1
|
Moreau SJM, Marchal L, Boulain H, Musset K, Labas V, Tomas D, Gauthier J, Drezen JM. Multi-omic approach to characterize the venom of the parasitic wasp Cotesia congregata (Hymenoptera: Braconidae). BMC Genomics 2025; 26:431. [PMID: 40307720 PMCID: PMC12044726 DOI: 10.1186/s12864-025-11604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Cotesia congregata is a parasitoid Hymenoptera belonging to the Braconidae family and carrying CCBV (Cotesia congregata Bracovirus), an endosymbiotic polydnavirus. CCBV virus is considered as the main virulence factor of this species, which has raised questions, over the past thirty years, about the potential roles of venom in the parasitic interaction between C. congregata and its host, Manduca sexta (Lepidoptera: Sphingidae). To investigate C. congregata venom composition, we identified genes overexpressed in the venom glands (VGs) compared to ovaries, analyzed the protein composition of this fluid and performed a detailed analysis of conserved domains of these proteins. RESULTS Of the 14 140 known genes of the C. congregata genome, 659 genes were significantly over-expressed (with 10-fold or higher changes in expression) in the VGs of female C. congregata, compared with the ovaries. We identified 30 proteins whose presence was confirmed in venom extracts by proteomic analyses. Twenty-four of these were produced as precursor molecules containing a predicted signal peptide. Six of the proteins lacked a predicted signal peptide, suggesting that venom production in C. congregata also involves non-canonical secretion mechanisms. We have also analysed 18 additional proteins and peptides of interest whose presence in venom remains uncertain, but which could play a role in VG function. CONCLUSIONS Our results show that the venom of C. congregata not only contains proteins (including several enzymes) homologous to well-known venomous compounds, but also original proteins that appear to be specific to this species. This exhaustive study sheds a new light on this venom composition, the molecular diversity of which was unexpected. These data pave the way for targeted functional analyses and to better understand the evolutionary mechanisms that have led to the formation of the venomous arsenals we observe today in parasitoid insects.
Collapse
Affiliation(s)
- Sébastien J M Moreau
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, 37000, France.
| | - Lorène Marchal
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, 37000, France
| | - Hélène Boulain
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, 37000, France
| | - Valérie Labas
- PRC, INRAE, CNRS, Université de Tours, Nouzilly, 37380, France
- Plateforme de Phénotypage par Imagerie in/eX Vivo de L'ANImal À La Molécule (PIXANIM), INRAE, Université de Tours, CHU de Tours, Nouzilly, 37380, France
| | - Daniel Tomas
- PRC, INRAE, CNRS, Université de Tours, Nouzilly, 37380, France
- Plateforme de Phénotypage par Imagerie in/eX Vivo de L'ANImal À La Molécule (PIXANIM), INRAE, Université de Tours, CHU de Tours, Nouzilly, 37380, France
| | - Jérémy Gauthier
- Naturéum - Cantonal Museum of Natural Sciences, Lausanne, 1005, Switzerland
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, 37000, France
| |
Collapse
|
2
|
Chou J, Li MZ, Wey B, Mumtaz M, Ramroop JR, Singh S, Govind S. Venomous Cargo: Diverse Toxin-Related Proteins Are Associated with Extracellular Vesicles in Parasitoid Wasp Venom. Pathogens 2025; 14:255. [PMID: 40137740 PMCID: PMC11944595 DOI: 10.3390/pathogens14030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Unusual membrane-bound particles are present in the venom of the parasitoid wasps that parasitize Drosophila melanogaster. These venom particles harbor about 400 proteins and suppress the encapsulation of a wasp egg. Whereas the proteins in the particles of Leptopilina boulardi venom modify host hemocyte properties, those in L. heterotoma kill host hemocytes. The mechanisms underlying this differential effect are not well understood. The proteome of the L. heterotoma venom particles has been described before, but that of L. boulardi has not been similarly examined. Using sequence-based programs, we report the presence of conserved proteins in both proteomes with strong enrichment in the endomembrane and exosomal cell components. Extracellular vesicle markers are present in both proteomes, as are numerous toxins. Both proteomes also contain proteins lacking any annotation. Among these, we identified the proteins with structural similarity to the ADP-ribosyltransferase enzymes involved in bacterial virulence. We propose that invertebrate fluids like parasitoid venom contain functional extracellular vesicles that deliver toxins and virulence factors from a parasite to a host. Furthermore, the presence of such vesicles may not be uncommon in the venom of other animals. An experimental verification of the predicted toxin functions will clarify the cellular mechanisms underlying successful parasitism.
