1
|
Ampollini S, Ardizzi M, Ferroni F, Cigala A. Synchrony perception across senses: A systematic review of temporal binding window changes from infancy to adolescence in typical and atypical development. Neurosci Biobehav Rev 2024; 162:105711. [PMID: 38729280 DOI: 10.1016/j.neubiorev.2024.105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Sensory integration is increasingly acknowledged as being crucial for the development of cognitive and social abilities. However, its developmental trajectory is still little understood. This systematic review delves into the topic by investigating the literature about the developmental changes from infancy through adolescence of the Temporal Binding Window (TBW) - the epoch of time within which sensory inputs are perceived as simultaneous and therefore integrated. Following comprehensive searches across PubMed, Elsevier, and PsycInfo databases, only experimental, behavioral, English-language, peer-reviewed studies on multisensory temporal processing in 0-17-year-olds have been included. Non-behavioral, non-multisensory, and non-human studies have been excluded as those that did not directly focus on the TBW. The selection process was independently performed by two Authors. The 39 selected studies involved 2859 participants in total. Findings indicate a predisposition towards cross-modal asynchrony sensitivity and a composite, still unclear, developmental trajectory, with atypical development associated to increased asynchrony tolerance. These results highlight the need for consistent and thorough research into TBW development to inform potential interventions.
Collapse
Affiliation(s)
- Silvia Ampollini
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Borgo Carissimi, 10, Parma 43121, Italy.
| | - Martina Ardizzi
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Via Volturno 39E, Parma 43121, Italy
| | - Francesca Ferroni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Via Volturno 39E, Parma 43121, Italy
| | - Ada Cigala
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Borgo Carissimi, 10, Parma 43121, Italy
| |
Collapse
|
2
|
Sorrentino G, Franza M, Zuber C, Blanke O, Serino A, Bassolino M. How ageing shapes body and space representations: A comparison study between healthy young and older adults. Cortex 2020; 136:56-76. [PMID: 33460913 DOI: 10.1016/j.cortex.2020.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023]
Abstract
To efficiently interact with the external world, the brain needs to represent the size of the involved body parts - body representations (BR) - and the space around the body in which the interactions with the environment take place - peripersonal space representation (PPS). BR and PPS are both highly flexible, being updated by the continuous flow of sensorimotor signals between the brain and the body, as observed for example after tool-use or immobilization. The progressive decline of sensorimotor abilities typically described in ageing could thus influence BR and PPS representations in the older adults. To explore this hypothesis, we compared BR and PPS in healthy young and older participants. By focusing on the upper limb, we adapted tasks previously used to evaluate BR and PPS plasticity, i.e., the body-landmarks localization task and audio-tactile interaction task, together with a new task targeting explicit BR (avatar adjustment task, AAT). Results show significantly higher distortions in the older rather than young participants in the perceived metric characteristic of the upper limbs. We found significant modifications in the implicit BR of the global shape (length and width) of both upper limbs, together with an underestimation in the arm length. Similar effects were also observed in the AAT task. Finally, both young and older adults showed equivalent multisensory facilitation in the space close to the hand, suggesting an intact PPS representation. Together, these findings demonstrated significant alterations of implicit and explicit BR in the older participants, probably associated with a less efficient contribution of bodily information typically subjected to age-related decline, whereas the comparable PPS representation in both groups could be supported by preserved multisensory abilities in older participants. These results provide novel empirical insight on how multiple representations of the body in space, subserving actions and perception, are shaped by the normal course of life.
Collapse
Affiliation(s)
- Giuliana Sorrentino
- Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland
| | - Matteo Franza
- Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland
| | - Charlène Zuber
- Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland; Master of Science, University of Applied Sciences of Western, Switzerland
| | - Olaf Blanke
- Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland; Department of Neurology, University Hospital Geneva, Switzerland
| | - Andrea Serino
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; MySpace Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland
| | - Michela Bassolino
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva, Switzerland; Center for Neuroprosthetics, School of Life Science, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus SUVA, Sion, Switzerland; School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland.
| |
Collapse
|
3
|
Lloyd-Esenkaya T, Lloyd-Esenkaya V, O'Neill E, Proulx MJ. Multisensory inclusive design with sensory substitution. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2020; 5:37. [PMID: 32770416 PMCID: PMC7415050 DOI: 10.1186/s41235-020-00240-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/13/2020] [Indexed: 11/10/2022]
Abstract
Sensory substitution techniques are perceptual and cognitive phenomena used to represent one sensory form with an alternative. Current applications of sensory substitution techniques are typically focused on the development of assistive technologies whereby visually impaired users can acquire visual information via auditory and tactile cross-modal feedback. But despite their evident success in scientific research and furthering theory development in cognition, sensory substitution techniques have not yet gained widespread adoption within sensory-impaired populations. Here we argue that shifting the focus from assistive to mainstream applications may resolve some of the current issues regarding the use of sensory substitution devices to improve outcomes for those with disabilities. This article provides a tutorial guide on how to use research into multisensory processing and sensory substitution techniques from the cognitive sciences to design new inclusive cross-modal displays. A greater focus on developing inclusive mainstream applications could lead to innovative technologies that could be enjoyed by every person.
