1
|
Lehmann KS, Hupp MT, Abalde-Atristain L, Jefferson A, Cheng YC, Sheehan AE, Kang Y, Freeman MR. Astrocyte-dependent local neurite pruning in Beat-Va neurons. J Cell Biol 2025; 224:e202312043. [PMID: 39652106 PMCID: PMC11627112 DOI: 10.1083/jcb.202312043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 12/12/2024] Open
Abstract
Developmental neuronal remodeling is extensive and mechanistically diverse across the nervous system. We sought to identify Drosophila pupal neurons that underwent mechanistically new types of neuronal remodeling and describe remodeling Beat-VaM and Beat-VaL neurons. We show that Beat-VaM neurons produce highly branched neurites in the CNS during larval stages that undergo extensive local pruning. Surprisingly, although the ecdysone receptor (EcR) is essential for pruning in all other cell types studied, Beat-VaM neurons remodel their branches extensively despite cell autonomous blockade EcR or caspase signaling. Proper execution of local remodeling in Beat-VaM neurons instead depends on extrinsic signaling from astrocytes converging with intrinsic and less dominant EcR-regulated mechanisms. In contrast, Beat-VaL neurons undergo steroid hormone-dependent, apoptotic cell death, which we show relies on the segment-specific expression of the Hox gene Abd-B. Our work provides new cell types in which to study neuronal remodeling, highlights an important role for astrocytes in activating local pruning in Drosophila independent of steroid signaling, and defines a Hox gene-mediated mechanism for segment-specific cell elimination.
Collapse
Affiliation(s)
| | - Madison T. Hupp
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Amanda Jefferson
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ya-Chen Cheng
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Amy E. Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marc R. Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Karkali K, Martín-Blanco E. The evolutionary and mechanical principles shaping the Drosophila embryonic ventral nerve cord. Cells Dev 2024; 180:203973. [PMID: 39490740 DOI: 10.1016/j.cdev.2024.203973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The establishment of communication circuits requires bringing sources and targets into contact, either directly or indirectly. The Central Nervous System (CNS)'s ability to interpret the environment and generate precise responses depends on the functional efficiency of its neural network, which in turn relies on the 3D spatial organization of its constituents, mainly neurons and glia. Throughout evolution, sensory integration and motor response coordination became linked with the merging of the brain and nerve cord (NC) in the urbilaterian CNS. In most arthropods, the NC follows a specific topological plan and consists of a fixed number of neuromeres (thoracic and abdominal ganglia with commissural interconnections and a single terminal ganglion). The number, spacing, and fusion of neuromeres are species-specific and can change during embryogenesis or post-embryonic life. During Drosophila embryogenesis, the NC condenses along the Anterior-Posterior (AP) axis in a stereotypical manner, bringing neuromeres closer together. This process has revealed several key parameters, including its morphogenetic mechanics, the roles of various cellular, molecular, and structural components, and the functional purpose of its balanced design. The embryonic NC serves as a valuable model for investigating the ancient mechanisms underlying the structural organization, sensory integration, and motor coordination of the CNS. While many aspects of ganglionic fusion remain unknown, ongoing research promises to provide a more comprehensive understanding of the mechanical and evolutionary principles that govern it.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Thor S. Indirect neurogenesis in space and time. Nat Rev Neurosci 2024; 25:519-534. [PMID: 38951687 DOI: 10.1038/s41583-024-00833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process.
Collapse
Affiliation(s)
- Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
4
|
Specification of the Drosophila Orcokinin A neurons by combinatorial coding. Cell Tissue Res 2023; 391:269-286. [PMID: 36512054 DOI: 10.1007/s00441-022-03721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
The central nervous system contains a daunting number of different cell types. Understanding how each cell acquires its fate remains a major challenge for neurobiology. The developing embryonic ventral nerve cord (VNC) of Drosophila melanogaster has been a powerful model system for unraveling the basic principles of cell fate specification. This pertains specifically to neuropeptide neurons, which typically are stereotypically generated in discrete subsets, allowing for unambiguous single-cell resolution in different genetic contexts. Here, we study the specification of the OrcoA-LA neurons, characterized by the expression of the neuropeptide Orcokinin A and located laterally in the A1-A5 abdominal segments of the VNC. We identified the progenitor neuroblast (NB; NB5-3) and the temporal window (castor/grainyhead) that generate the OrcoA-LA neurons. We also describe the role of the Ubx, abd-A, and Abd-B Hox genes in the segment-specific generation of these neurons. Additionally, our results indicate that the OrcoA-LA neurons are "Notch Off" cells, and neither programmed cell death nor the BMP pathway appears to be involved in their specification. Finally, we performed a targeted genetic screen of 485 genes known to be expressed in the CNS and identified nab, vg, and tsh as crucial determinists for OrcoA-LA neurons. This work provides a new neuropeptidergic model that will allow for addressing new questions related to neuronal specification mechanisms in the future.