Collapse
Affiliation(s)
- Jennifer Chou
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Michael Z. Li
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Brian Wey
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Mubasshir Mumtaz
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Johnny R. Ramroop
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Shubha Govind
- Department of Biology, The City College of New York, New York, NY 10031, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
3
|
Pang L, Fang G, Liu Z, Dong Z, Chen J, Feng T, Zhang Q, Sheng Y, Lu Y, Wang Y, Zhang Y, Li G, Chen X, Zhan S, Huang J. Coordinated molecular and ecological adaptations underlie a highly successful parasitoid. eLife 2024; 13:RP94748. [PMID: 38904661 PMCID: PMC11192535 DOI: 10.7554/elife.94748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell-teratocytes-that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.
Collapse
Affiliation(s)
- Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
| | - Ting Feng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Qichao Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Ying Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Yixiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
- State Key Lab of Rice Biology, Zhejiang UniversityHangzhouChina
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Zhang J, Shan J, Shi W, Feng T, Sheng Y, Xu Z, Dong Z, Huang J, Chen J. Transcriptomic Insights into Host Metabolism and Immunity Changes after Parasitization by Leptopilina myrica. INSECTS 2024; 15:352. [PMID: 38786908 PMCID: PMC11122121 DOI: 10.3390/insects15050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Parasitoids commonly manipulate their host's metabolism and immunity to facilitate their offspring survival, but the mechanisms remain poorly understood. Here, we deconstructed the manipulation strategy of a newly discovered parasitoid wasp, L. myrica, which parasitizes D. melanogaster. Using RNA-seq, we analyzed transcriptomes of L. myrica-parasitized and non-parasitized Drosophila host larvae. A total of 22.29 Gb and 23.85 Gb of clean reads were obtained from the two samples, respectively, and differential expression analysis identified 445 DEGs. Of them, 304 genes were upregulated and 141 genes were downregulated in parasitized hosts compared with non-parasitized larvae. Based on the functional annotations in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we found that the genes involved in host nutrition metabolism were significantly upregulated, particularly in carbohydrate, amino acid, and lipid metabolism. We also identified 30 other metabolism-related DEGs, including hexokinase, fatty acid synthase, and UDP-glycosyltransferase (Ugt) genes. We observed that five Bomanin genes (Boms) and six antimicrobial peptides (AMPs) were upregulated. Moreover, a qRT-PCR analysis of 12 randomly selected DEGs confirmed the reproducibility and accuracy of the RNA-seq data. Our results provide a comprehensive transcriptomic analysis of how L. myrica manipulates its host, laying a solid foundation for studies on the regulatory mechanisms employed by parasitoid wasps in their hosts.
Collapse
Affiliation(s)
- Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jieyu Shan
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ting Feng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zixuan Xu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Chou J, Ramroop JR, Saravia-Butler AM, Wey B, Lera MP, Torres ML, Heavner ME, Iyer J, Mhatre SD, Bhattacharya S, Govind S. Drosophila parasitoids go to space: Unexpected effects of spaceflight on hosts and their parasitoids. iScience 2024; 27:108759. [PMID: 38261932 PMCID: PMC10797188 DOI: 10.1016/j.isci.2023.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/15/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
While fruit flies (Drosophila melanogaster) and humans exhibit immune system dysfunction in space, studies examining their immune systems' interactions with natural parasites in space are lacking. Drosophila parasitoid wasps modify blood cell function to suppress host immunity. In this study, naive and parasitized ground and space flies from a tumor-free control and a blood tumor-bearing mutant strain were examined. Inflammation-related genes were activated in space in both fly strains. Whereas control flies did not develop tumors, tumor burden increased in the space-returned tumor-bearing mutants. Surprisingly, control flies were more sensitive to spaceflight than mutant flies; many of their essential genes were downregulated. Parasitoids appeared more resilient than fly hosts, and spaceflight did not significantly impact wasp survival or the expression of their virulence genes. Previously undocumented mutant wasps with novel wing color and wing shape were isolated post-flight and will be invaluable for host-parasite studies on Earth.
