive research that incorporates robust recording protocols. This article is categorized under: Neuroscience > Cognition Psychology > Theory and Methods Neuroscience > Behavior Neuroscience > Cognition.
Collapse
Affiliation(s)
- Katherine E Gentry
- Division of Habitat and Species Conservation, Florida Fish and Wildlife Conservation Commission, Tallahassee, Florida, USA
| | - Rebecca N Lewis
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK.,Chester Zoo, Chester, UK
| | - Hunter Glanz
- Statistics Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Pedro I Simões
- Departmento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Árpád S Nyári
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
19
|
Tanner JC, Bee MA. Inconsistent sexual signaling degrades optimal mating decisions in animals. SCIENCE ADVANCES 2020; 6:eaax3957. [PMID: 32440536 PMCID: PMC7228747 DOI: 10.1126/sciadv.aax3957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Like political stump speeches and product advertisements, animal signals are highly repetitive and function to persuade receivers to adopt behaviors benefiting the signaler. And like potential constituents and consumers, receivers assess signals to inform their behavioral decisions. However, inconsistency in sexual signals is widespread and potentially injects uncertainty into mating decisions. Here, we show that females fail to make optimal mating decisions based on assessments of signal quality due to inconsistency in signal production. Natural levels of inconsistency markedly reduced female preference expression for a nonarbitrary signal of male quality. Inconsistency reshaped preferences even more profoundly than the better-known impediment of ambient noise. To our knowledge, this is the first demonstration of how inconsistent messaging degrades optimal decision-making in animals, with implications for understanding signal evolution.
Collapse
Affiliation(s)
- Jessie C. Tanner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Taylor RC, Akre K, Wilczynski W, Ryan MJ. Behavioral and neural auditory thresholds in a frog. Curr Zool 2019; 65:333-341. [PMID: 31263492 PMCID: PMC6595421 DOI: 10.1093/cz/zoy089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 01/22/2023] Open
Abstract
Vocalizations play a critical role in mate recognition and mate choice in a number of taxa, especially, but not limited to, orthopterans, frogs, and birds. But receivers can only recognize and prefer sounds that they can hear. Thus a fundamental question linking neurobiology and sexual selection asks-what is the threshold for detecting acoustic sexual displays? In this study, we use 3 methods to assess such thresholds in túngara frogs: behavioral responses, auditory brainstem responses, and multiunit electrophysiological recordings from the midbrain. We show that thresholds are lowest for multiunit recordings (ca. 45 dB SPL), and then for behavioral responses (ca. 61 dB SPL), with auditory brainstem responses exhibiting the highest thresholds (ca. 71 dB SPL). We discuss why these estimates differ and why, as with other studies, it is unlikely that they should be the same. Although all of these studies estimate thresholds they are not measuring the same thresholds; behavioral thresholds are based on signal salience whereas the 2 neural assays estimate physiological thresholds. All 3 estimates, however, make it clear that to have an appreciation for detection and salience of acoustic signals we must listen to those signals through the ears of the receivers.
Collapse
Affiliation(s)
- Ryan C Taylor
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Biological Sciences, Salisbury University, Salisbury, MD, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Karin Akre
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Walter Wilczynski
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
21
|
Goodale E, Ruxton GD, Beauchamp G. Predator Eavesdropping in a Mixed-Species Environment: How Prey Species May Use Grouping, Confusion, and the Cocktail Party Effect to Reduce Predator Detection. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00141] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Christie KW, Schul J, Feng AS. Differential effects of sound level and temporal structure of calls on phonotaxis by female gray treefrogs, Hyla versicolor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:223-238. [PMID: 30927060 DOI: 10.1007/s00359-019-01325-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 12/25/2018] [Accepted: 02/28/2019] [Indexed: 11/28/2022]
Abstract
We investigated how communication distance influenced the efficacy of communication by studying the effects of two attributes of male chorus sounds, namely, reduction in sound level and degradation of temporal sound structure, on attraction and accuracy of female phonotaxis in gray treefrogs, Hyla versicolor. For this, we conducted acoustic playback experiments, using synthetic calls and natural calls recorded at increasing distances from a focal male as stimuli. We found that the degradation of temporal structure had a greater effect on signal attractiveness than did the reduction in sound level, and that increasing sound level preferentially affected the attractiveness of proximally recorded calls, with less temporal degradation. Unlike signal attraction, accuracy of female localization increased systematically with the sound level. These results suggest that the degradation of temporal fine structure from both the chorus and signal-environmental effects imposes a limit for effective communication distances for female treefrogs in nature.