Collapse
|
5
|
Clarembaux‐Badell L, Baladrón‐de‐Juan P, Gabilondo H, Rubio‐Ferrera I, Millán I, Estella C, Valverde‐Ortega FS, Cobeta IM, Thor S, Benito‐Sipos J. Dachshund acts with Abdominal-B to trigger programmed cell death in the Drosophila central nervous system at the frontiers of Abd-B expression. Dev Neurobiol 2022; 82:495-504. [PMID: 35796156 PMCID: PMC9544350 DOI: 10.1002/dneu.22894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022]
Abstract
A striking feature of the nervous system pertains to the appearance of different neural cell subtypes at different axial levels. Studies in the Drosophila central nervous system reveal that one mechanism underlying such segmental differences pertains to the segment-specific removal of cells by programmed cell death (PCD). One group of genes involved in segment-specific PCD is the Hox homeotic genes. However, while segment-specific PCD is highly precise, Hox gene expression is evident in gradients, raising the issue of how the Hox gene function is precisely gated to trigger PCD in specific segments at the outer limits of Hox expression. The Drosophila Va neurons are initially generated in all nerve cord segments but removed by PCD in posterior segments. Va PCD is triggered by the posteriorly expressed Hox gene Abdominal-B (Abd-B). However, Va PCD is highly reproducible despite exceedingly weak Abd-B expression in the anterior frontiers of its expression. Here, we found that the transcriptional cofactor Dachshund supports Abd-B-mediated PCD in its anterior domain. In vivo bimolecular fluorescence complementation analysis lends support to the idea that the Dachshund/Abd-B interplay may involve physical interactions. These findings provide an example of how combinatorial codes of transcription factors ensure precision in Hox-mediated PCD in specific segments at the outer limits of Hox expression.
Collapse
Affiliation(s)
- Luis Clarembaux‐Badell
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Pablo Baladrón‐de‐Juan
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Hugo Gabilondo
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Irene Rubio‐Ferrera
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Irene Millán
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)Nicolás Cabrera 1MadridSpain
| | - Félix S. Valverde‐Ortega
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Ignacio Monedero Cobeta
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
- Departamento de Fisiología, Facultad de MedicinaUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Stefan Thor
- School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
| | - Jonathan Benito‐Sipos
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| |
Collapse
|
6
|
Yaghmaeian Salmani B, Balderson B, Bauer S, Ekman H, Starkenberg A, Perlmann T, Piper M, Bodén M, Thor S. Selective requirement for polycomb repressor complex 2 in the generation of specific hypothalamic neuronal subtypes. Development 2022; 149:274592. [PMID: 35245348 PMCID: PMC8959139 DOI: 10.1242/dev.200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
The hypothalamus displays staggering cellular diversity, chiefly established during embryogenesis by the interplay of several signalling pathways and a battery of transcription factors. However, the contribution of epigenetic cues to hypothalamus development remains unclear. We mutated the polycomb repressor complex 2 gene Eed in the developing mouse hypothalamus, which resulted in the loss of H3K27me3, a fundamental epigenetic repressor mark. This triggered ectopic expression of posteriorly expressed regulators (e.g. Hox homeotic genes), upregulation of cell cycle inhibitors and reduced proliferation. Surprisingly, despite these effects, single cell transcriptomic analysis revealed that most neuronal subtypes were still generated in Eed mutants. However, we observed an increase in glutamatergic/GABAergic double-positive cells, as well as loss/reduction of dopamine, hypocretin and Tac2-Pax6 neurons. These findings indicate that many aspects of the hypothalamic gene regulatory flow can proceed without the key H3K27me3 epigenetic repressor mark, but points to a unique sensitivity of particular neuronal subtypes to a disrupted epigenomic landscape. Summary: Polycomb repressor complex 2 inactivation results in selective effects on mouse hypothalamic development, increasing glutamatergic/GABA cells, while reducing dopamine, Hcrt and Tac2-Pax6 cells.