Collapse
Affiliation(s)
- Jennifer Chou
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Johnny R. Ramroop
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Amanda M. Saravia-Butler
- KBR NASA Ames Research Center, Moffett Field, CA 94035, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Brian Wey
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Matthew P. Lera
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Medaya L. Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Bionetics, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mary Ellen Heavner
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Janani Iyer
- KBR NASA Ames Research Center, Moffett Field, CA 94035, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, Mountain View, CA 94043, USA
| | - Siddhita D. Mhatre
- KBR NASA Ames Research Center, Moffett Field, CA 94035, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Shubha Govind
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
6
|
Chen Y, Wang P, Shu X, Wang Z, Chen X. Morphology and Ultrastructure of the Female Reproductive Apparatus of an Asexual Strain of the Endoparasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae). BIOLOGY 2023; 12:biology12050713. [PMID: 37237527 DOI: 10.3390/biology12050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Meteorus pulchricornis (Wesmael) is a solitary endoparasitoid of lepidopteran pests and a good candidate for the control of Spodoptera frugiperda. To elucidate the structure of the female reproductive apparatus, which may play a role in facilitating successful parasitism, we presented the description of the morphology and ultrastructure of the whole female reproductive system in a thelytokous strain of M. pulchricornis. Its reproductive system includes a pair of ovaries without specialized ovarian tissues, a branched venom gland, a venom reservoir, and a single Dufour gland. Each ovariole contains follicles and oocytes at different stages of maturation. A fibrous layer, possibly an egg surface protector, coats the surface of mature eggs. The venom gland consists of secretory units (including secretory cells and ducts) with abundant mitochondria, vesicles and end apparatuses in the cytoplasm, and a lumen. The venom reservoir is comprised of a muscular sheath, epidermal cells with few end apparatuses and mitochondria, and a large lumen. Furthermore, venosomes are produced by secretory cells and delivered into the lumen via the ducts. As a result, myriad venosomes are observed in the venom gland filaments and the venom reservoir, suggesting that they may function as a parasitic factor and have important roles in effective parasitism.
Collapse
Affiliation(s)
- Yusi Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Pengzhan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Shu
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhizhi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Zhao QY, Chen X, Wang RZ, Chen YM, Zang LS. Comparative Analysis of the Venom Proteins from Two Eupelmid Egg Parasitoids Anastatus japonicus and Mesocomys trabalae. BIOLOGY 2023; 12:biology12050700. [PMID: 37237513 DOI: 10.3390/biology12050700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Parasitic wasps are abundant and diverse Hymenoptera insects that lay their eggs inside or on the external surface of the host and inject venom into the host to create a more favorable environment for the larvae to survive and regulate the host's immunity, metabolism, and development. But research on the composition of egg parasitoid venom is very limited. In this study, we used a combination of transcriptomic and proteomic approaches to identify the protein fractions of the venom in both eupelmid egg parasitoids, Anastatus japonicus and Mesocomys trabalae. We identified 3422 up-regulated venom gland genes (UVGs) in M. trabalae and 3709 in A. japonicus and analyzed their functions comparatively. By proteome sequencing, we identified 956 potential venom proteins in the venom pouch of M. trabalae, of which 186 were contained in UVGs simultaneously. A total of 766 proteins were detected in the venom of A. japonicus, of which 128 venom proteins were highly expressed in the venom glands. At the same time, the functional analysis of these identified venom proteins was carried out separately. We found the venom proteins in M. trabalae are well known but not in A. japonicus, which may be related to the host range. In conclusion, identifying venom proteins in both egg parasitoid species provides a database for studying the function of egg parasitoid venom and its parasitic mechanism.
