1
|
Li XH, Kang XJ, Zhang XY, Su LN, Bi X, Wang RL, Xing SY, Sun LM. Formation mechanism and regulation analysis of trumpet leaf in Ginkgo biloba L. FRONTIERS IN PLANT SCIENCE 2024; 15:1367121. [PMID: 39086912 PMCID: PMC11288918 DOI: 10.3389/fpls.2024.1367121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Introduction The research on plant leaf morphology is of great significance for understanding the development and evolution of plant organ morphology. As a relict plant, the G. biloba leaf morphology typically exhibits bifoliate and peltate forms. However, throughout its long evolutionary history, Ginkgo leaves have undergone diverse changes. Methods This study focuses on the distinct "trumpet" leaves and normal fan-shaped leaves of G. biloba for analysis of their phenotypes, photosynthetic activity, anatomical observations, as well as transcriptomic and metabolomic analyses. Results The results showed that trumpet-shaped G. biloba leaves have fewer cells, significant morphological differences between dorsal and abaxial epidermal cells, leading to a significantly lower net photosynthetic rate. Additionally, this study found that endogenous plant hormones such as GA, auxin, and JA as well as metabolites such as flavonoids and phenolic acids play roles in the formation of trumpet-shaped G. biloba leaves. Moreover, the experiments revealed the regulatory mechanisms of various key biological processes and gene expressions in the trumpet-shaped leaves of G. biloba. Discussion Differences in the dorsal and abdominal cells of G. biloba leaves can cause the leaf to curl, thus reducing the overall photosynthetic efficiency of the leaves. However, the morphology of plant leaves is determined during the primordia leaf stage. In the early stages of leaf development, the shoot apical meristem (SAM) determines the developmental morphology of dicotyledonous plant leaves. This process involves the activity of multiple gene families and small RNAs. The establishment of leaf morphology is complexly regulated by various endogenous hormones, including the effect of auxin on cell walls. Additionally, changes in intracellular ion concentrations, such as fluctuations in Ca2+ concentration, also affect cell wall rigidity, thereby influencing leaf growth morphology.
Collapse
Affiliation(s)
- Xin-hui Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiao-jing Kang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Xin-yue Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Li-ning Su
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Xing Bi
- Department of Publicity, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Rui-long Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Shi-yan Xing
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Li-min Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
2
|
Huang X, Abuduwaili N, Wang X, Tao M, Wang X, Huang G. Cotton (Gossypium hirsutum) VIRMA as an N6-Methyladenosine RNA Methylation Regulator Participates in Controlling Chloroplast-Dependent and Independent Leaf Development. Int J Mol Sci 2022; 23:ijms23179887. [PMID: 36077287 PMCID: PMC9456376 DOI: 10.3390/ijms23179887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most abundant internal modifications of mRNA, which plays important roles in gene expression regulation, and plant growth and development. Vir-like m6A methyltransferase associated (VIRMA) serves as a scaffold for bridging the catalytic core components of the m6A methyltransferase complex. The role of VIRMA in regulating leaf development and its related mechanisms have not been reported. Here, we identified and characterized two upland cotton (Gossypium hirsutum) VIRMA genes, named as GhVIR-A and GhVIR-D, which share 98.5% identity with each other. GhVIR-A and GhVIR-D were ubiquitously expressed in different tissues and relatively higher expressed in leaves and main stem apexes (MSA). Knocking down the expression of GhVIR genes by the virus-induced gene silencing (VIGS) system influences leaf cell size, cell shape, and total cell numbers, thereby determining cotton leaf morphogenesis. The dot-blot assay and colorimetric experiment showed the ratio of m6A to A in mRNA is lower in leaves of GhVIR-VIGS plants compared with control plants. Messenger RNA (mRNA) high-throughput sequencing (RNA-seq) and a qRT-PCR experiment showed that GhVIRs regulate leaf development through influencing expression of some transcription factor genes, tubulin genes, and chloroplast genes including photosystem, carbon fixation, and ribosome assembly. Chloroplast structure, chlorophyll content, and photosynthetic efficiency were changed and unsuitable for leaf growth and development in GhVIR-VIGS plants compared with control plants. Taken together, our results demonstrate GhVIRs function in cotton leaf development by chloroplast dependent and independent pathways.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Nigara Abuduwaili
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumuqi 830054, China