Collapse
Affiliation(s)
- Behzad Yaghmaeian Salmani
- Department of Clinical and Experimental Medicine, Linkoping University, SE-58185 Linkoping, Sweden
- Department of Cell and Molecular Biology, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Brad Balderson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Susanne Bauer
- Department of Clinical and Experimental Medicine, Linkoping University, SE-58185 Linkoping, Sweden
| | - Helen Ekman
- Department of Clinical and Experimental Medicine, Linkoping University, SE-58185 Linkoping, Sweden
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linkoping University, SE-58185 Linkoping, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Michael Piper
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, SE-58185 Linkoping, Sweden
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
7
|
Mora A, Rakar J, Cobeta IM, Salmani BY, Starkenberg A, Thor S, Bodén M. Variational autoencoding of gene landscapes during mouse CNS development uncovers layered roles of Polycomb Repressor Complex 2. Nucleic Acids Res 2022; 50:1280-1296. [PMID: 35048973 PMCID: PMC8860581 DOI: 10.1093/nar/gkac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
A prominent aspect of most, if not all, central nervous systems (CNSs) is that anterior regions (brain) are larger than posterior ones (spinal cord). Studies in Drosophila and mouse have revealed that Polycomb Repressor Complex 2 (PRC2), a protein complex responsible for applying key repressive histone modifications, acts by several mechanisms to promote anterior CNS expansion. However, it is unclear what the full spectrum of PRC2 action is during embryonic CNS development and how PRC2 intersects with the epigenetic landscape. We removed PRC2 function from the developing mouse CNS, by mutating the key gene Eed, and generated spatio-temporal transcriptomic data. To decode the role of PRC2, we developed a method that incorporates standard statistical analyses with probabilistic deep learning to integrate the transcriptomic response to PRC2 inactivation with epigenetic data. This multi-variate analysis corroborates the central involvement of PRC2 in anterior CNS expansion, and also identifies several unanticipated cohorts of genes, such as proliferation and immune response genes. Furthermore, the analysis reveals specific profiles of regulation via PRC2 upon these gene cohorts. These findings uncover a differential logic for the role of PRC2 upon functionally distinct gene cohorts that drive CNS anterior expansion. To support the analysis of emerging multi-modal datasets, we provide a novel bioinformatics package that integrates transcriptomic and epigenetic datasets to identify regulatory underpinnings of heterogeneous biological processes.
Collapse
Affiliation(s)
- Ariane Mora
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jonathan Rakar
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Ignacio Monedero Cobeta
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
- Department of Physiology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Behzad Yaghmaeian Salmani
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 65 Stockholm, Sweden
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Joshi R, Sipani R, Bakshi A. Roles of Drosophila Hox Genes in the Assembly of Neuromuscular Networks and Behavior. Front Cell Dev Biol 2022; 9:786993. [PMID: 35071230 PMCID: PMC8777297 DOI: 10.3389/fcell.2021.786993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In Drosophila, they are instrumental for segment-specific neurogenesis and myogenesis early in development. Their robust expression in differentiated neurons implied their role in assembling region-specific neuromuscular networks. In the last decade, studies in Drosophila have unequivocally established that Hox genes go beyond their conventional functions of generating cellular diversity along the AP axis of the developing central nervous system. These roles range from establishing and maintaining the neuromuscular networks to controlling their function by regulating the motor neuron morphology and neurophysiology, thereby directly impacting the behavior. Here we summarize the limited knowledge on the role of Drosophila Hox genes in the assembly of region-specific neuromuscular networks and their effect on associated behavior.
Collapse
Affiliation(s)
- Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
Wang YW, Wreden CC, Levy M, Meng JL, Marshall ZD, MacLean J, Heckscher E. Sequential addition of neuronal stem cell temporal cohorts generates a feed-forward circuit in the Drosophila larval nerve cord. eLife 2022; 11:79276. [PMID: 35723253 PMCID: PMC9333992 DOI: 10.7554/elife.79276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
How circuits self-assemble starting from neuronal stem cells is a fundamental question in developmental neurobiology. Here, we addressed how neurons from different stem cell lineages wire with each other to form a specific circuit motif. In Drosophila larvae, we combined developmental genetics (twin-spot mosaic analysis with a repressible cell marker, multi-color flip out, permanent labeling) with circuit analysis (calcium imaging, connectomics, network science). For many lineages, neuronal progeny are organized into subunits called temporal cohorts. Temporal cohorts are subsets of neurons born within a tight time window that have shared circuit-level function. We find sharp transitions in patterns of input connectivity at temporal cohort boundaries. In addition, we identify a feed-forward circuit that encodes the onset of vibration stimuli. This feed-forward circuit is assembled by preferential connectivity between temporal cohorts from different lineages. Connectivity does not follow the often-cited early-to-early, late-to-late model. Instead, the circuit is formed by sequential addition of temporal cohorts from different lineages, with circuit output neurons born before circuit input neurons. Further, we generate new tools for the fly community. Our data raise the possibility that sequential addition of neurons (with outputs oldest and inputs youngest) could be one fundamental strategy for assembling feed-forward circuits.