Collapse
Affiliation(s)
- Qian-Yu Zhao
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xu Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Run-Zhi Wang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yong-Ming Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lian-Sheng Zang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Arguelles J, Lee J, Cardenas LV, Govind S, Singh S. In Silico Analysis of a Drosophila Parasitoid Venom Peptide Reveals Prevalence of the Cation-Polar-Cation Clip Motif in Knottin Proteins. Pathogens 2023; 12:pathogens12010143. [PMID: 36678491 PMCID: PMC9865768 DOI: 10.3390/pathogens12010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
As generalist parasitoid wasps, Leptopilina heterotoma are highly successful on many species of fruit flies of the genus Drosophila. The parasitoids produce specialized multi-strategy extracellular vesicle (EV)-like structures in their venom. Proteomic analysis identified several immunity-associated proteins, including the knottin peptide, LhKNOT, containing the structurally conserved inhibitor cysteine knot (ICK) fold, which is present in proteins from diverse taxa. Our structural and docking analysis of LhKNOT's 36-residue core knottin fold revealed that in addition to the knottin motif itself, it also possesses a Cation-Polar-Cation (CPC) clip. The CPC clip motif is thought to facilitate antimicrobial activity in heparin-binding proteins. Surprisingly, a majority of ICKs tested also possess the CPC clip motif, including 75 bona fide plant and arthropod knottin proteins that share high sequence and/or structural similarity with LhKNOT. Like LhKNOT and these other 75 knottin proteins, even the Drosophila Drosomycin antifungal peptide, a canonical target gene of the fly's Toll-NF-kappa B immune pathway, contains this CPC clip motif. Together, our results suggest a possible defensive function for the parasitoid LhKNOT. The prevalence of the CPC clip motif, intrinsic to the cysteine knot within the knottin proteins examined here, suggests that the resultant 3D topology is important for their biochemical functions. The CPC clip is likely a highly conserved structural motif found in many diverse proteins with reported heparin binding capacity, including amyloid proteins. Knottins are targets for therapeutic drug development, and insights into their structure-function relationships will advance novel drug design.
Collapse
Affiliation(s)
- Joseph Arguelles
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Jenny Lee
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Lady V. Cardenas
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Shubha Govind
- Department of Biology, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
9
|
Teng ZW, Wu HZ, Ye XH, Fang Q, Zhou HX, Ye GY. An endoparasitoid uses its egg surface proteins to regulate its host immune response. INSECT SCIENCE 2022; 29:1030-1046. [PMID: 34687499 DOI: 10.1111/1744-7917.12978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
With proteomic analysis, we identified 379 egg surface proteins from an endoparasitoid, Cotesia chilonis. Proteins containing conserved enzymatic domains constitute a large proportion of egg surface components. Some proteins, such as superoxidase dismutase, homolog of C. rubecula 32-kDa protein, and immunoevasive protein-2A, are classical parasitism factors that have known functions in host immunity regulation. Melanization assays revealed that a novel egg surface protein, C. chilonis egg surface serpin domain-containing protein had the same function as a C. chilonis venom serpin, as both suppressed host melanization in a dose-dependent manner. C. chilonis egg surface serpin domain-containing protein is mainly transcribed in C. chilonis oocytes with follicular cells, and it is located on both the anterior and posterior sides of the mature egg surface. Additionally, we used LC-MS/MS to identify 586 binding proteins sourced from C. suppressalis plasma located on the eggshell surface of C. chilonis, which included some immunity-related proteins. These results not only indicate that C. chilonis uses its egg surface proteins to reduce the immune response of its host but also imply that endoparasitoid egg surface proteins might be a new parasitism factor involved in host immune regulation.
Collapse
Affiliation(s)
- Zi-Wen Teng
- China-Australia Cooperation Base of Crop Health and Invasive Species, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Zi Wu
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Hai Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hong-Xu Zhou
- China-Australia Cooperation Base of Crop Health and Invasive Species, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Wertheim B. Adaptations and counter-adaptations in Drosophila host-parasitoid interactions: advances in the molecular mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100896. [PMID: 35240335 DOI: 10.1016/j.cois.2022.100896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Both hosts and parasitoids evolved a diverse array of traits and strategies for their antagonistic interactions, affecting their chances of encounter, attack and survival after parasitoid attack. This review summarizes the recent progress that has been made in elucidating the molecular mechanisms of these adaptations and counter-adaptations in various Drosophila host-parasitoid interactions. For the hosts, it focuses on the neurobiological and genetic control of strategies in Drosophila adults and larvae of avoidance or escape behaviours upon sensing the parasitoids, and the immunological defences involving diverse classes of haemocytes. For the parasitoids, it highlights their behavioural strategies in host finding, as well as the rich variety of venom components that evolved and were partially acquired through horizontal gene transfer. Recent studies revealed the mechanisms by which these venom components manipulate their parasitized hosts in exhibiting escape behaviour to avoid superparasitism, and their counter-strategies to evade or obstruct the hosts' immunological defences.