| | - Xinting Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Miao Tao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiaoqian Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Gengqing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumuqi 830054, China
- Correspondence:
| |
Collapse
|
3
|
Xia M, Xu Q, Liu Y, Ming F. Mutagenic Effect of 60Co γ-Irradiation on Rosa multiflora ‘Libellula’ and the Mechanism Underlying the Associated Leaf Changes. PLANTS 2022; 11:plants11111438. [PMID: 35684211 PMCID: PMC9182980 DOI: 10.3390/plants11111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Gamma (γ)-irradiation can induce changes in plant morphology, cellular physiological activities, and genetic material. To date, there has been limited research on the molecular basis of leaf morphological abnormalities and physiological changes in irradiated rose plants. In this study, Rosa multiflora ‘Libellula’ plants were treated with 60Co γ-rays. The irradiation resulted in the distortion of blade morphology. Additionally, the leaf chlorophyll content decreased, whereas the accumulation of reactive oxygen species increased. The differentially expressed genes between the control and 2–3 plants irradiated with 50 Gy were analyzed by RNA-seq technology, which revealed genes related to chlorophyll metabolism were differentially expressed. The expression levels of genes related to the regulation of antioxidant enzyme synthesis were downregulated. An RNA-seq analysis also identified the differentially expressed regulatory genes involved in leaf morphology development. Four genes (RcYABBY1, RcARF18, RcARF9, and RcWOX8) were selected, and their expression patterns in different leaf development stages and in various plant organs were analyzed. Furthermore, virus-induced gene silencing technology was used to verify that RcYABBY1 is involved in the morphogenesis of R. multiflora ‘Libellula’ leaves. The results of this study are useful for clarifying the molecular, physiological, and morphological changes in irradiated rose plants.
Collapse
Affiliation(s)
- Meng Xia
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (M.X.); (Q.X.); (Y.L.)
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qingyu Xu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (M.X.); (Q.X.); (Y.L.)
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ying Liu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (M.X.); (Q.X.); (Y.L.)
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Feng Ming
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (M.X.); (Q.X.); (Y.L.)
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: ; Tel.: +86-21-64322007
| |
Collapse
|
4
|
Wang H, Kong F, Zhou C. From genes to networks: The genetic control of leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1181-1196. [PMID: 33615731 DOI: 10.1111/jipb.13084] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 05/15/2023]
Abstract
Substantial diversity exists for both the size and shape of the leaf, the main photosynthetic organ of flowering plants. The two major forms of leaf are simple leaves, in which the leaf blade is undivided, and compound leaves, which comprise several leaflets. Leaves form at the shoot apical meristem from a group of undifferentiated cells, which first establish polarity, then grow and differentiate. Each of these processes is controlled by a combination of transcriptional regulators, microRNAs and phytohormones. The present review documents recent advances in our understanding of how these various factors modulate the development of both simple leaves (focusing mainly on the model plant Arabidopsis thaliana) and compound leaves (focusing mainly on the model legume species Medicago truncatula).
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
| |
Collapse
|
5
|
Du F, Guan C, Jiao Y. Molecular Mechanisms of Leaf Morphogenesis. MOLECULAR PLANT 2018; 11:1117-1134. [PMID: 29960106 DOI: 10.1016/j.molp.2018.06.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 05/17/2023]
Abstract
Plants maintain the ability to form lateral appendages throughout their life cycle and form leaves as the principal lateral appendages of the stem. Leaves initiate at the peripheral zone of the shoot apical meristem and then develop into flattened structures. In most plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. To produce structures that can optimally fulfill this function, plants precisely control the initiation, shape, and polarity of leaves. Moreover, leaf development is highly flexible but follows common themes with conserved regulatory mechanisms. Leaves may have evolved from lateral branches that are converted into determinate, flattened structures. Many other plant parts, such as floral organs, are considered specialized leaves, and thus leaf development underlies their morphogenesis. Here, we review recent advances in the understanding of how three-dimensional leaf forms are established. We focus on how genes, phytohormones, and mechanical properties modulate leaf development, and discuss these factors in the context of leaf initiation, polarity establishment and maintenance, leaf flattening, and intercalary growth.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|