Collapse
Affiliation(s)
- Yi-wen Wang
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Chris C Wreden
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Maayan Levy
- Committee on Computational Neuroscience, University of ChicagoChicagoUnited States
| | - Julia L Meng
- Program in Cell and Molecular Biology, University of ChicagoChicagoUnited States
| | - Zarion D Marshall
- Committee on Neurobiology, University of ChicagoChicagoUnited States
| | - Jason MacLean
- Committee on Computational Neuroscience, University of ChicagoChicagoUnited States,Committee on Neurobiology, University of ChicagoChicagoUnited States,Department of Neurobiology, University of ChicagoChicagoUnited States,University of Chicago Neuroscience InstituteChicagoUnited States
| | - Ellie Heckscher
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States,Committee on Computational Neuroscience, University of ChicagoChicagoUnited States,Program in Cell and Molecular Biology, University of ChicagoChicagoUnited States,Department of Neurobiology, University of ChicagoChicagoUnited States,University of Chicago Neuroscience InstituteChicagoUnited States
| |
Collapse
|
10
|
Rossi AM, Jafari S, Desplan C. Integrated Patterning Programs During Drosophila Development Generate the Diversity of Neurons and Control Their Mature Properties. Annu Rev Neurosci 2021; 44:153-172. [PMID: 33556251 DOI: 10.1146/annurev-neuro-102120-014813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During the approximately 5 days of Drosophila neurogenesis (late embryogenesis to the beginning of pupation), a limited number of neural stem cells produce approximately 200,000 neurons comprising hundreds of cell types. To build a functional nervous system, neuronal types need to be produced in the proper places, appropriate numbers, and correct times. We discuss how neural stem cells (neuroblasts) obtain so-called area codes for their positions in the nervous system (spatial patterning) and how they keep time to sequentially produce neurons with unique fates (temporal patterning). We focus on specific examples that demonstrate how a relatively simple patterning system (Notch) can be used reiteratively to generate different neuronal types. We also speculate on how different modes of temporal patterning that operate over short versus long time periods might be linked. We end by discussing how specification programs are integrated and lead to the terminal features of different neuronal types.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, NY 10003, USA; .,Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA;
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|
11
|
Bakshi A, Sipani R, Ghosh N, Joshi R. Sequential activation of Notch and Grainyhead gives apoptotic competence to Abdominal-B expressing larval neuroblasts in Drosophila Central nervous system. PLoS Genet 2020; 16:e1008976. [PMID: 32866141 PMCID: PMC7485976 DOI: 10.1371/journal.pgen.1008976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/11/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
Neural circuitry for mating and reproduction resides within the terminal segments of central nervous system (CNS) which express Hox paralogous group 9–13 (in vertebrates) or Abdominal-B (Abd-B) in Drosophila. Terminal neuroblasts (NBs) in A8-A10 segments of Drosophila larval CNS are subdivided into two groups based on expression of transcription factor Doublesex (Dsx). While the sex specific fate of Dsx-positive NBs is well investigated, the fate of Dsx-negative NBs is not known so far. Our studies with Dsx-negative NBs suggests that these cells, like their abdominal counterparts (in A3-A7 segments) use Hox, Grainyhead (Grh) and Notch to undergo cell death during larval development. This cell death also happens by transcriptionally activating RHG family of apoptotic genes through a common apoptotic enhancer in early to mid L3 stages. However, unlike abdominal NBs (in A3-A7 segments) which use increasing levels of resident Hox factor Abdominal-A (Abd-A) as an apoptosis trigger, Dsx-negative NBs (in A8-A10 segments) keep the levels of resident Hox factor Abd-B constant. These cells instead utilize increasing levels of the temporal transcription factor Grh and a rise in Notch activity to gain apoptotic competence. Biochemical and in vivo analysis suggest that Abdominal-A and Grh binding motifs in the common apoptotic enhancer also function as Abdominal-B and Grh binding motifs and maintains the enhancer activity in A8-A10 NBs. Finally, the deletion of this enhancer by the CRISPR-Cas9 method blocks the apoptosis of Dsx-negative NBs. These results highlight the fact that Hox dependent NB apoptosis in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern CNS. Two major characteristic features of bilaterian organisms are the head to tail axis and a complex central nervous system. The Hox family of transcription factors, which are expressed segmentally along the head to tail axis, plays a critical role in determining both of these features. One of the ways by which Hox factors do this is by mediating differential programmed cell death of the neural stem cells along the head to tail axis of the developing central nervous system, thereby regulating the numerical diversity of the neurons generated along this axis. Our study with a subpopulation of neural stem cells in the most terminal region of the Drosophila larval central nervous system highlights that region-specific Hox-dependent cell death of neural stem cells in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern the developing central nervous system.