Collapse
Affiliation(s)
- Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
11
|
Lemauf S, Cazes D, Poirié M, Gatti JL. Amount of venom that Leptopilina species inject into Drosophila melanogaster larvae in relation to parasitic success. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104320. [PMID: 34634293 DOI: 10.1016/j.jinsphys.2021.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The Drosophila endoparasitoid wasps Leptopilina boulardi and L. heterotoma (Hymenoptera: Cynipidae) are pro-ovigenic species, i.e., females contain their lifetime number of mature eggs at emergence. They are therefore able to immediately parasitize many hosts when present. In response to parasitoid oviposition, the larval host D. melanogaster can mount an immune response, encapsulation, that can destroy the parasitoid eggs. This response is counteracted by the venom the wasp injects during oviposition. Here, we estimated the amount of venom injected into a D. melanogaster host larva using immunodetection of venom proteins and we attempted to correlate this amount with the number of eggs a female can lay on successive days. The venom reservoir of L. boulardi contains enough venom for at least 100 ovipositions while that of L. heterotoma contains venom for about 16 ovipositions. While a female L. boulardi may have enough venom for three days of parasitism when 20 or 40 larval hosts were presented each day, L. heterotoma certainly needs to synthesize new venom to parasitize the number of hosts offered. Interestingly, parasitism stopped (L. boulardi), egg protection (L. heterotoma) and egg hatching decreased (both species) after three days of parasitism. Thus, although venom does not appear to be a limiting factor for parasitism, our data suggest that it may have less effectiveness on the egg protection and on egg/host development after high repetitive egg laying.
Collapse
Affiliation(s)
- Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, 06903 Sophia Antipolis, France
| | - Dominique Cazes
- Université Côte d'Azur, INRAE, CNRS, 06903 Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, 06903 Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, 06903 Sophia Antipolis, France.
| |
Collapse
|
12
|
Yang L, Qiu LM, Fang Q, Stanley DW, Ye GY. Cellular and humoral immune interactions between Drosophila and its parasitoids. INSECT SCIENCE 2021; 28:1208-1227. [PMID: 32776656 DOI: 10.1111/1744-7917.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila-wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps' side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Xun C, Wang L, Yang H, Xiao Z, Deng M, Xu R, Zhou X, Chen P, Liu Z. Origin and Characterization of Extracellular Vesicles Present in the Spider Venom of Ornithoctonus hainana. Toxins (Basel) 2021; 13:toxins13080579. [PMID: 34437450 PMCID: PMC8402349 DOI: 10.3390/toxins13080579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are membranous vesicles released from nearly all cellular types. They contain various bioactive molecules, and their molecular composition varies depending on their cellular origin. As research into venomous animals has progressed, EVs have been discovered in the venom of snakes and parasitic wasps. Although vesicle secretion in spider venom glands has been observed, these secretory vesicles’ origin and biological properties are unknown. In this study, the origin of the EVs from Ornithoctonus hainana venom was observed using transmission electron microscopy (TEM). The Ornithoctonus hainana venom extracellular vesicles (HN-EVs) were isolated and purified by density gradient centrifugation. HN-EVs possess classic membranous vesicles with a size distribution ranging from 50 to 150 nm and express the arthropod EV marker Tsp29Fb. The LC-MS/MS analysis identified a total of 150 proteins, which were divided into three groups according to their potential function: conservative vesicle transport-related proteins, virulence-related proteins, and other proteins of unknown function. Functionally, HN-EVs have hyaluronidase activity and inhibit the proliferation of human umbilical vein endothelial cells (HUVECs) by affecting the cytoskeleton and cell cycle. Overall, this study investigates the biological characteristics of HN-EVs for the first time and sheds new light on the envenomation process of spider venom.
Collapse
|
14
|
Proteo-Trancriptomic Analyses Reveal a Large Expansion of Metalloprotease-Like Proteins in Atypical Venom Vesicles of the Wasp Meteorus pulchricornis (Braconidae). Toxins (Basel) 2021; 13:toxins13070502. [PMID: 34357975 PMCID: PMC8310156 DOI: 10.3390/toxins13070502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis. Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be “metalloproteinase bombs” that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified.