Collapse
Affiliation(s)
- Tayfun Lloyd-Esenkaya
- Crossmodal Cognition Lab, University of Bath, Bath, BA2 7AY, UK.,Department of Computer Science, University of Bath, Bath, UK
| | | | - Eamonn O'Neill
- Department of Computer Science, University of Bath, Bath, UK
| | - Michael J Proulx
- Crossmodal Cognition Lab, University of Bath, Bath, BA2 7AY, UK. .,Department of Psychology, University of Bath, Bath, UK.
| |
Collapse
|
4
|
Mason GM, Goldstein MH, Schwade JA. The role of multisensory development in early language learning. J Exp Child Psychol 2019; 183:48-64. [PMID: 30856417 DOI: 10.1016/j.jecp.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 01/11/2023]
Abstract
In typical development, communicative skills such as language emerge from infants' ability to combine multisensory information into cohesive percepts. For example, the act of associating the visual or tactile experience of an object with its spoken name is commonly used as a measure of early word learning, and social attention and speech perception frequently involve integrating both visual and auditory attributes. Early perspectives once regarded perceptual integration as one of infants' primary challenges, whereas recent work suggests that caregivers' social responses contain structured patterns that may facilitate infants' perception of multisensory social cues. In the current review, we discuss the regularities within caregiver feedback that may allow infants to more easily discriminate and learn from social signals. We focus on the statistical regularities that emerge in the moment-by-moment behaviors observed in studies of naturalistic caregiver-infant play. We propose that the spatial form and contingencies of caregivers' responses to infants' looks and prelinguistic vocalizations facilitate communicative and cognitive development. We also explore how individual differences in infants' sensory and motor abilities may reciprocally influence caregivers' response patterns, in turn regulating and constraining the types of social learning opportunities that infants experience across early development. We end by discussing implications for neurodevelopmental conditions affecting both multisensory integration and communication (i.e., autism) and suggest avenues for further research and intervention.
Collapse
Affiliation(s)
- Gina M Mason
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
5
|
Ozcan AS, Ozcan MS. Population Dynamics and Long-Term Trajectory of Dendritic Spines. Front Synaptic Neurosci 2018; 10:25. [PMID: 30087607 PMCID: PMC6066567 DOI: 10.3389/fnsyn.2018.00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/03/2018] [Indexed: 11/13/2022] Open
Abstract
Structural plasticity, characterized by the formation and elimination of synapses, plays a big role in learning and long-term memory formation in the brain. The majority of the synapses in the neocortex occur between the axonal boutons and dendritic spines. Therefore, understanding the dynamics of the dendritic spine growth and elimination can provide key insights to the mechanisms of structural plasticity. In addition to learning and memory formation, the connectivity of neural networks affects cognition, perception, and behavior. Unsurprisingly, psychiatric and neurological disorders such as schizophrenia and autism are accompanied by pathological alterations in spine morphology and synapse numbers. Hence, it is vital to develop a model to understand the mechanisms governing dendritic spine dynamics throughout the lifetime. Here, we applied the density dependent Ricker population model to investigate the feasibility of ecological population concepts and mathematical foundations in spine dynamics. The model includes “immigration,” which is based on the filopodia type transient spines, and we show how this effect can potentially stabilize the spine population theoretically. For the long-term dynamics we employed a time dependent carrying capacity based on the brain's metabolic energy allocation. The results show that the mathematical model can explain the spine density fluctuations in the short-term and also account for the long term trends in the developing brain during synaptogenesis and pruning.
Collapse
Affiliation(s)
- Ahmet S Ozcan
- Machine Intelligence Laboratory, Almaden Research Center, IBM Research, San Jose, CA, United States
| | - Mehmet S Ozcan
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Jayaraman S, Smith LB. Faces in early visual environments are persistent not just frequent. Vision Res 2018; 157:213-221. [PMID: 29852210 DOI: 10.1016/j.visres.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 11/25/2022]
Abstract
The regularities in very young infants' visual worlds likely have out-sized effects on the development of the visual system because they comprise the first-in experience that tunes, maintains, and specifies the neural substrate from low-level to higher-level representations and therefore constitute the starting point for all other visual learning. Recent evidence from studies using head cameras suggests that the frequency of faces available in early infant visual environments declines over the first year and a half of life. The primary question for the present paper concerns the temporal structure of face experiences: Is frequency the key exposure dimension distinguishing younger and older infants' face experiences, or is it the duration for which faces remain in view? Our corpus of head-camera images collected as infants went about their daily activities consisted of over a million individually coded frames sampled at 0.2 Hz from 232 h of infant-perspective scenes, recorded from 51 infants aged 1 month to 15 months. The major finding from this corpus is that very young infants (1-3 months) not only have more frequent face experiences but also more temporally persistent ones. The repetitions of the same very few face identities presenting up-close and frontal views are exaggerated in more persistent runs of the same face, and these persistent runs are more frequent for the youngest infants. The implications of early experiences consisting of extended repeated exposures of up-close frontal views for visual learning are discussed.
Collapse
Affiliation(s)
- Swapnaa Jayaraman
- Indiana University, 1101 E. 10th st., Bloomington, IN 47404, United States.
| | - Linda B Smith
- Indiana University, 1101 E. 10th st., Bloomington, IN 47404, United States.
| |
Collapse
|
7
|
Smith LB, Jayaraman S, Clerkin E, Yu C. The Developing Infant Creates a Curriculum for Statistical Learning. Trends Cogn Sci 2018. [PMID: 29519675 DOI: 10.1016/j.tics.2018.02.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
New efforts are using head cameras and eye-trackers worn by infants to capture everyday visual environments from the point of view of the infant learner. From this vantage point, the training sets for statistical learning develop as the sensorimotor abilities of the infant develop, yielding a series of ordered datasets for visual learning that differ in content and structure between timepoints but are highly selective at each timepoint. These changing environments may constitute a developmentally ordered curriculum that optimizes learning across many domains. Future advances in computational models will be necessary to connect the developmentally changing content and statistics of infant experience to the internal machinery that does the learning.
Collapse
Affiliation(s)
- Linda B Smith
- Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA.
| | - Swapnaa Jayaraman
- Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| | - Elizabeth Clerkin
- Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| | - Chen Yu
- Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| |
Collapse
|