Collapse
Affiliation(s)
- Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Neha Ghosh
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- * E-mail: ,
| |
Collapse
|
12
|
Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity. Nat Commun 2020; 11:1388. [PMID: 32170121 PMCID: PMC7069958 DOI: 10.1038/s41467-020-15223-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors (TFs) control cell fates by precisely orchestrating gene expression. However, how individual TFs promote transcriptional diversity remains unclear. Here, we use the Hox TF Ultrabithorax (Ubx) as a model to explore how a single TF specifies multiple cell types. Using proximity-dependent Biotin IDentification in Drosophila, we identify Ubx interactomes in three embryonic tissues. We find that Ubx interacts with largely non-overlapping sets of proteins with few having tissue-specific RNA expression. Instead most interactors are active in many cell types, controlling gene expression from chromatin regulation to the initiation of translation. Genetic interaction assays in vivo confirm that they act strictly lineage- and process-specific. Thus, functional specificity of Ubx seems to play out at several regulatory levels and to result from the controlled restriction of the interaction potential by the cellular environment. Thereby, it challenges long-standing assumptions such as differential RNA expression as determinant for protein complexes. Many transcription factors regulate gene expression in a lineage- and process-specific manner, despite being expressed in several cell types. Here, the authors show that the Hox transcription factor Ubx has lineage-specific interactomes, which contribute to its cell context-dependent functions.
Collapse
|
13
|
Quiescent Neural Stem Cells for Brain Repair and Regeneration: Lessons from Model Systems. Trends Neurosci 2020; 43:213-226. [PMID: 32209453 DOI: 10.1016/j.tins.2020.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
Neural stem cells (NSCs) are multipotent progenitors that are responsible for producing all of the neurons and macroglia in the nervous system. In adult mammals, NSCs reside predominantly in a mitotically dormant, quiescent state, but they can proliferate in response to environmental inputs such as feeding or exercise. It is hoped that quiescent NSCs could be activated therapeutically to contribute towards repair in humans. This will require an understanding of quiescent NSC heterogeneities and regulation during normal physiology and following brain injury. Non-mammalian vertebrates (zebrafish and salamanders) and invertebrates (Drosophila) offer insights into brain repair and quiescence regulation that are difficult to obtain using rodent models alone. We review conceptual progress from these various models, a first step towards harnessing quiescent NSCs for therapeutic purposes.
Collapse
|
14
|
Crews ST. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation. Genetics 2019; 213:1111-1144. [PMID: 31796551 PMCID: PMC6893389 DOI: 10.1534/genetics.119.300974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
The Drosophila embryonic central nervous system (CNS) is a complex organ consisting of ∼15,000 neurons and glia that is generated in ∼1 day of development. For the past 40 years, Drosophila developmental neuroscientists have described each step of CNS development in precise molecular genetic detail. This has led to an understanding of how an intricate nervous system emerges from a single cell. These studies have also provided important, new concepts in developmental biology, and provided an essential model for understanding similar processes in other organisms. In this article, the key genes that guide Drosophila CNS development and how they function is reviewed. Features of CNS development covered in this review are neurogenesis, gliogenesis, cell fate specification, and differentiation.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Integrative Program for Biological and Genome Sciences, School of Medicine, The University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
15
|
Ghosh N, Bakshi A, Khandelwal R, Rajan SG, Joshi R. The Hox gene Abdominal-B uses Doublesex F as a cofactor to promote neuroblast apoptosis in the Drosophila central nervous system. Development 2019; 146:dev.175158. [PMID: 31371379 PMCID: PMC6737903 DOI: 10.1242/dev.175158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Highly conserved DM domain-containing transcription factors (Doublesex/MAB-3/DMRT1) are responsible for generating sexually dimorphic features. In the Drosophila central nervous system, a set of Doublesex (Dsx)-expressing neuroblasts undergo apoptosis in females whereas their male counterparts proliferate and give rise to serotonergic neurons crucial for adult mating behaviour. Our study demonstrates that the female-specific isoform of Dsx collaborates with Hox gene Abdominal-B (Abd-B) to bring about this apoptosis. Biochemical results suggest that proteins AbdB and Dsx interact through their highly conserved homeodomain and DM domain, respectively. This interaction is translated into a cooperative binding of the two proteins on the apoptotic enhancer in the case of females but not in the case of males, resulting in female-specific activation of apoptotic genes. The capacity of AbdB to use the sex-specific isoform of Dsx as a cofactor underlines the possibility that these two classes of protein are capable of cooperating in selection and regulation of target genes in a tissue- and sex-specific manner. We propose that this interaction could be a common theme in generating sexual dimorphism in different tissues across different species.