Collapse
Affiliation(s)
- Kevin W Christie
- Neuroscience Program and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Biology Department, University of Iowa, Iowa City, IA, 52242, USA.
| | - Johannes Schul
- Division of Biological Science, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Albert S Feng
- Neuroscience Program and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
23
|
Affiliation(s)
- Jessie C Tanner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
24
|
Bee MA, Vélez A. Masking release in temporally fluctuating noise depends on comodulation and overall level in Cope's gray treefrog. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2354. [PMID: 30404526 PMCID: PMC6199174 DOI: 10.1121/1.5064362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 05/29/2023]
Abstract
Many animals communicate acoustically in large social aggregations. Among the best studied are frogs, in which males form large breeding choruses where they produce loud vocalizations to attract mates. Although chorus noise poses significant challenges to communication, it also possesses features, such as comodulation in amplitude fluctuations, that listeners may be evolutionarily adapted to exploit in order to achieve release from masking. This study investigated the extent to which the benefits of comodulation masking release (CMR) depend on overall noise level in Cope's gray treefrog (Hyla chrysoscelis). Masked signal recognition thresholds were measured in response to vocalizations in the presence of chorus-shaped noise presented at two levels. The noises were either unmodulated or modulated with an envelope that was correlated (comodulated) or uncorrelated (deviant) across the frequency spectrum. Signal-to-noise ratios (SNRs) were lower at the higher noise level, and this effect was driven by relatively lower SNRs in modulated conditions, especially the comodulated condition. These results, which confirm that frogs benefit from CMR in a level-dependent manner, are discussed in relation to previous studies of CMR in humans and animals and in light of implications of the unique amphibian inner ear for considerations of within-channel versus across-channel mechanisms.
Collapse
Affiliation(s)
- Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 140 Gortner Laboratories, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA
| | - Alejandro Vélez
- Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 140 Gortner Laboratories, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA
| |
Collapse
|
25
|
Senzaki M, Kadoya T, Francis CD, Ishiyama N, Nakamura F. Suffering in receivers: Negative effects of noise persist regardless of experience in female anurans. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masayuki Senzaki
- Center for Environmental Biology and Ecosystem StudiesNational Institute for Environmental Studies Tsukuba Japan
| | - Taku Kadoya
- Center for Environmental Biology and Ecosystem StudiesNational Institute for Environmental Studies Tsukuba Japan
| | - Clinton D. Francis
- Department of Biological SciencesCalifornia Polytechnic State University San Luis Obispo California
| | - Nobuo Ishiyama
- Graduate School of AgricultureHokkaido University Sapporo Japan
| | | |
Collapse
|
26
|
Nonlinear processing of a multicomponent communication signal by combination-sensitive neurons in the anuran inferior colliculus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:749-772. [DOI: 10.1007/s00359-017-1195-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 11/25/2022]
|
27
|
Lee N, Mason AC. How spatial release from masking may fail to function in a highly directional auditory system. eLife 2017; 6. [PMID: 28425912 PMCID: PMC5443663 DOI: 10.7554/elife.20731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
Spatial release from masking (SRM) occurs when spatial separation between a signal and masker decreases masked thresholds. The mechanically-coupled ears of Ormia ochracea are specialized for hyperacute directional hearing, but the possible role of SRM, or whether such specializations exhibit limitations for sound source segregation, is unknown. We recorded phonotaxis to a cricket song masked by band-limited noise. With a masker, response thresholds increased and localization was diverted away from the signal and masker. Increased separation from 6° to 90° did not decrease response thresholds or improve localization accuracy, thus SRM does not operate in this range of spatial separations. Tympanal vibrations and auditory nerve responses reveal that localization errors were consistent with changes in peripheral coding of signal location and flies localized towards the ear with better signal detection. Our results demonstrate that, in a mechanically coupled auditory system, specialization for directional hearing does not contribute to source segregation.
Collapse
Affiliation(s)
- Norman Lee
- Department of Biological Sciences, Integrative Behaviour and Neuroscience Group, University of Toronto Scarborough, Toronto, Canada
| | - Andrew C Mason
- Department of Biological Sciences, Integrative Behaviour and Neuroscience Group, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
28
|
Taylor RC. Sensory Biology: How Female Treefrogs Pick Mates at a Noisy Party. Curr Biol 2017; 27:R188-R190. [PMID: 28267975 DOI: 10.1016/j.cub.2017.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A recent study has found that, despite strong acoustic masking from background noise, female treefrogs are able to select among individual males advertising for mates by taking advantage of small, periodic decreases in the overall noise structure.
Collapse
Affiliation(s)
- Ryan C Taylor
- Department of Biological Sciences, Salisbury University, 1101 Camden Avenue, Salisbury, MD 21801, USA.
| |
Collapse
|