Collapse
Affiliation(s)
- Neha Ghosh
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Risha Khandelwal
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| |
Collapse
|
16
|
Curt JR, Yaghmaeian Salmani B, Thor S. Anterior CNS expansion driven by brain transcription factors. eLife 2019; 8:45274. [PMID: 31271353 PMCID: PMC6634974 DOI: 10.7554/elife.45274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
During CNS development, there is prominent expansion of the anterior region, the brain. In Drosophila, anterior CNS expansion emerges from three rostral features: (1) increased progenitor cell generation, (2) extended progenitor cell proliferation, (3) more proliferative daughters. We find that tailless (mouse Nr2E1/Tlx), otp/Rx/hbn (Otp/Arx/Rax) and Doc1/2/3 (Tbx2/3/6) are important for brain progenitor generation. These genes, and earmuff (FezF1/2), are also important for subsequent progenitor and/or daughter cell proliferation in the brain. Brain TF co-misexpression can drive brain-profile proliferation in the nerve cord, and can reprogram developing wing discs into brain neural progenitors. Brain TF expression is promoted by the PRC2 complex, acting to keep the brain free of anti-proliferative and repressive action of Hox homeotic genes. Hence, anterior expansion of the Drosophila CNS is mediated by brain TF driven ‘super-generation’ of progenitors, as well as ‘hyper-proliferation’ of progenitor and daughter cells, promoted by PRC2-mediated repression of Hox activity.
Collapse
Affiliation(s)
- Jesús Rodriguez Curt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | | | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden.,School of Biomedical Sciences, University of Queensland, Saint Lucia, Australia
| |
Collapse
|
17
|
Otsuki L, Brand AH. Dorsal-Ventral Differences in Neural Stem Cell Quiescence Are Induced by p57 KIP2/Dacapo. Dev Cell 2019; 49:293-300.e3. [PMID: 30905769 PMCID: PMC6486397 DOI: 10.1016/j.devcel.2019.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022]
Abstract
Quiescent neural stem cells (NSCs) in the adult brain are regenerative cells that could be activated therapeutically to repair damage. It is becoming apparent that quiescent NSCs exhibit heterogeneity in their propensity for activation and in the progeny that they generate. We discovered recently that NSCs undergo quiescence in either G0 or G2 in the Drosophila brain, challenging the notion that all quiescent stem cells are G0 arrested. We found that G2-quiescent NSCs become activated prior to G0 NSCs. Here, we show that the cyclin-dependent kinase inhibitor Dacapo (Dap; ortholog of p57KIP2) determines whether NSCs enter G0 or G2 quiescence during embryogenesis. We demonstrate that the dorsal patterning factor, Muscle segment homeobox (Msh; ortholog of MSX1/2/3) binds directly to the Dap locus and induces Dap expression in dorsal NSCs, resulting in G0 arrest, while more ventral NSCs undergo G2 quiescence. Our results reveal region-specific regulation of stem cell quiescence. p57/Dap determines whether neural stem cells enter G0 quiescence or G2 quiescence The dorsal patterning factor MSX/Msh promotes p57/Dap expression and G0 quiescence Ventral stem cells instead express NKX/Vnd and undergo G2 quiescence Stem cells undergo distinct types of quiescence depending on axial identity
Collapse
Affiliation(s)
- Leo Otsuki
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
18
|
Bahrampour S, Jonsson C, Thor S. Brain expansion promoted by polycomb-mediated anterior enhancement of a neural stem cell proliferation program. PLoS Biol 2019; 17:e3000163. [PMID: 30807568 PMCID: PMC6407790 DOI: 10.1371/journal.pbio.3000163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/08/2019] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
During central nervous system (CNS) development, genetic programs establish neural stem cells and drive both stem and daughter cell proliferation. However, the prominent anterior expansion of the CNS implies anterior–posterior (A–P) modulation of these programs. In Drosophila, a set of neural stem cell factors acts along the entire A–P axis to establish neural stem cells. Brain expansion results from enhanced stem and daughter cell proliferation, promoted by a Polycomb Group (PcG)->Homeobox (Hox) homeotic network. But how does PcG->Hox modulate neural-stem-cell–factor activity along the A–P axis? We find that the PcG->Hox network creates an A–P expression gradient of neural stem cell factors, thereby driving a gradient of proliferation. PcG mutants can be rescued by misexpression of the neural stem cell factors or by mutation of one single Hox gene. Hence, brain expansion results from anterior enhancement of core neural-stem-cell–factor expression, mediated by PcG repression of brain Hox expression. A study in fruit flies shows that the anterior expansion of the central nervous system, to form the brain, is driven by Polycomb-mediated repression of Hox genes, resulting in anterior enhancement of a neural stem cell program. The central nervous system displays a pronounced anterior expansion that forms the brain. In the fruit fly Drosophila melanogaster, this expansion is driven by enhanced anterior cell proliferation. Recent studies reveal that cell proliferation in the brain is promoted by the Polycomb Group Complex, a key epigenetic complex. During development of the central nervous system, the Polycomb Group Complex acts to exclude Hox homeotic gene expression from the brain, thereby rendering the brain a Hox-free zone. Hox genes act in an antiproliferative manner, which explains the hyperproliferation observed in the brain, as well as the gradient of proliferation along the anterior–posterior axis of the central nervous system. Here, we find that Hox genes act by repressing a common neural stem cell proliferation program in more posterior regions, resulting in an anterior–posterior gradient of “stemness.” Hence, elevated anterior proliferation is promoted by the Polycomb Group Complex acting to keep the brain free of negative Hox input, thereby ensuring elevated expression of neural stem cell factors in the brain. Strikingly, mutants of the Polycomb Group Complex can be rescued by mutation of one single Hox gene, demonstrating that the primary role of the Polycomb Group Complex is indeed Hox repression. This study advances our understanding of how neural stem cell programs operate at different axial levels of the central nervous system and may have implications also for stem cell and organoid biology.
Collapse
Affiliation(s)
- Shahrzad Bahrampour
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Carolin Jonsson
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
19
|
Abstract
Epigenetic mechanisms, including DNA and histone modifications, are pivotal for normal brain development and functions by modulating spatial and temporal gene expression. Dysregulation of the epigenetic machinery can serve as a causal role in numerous brain disorders. Proper mammalian brain development and functions depend on the precise expression of neuronal-specific genes, transcription factors and epigenetic modifications. Antagonistic polycomb and trithorax proteins form multimeric complexes and play important roles in these processes by epigenetically controlling gene repression or activation through various molecular mechanisms. Aberrant expression or disruption of either protein group can contribute to neurodegenerative diseases. This review focus on the current progress of Polycomb and Trithorax complexes in brain development and disease, and provides a future outlook of the field.
Collapse
|
20
|
Ramon-Cañellas P, Peterson HP, Morante J. From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience 2018; 399:39-52. [PMID: 30578972 DOI: 10.1016/j.neuroscience.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Drosophila melanogaster is an important model organism used to study the brain development of organisms ranging from insects to mammals. The central nervous system in fruit flies is formed primarily in two waves of neurogenesis, one of which occurs in the embryo and one of which occurs during larval stages. In order to understand neurogenesis, it is important to research the behavior of progenitor cells that give rise to the neural networks which make up the adult nervous system. This behavior has been shown to be influenced by different factors including interactions with other cells within the progenitor niche, or local tissue microenvironment. Glial cells form a crucial part of this niche and play an active role in the development of the brain. Although in the early years of neuroscience it was believed that glia were simply scaffolding for neurons and passive components of the nervous system, their importance is nowadays recognized. Recent discoveries in progenitors and niche cells have led to new understandings of how the developing brain shapes its diverse regions. In this review, we attempt to summarize the distinct neural progenitors and glia in the Drosophila melanogaster central nervous system, from embryo to late larval stages, and make note of homologous features in mammals. We also outline the recent advances in this field in order to define the impact that glial cells have on progenitor cell niches, and we finally emphasize the importance of communication between glia and progenitor cells for proper brain formation.
Collapse
Affiliation(s)
- Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
21
|
Miyares RL, Lee T. Temporal control of Drosophila central nervous system development. Curr Opin Neurobiol 2018; 56:24-32. [PMID: 30500514 DOI: 10.1016/j.conb.2018.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Abstract
A complex nervous system requires precise numbers of various neuronal types produced with exquisite spatiotemporal control. This striking diversity is generated by a limited number of neural stem cells (NSC), where spatial and temporal patterning intersect. Drosophila is a genetically tractable model system that has significant advantages for studying stem cell biology and neuronal fate specification. Here we review the latest findings in the rich literature of temporal patterning of neuronal identity in the Drosophila central nervous system. Rapidly changing consecutive transcription factors expressed in NSCs specify short series of neurons with considerable differences. More slowly progressing changes are orchestrated by NSC intrinsic temporal factor gradients which integrate extrinsic signals to coordinate nervous system and organismal development.
Collapse
Affiliation(s)
- Rosa Linda Miyares
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
22
|
Harding K, White K. Drosophila as a Model for Developmental Biology: Stem Cell-Fate Decisions in the Developing Nervous System. J Dev Biol 2018; 6:E25. [PMID: 30347666 PMCID: PMC6315890 DOI: 10.3390/jdb6040025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.
Collapse
Affiliation(s)
- Katherine Harding
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
23
|
Rickert C, Lüer K, Vef O, Technau GM. Progressive derivation of serially homologous neuroblast lineages in the gnathal CNS of Drosophila. PLoS One 2018; 13:e0191453. [PMID: 29415052 PMCID: PMC5802887 DOI: 10.1371/journal.pone.0191453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
Along the anterior-posterior axis the central nervous system is subdivided into segmental units (neuromeres) the composition of which is adapted to their region-specific functional requirements. In Drosophila melanogaster each neuromere is formed by a specific set of identified neural stem cells (neuroblasts, NBs). In the thoracic and anterior abdominal region of the embryonic ventral nerve cord segmental sets of NBs resemble the ground state (2nd thoracic segment, which does not require input of homeotic genes), and serial (segmental) homologs generate similar types of lineages. The three gnathal head segments form a transitional zone between the brain and the ventral nerve cord. It has been shown recently that although all NBs of this zone are serial homologs of NBs in more posterior segments, they progressively differ from the ground state in anterior direction (labial > maxillary > mandibular segment) with regard to numbers and expression profiles. To study the consequences of their derived characters we traced the embryonic lineages of gnathal NBs using the Flybow and DiI-labelling techniques. For a number of clonal types serial homology is rather clearly reflected by their morphology (location and projection patterns) and cell specific markers, despite of reproducible segment-specific differences. However, many lineages, particularly in the mandibular segment, show a degree of derivation that impedes their assignment to ground state serial homologs. These findings demonstrate that differences in gene expression profiles of gnathal NBs go along with anteriorly directed progressive derivation in the composition of their lineages. Furthermore, lineage sizes decrease from labial to mandibular segments, which in concert with decreasing NB-numbers lead to reduced volumes of gnathal neuromeres, most significantly in the mandibular segment.
Collapse
Affiliation(s)
- Christof Rickert
- Institute of Developmental Biology and Neurobiology, University of Mainz, J.-J.-Becherweg 32,Mainz, Germany
- * E-mail: (CR); (GMT)
| | - Karin Lüer
- Institute of Developmental Biology and Neurobiology, University of Mainz, J.-J.-Becherweg 32,Mainz, Germany
| | - Olaf Vef
- Institute of Developmental Biology and Neurobiology, University of Mainz, J.-J.-Becherweg 32,Mainz, Germany
| | - Gerhard M. Technau
- Institute of Developmental Biology and Neurobiology, University of Mainz, J.-J.-Becherweg 32,Mainz, Germany
- * E-mail: (CR); (GMT)
| |
Collapse
|
24
|
Yaghmaeian Salmani B, Monedero Cobeta I, Rakar J, Bauer S, Curt JR, Starkenberg A, Thor S. Evolutionarily conserved anterior expansion of the central nervous system promoted by a common PcG-Hox program. Development 2018. [DOI: 10.1242/dev.160747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A conserved feature of the central nervous system (CNS) is the prominent expansion of anterior regions (brain) when compared to posterior (nerve cord). The cellular and regulatory processes driving anterior CNS expansion are not well understood in any bilaterian species. Here, we address this expansion in Drosophila and mouse. We find that when compared to the nerve cord the brain, in both Drosophila and mouse, displays extended progenitor proliferation, more elaborate daughter cell proliferation and more rapid cell cycle speed. These features contribute to anterior CNS expansion in both species. With respect to genetic control, enhanced brain proliferation is severely reduced by ectopic Hox gene expression, by either Hox misexpression or by loss of Polycomb Group (PcG) function. Strikingly, in PcG mutants, early CNS proliferation appears unaffected, whereas subsequently, brain proliferation is severely reduced. Hence, a conserved PcG-Hox program promotes the anterior expansion of the CNS. The profound differences in proliferation and in the underlying genetic mechanisms between brain and nerve cord lend support to the emerging concept of separate evolutionary origins of these two CNS regions.
Collapse
Affiliation(s)
| | - Ignacio Monedero Cobeta
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Jonathan Rakar
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Susanne Bauer
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Jesús Rodriguez Curt
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Annika Starkenberg
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Stefan Thor
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| |
Collapse
|
25
|
Bahrampour S, Gunnar E, Jonsson C, Ekman H, Thor S. Neural Lineage Progression Controlled by a Temporal Proliferation Program. Dev Cell 2017; 43:332-348.e4. [PMID: 29112852 DOI: 10.1016/j.devcel.2017.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/09/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
Great progress has been made in identifying transcriptional programs that establish stem cell identity. In contrast, we have limited insight into how these programs are down-graded in a timely manner to halt proliferation and allow for cellular differentiation. Drosophila embryonic neuroblasts undergo such a temporal progression, initially dividing to bud off daughters that divide once (type I), then switching to generating non-dividing daughters (type 0), and finally exiting the cell cycle. We identify six early transcription factors that drive neuroblast and type I daughter proliferation. Early factors are gradually replaced by three late factors, acting to trigger the type I→0 daughter proliferation switch and eventually to stop neuroblasts. Early and late factors regulate each other and four key cell-cycle genes, providing a logical genetic pathway for these transitions. The identification of this extensive driver-stopper temporal program controlling neuroblast lineage progression may have implications for studies in many other systems.
Collapse
Affiliation(s)
- Shahrzad Bahrampour
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Erika Gunnar
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Carolin Jonsson
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Helen Ekman
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden.
| |
Collapse
|