Collapse
|
15
|
Burke GR, Hines HM, Sharanowski BJ. The Presence of Ancient Core Genes Reveals Endogenization from Diverse Viral Ancestors in Parasitoid Wasps. Genome Biol Evol 2021; 13:evab105. [PMID: 33988720 PMCID: PMC8325570 DOI: 10.1093/gbe/evab105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The Ichneumonoidea (Ichneumonidae and Braconidae) is an incredibly diverse superfamily of parasitoid wasps that includes species that produce virus-like entities in their reproductive tracts to promote successful parasitism of host insects. Research on these entities has traditionally focused upon two viral genera Bracovirus (in Braconidae) and Ichnovirus (in Ichneumonidae). These viruses are produced using genes known collectively as endogenous viral elements (EVEs) that represent historical, now heritable viral integration events in wasp genomes. Here, new genome sequence assemblies for 11 species and 6 publicly available genomes from the Ichneumonoidea were screened with the goal of identifying novel EVEs and characterizing the breadth of species in lineages with known EVEs. Exhaustive similarity searches combined with the identification of ancient core genes revealed sequences from both known and novel EVEs. One species harbored a novel, independently derived EVE related to a divergent large double-stranded DNA (dsDNA) virus that manipulates behavior in other hymenopteran species. Although bracovirus or ichnovirus EVEs were identified as expected in three species, the absence of ichnoviruses in several species suggests that they are independently derived and present in two younger, less widespread lineages than previously thought. Overall, this study presents a novel bioinformatic approach for EVE discovery in genomes and shows that three divergent virus families (nudiviruses, the ancestors of ichnoviruses, and Leptopilina boulardi Filamentous Virus-like viruses) are recurrently acquired as EVEs in parasitoid wasps. Virus acquisition in the parasitoid wasps is a common process that has occurred in many more than two lineages from a diverse range of arthropod-infecting dsDNA viruses.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Heather M Hines
- Department of Biology and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
16
|
A parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host's blood cells. PLoS Pathog 2021; 17:e1009615. [PMID: 34048506 PMCID: PMC8191917 DOI: 10.1371/journal.ppat.1009615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/10/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
The wasps Leptopilina heterotoma parasitize and ingest their Drosophila hosts. They produce extracellular vesicles (EVs) in the venom that are packed with proteins, some of which perform immune suppressive functions. EV interactions with blood cells of host larvae are linked to hematopoietic depletion, immune suppression, and parasite success. But how EVs disperse within the host, enter and kill hematopoietic cells is not well understood. Using an antibody marker for L. heterotoma EVs, we show that these parasite-derived structures are readily distributed within the hosts’ hemolymphatic system. EVs converge around the tightly clustered cells of the posterior signaling center (PSC) of the larval lymph gland, a small hematopoietic organ in Drosophila. The PSC serves as a source of developmental signals in naïve animals. In wasp-infected animals, the PSC directs the differentiation of lymph gland progenitors into lamellocytes. These lamellocytes are needed to encapsulate the wasp egg and block parasite development. We found that L. heterotoma infection disassembles the PSC and PSC cells disperse into the disintegrating lymph gland lobes. Genetically manipulated PSC-less lymph glands remain non-responsive and largely intact in the face of L. heterotoma infection. We also show that the larval lymph gland progenitors use the endocytic machinery to internalize EVs. Once inside, L. heterotoma EVs damage the Rab7- and LAMP-positive late endocytic and phagolysosomal compartments. Rab5 maintains hematopoietic and immune quiescence as Rab5 knockdown results in hematopoietic over-proliferation and ectopic lamellocyte differentiation. Thus, both aspects of anti-parasite immunity, i.e., (a) phagocytosis of the wasp’s immune-suppressive EVs, and (b) progenitor differentiation for wasp egg encapsulation reside in the lymph gland. These results help explain why the lymph gland is specifically and precisely targeted for destruction. The parasite’s simultaneous and multipronged approach to block cellular immunity not only eliminates blood cells, but also tactically blocks the genetic programming needed for supplementary hematopoietic differentiation necessary for host success. In addition to its known functions in hematopoiesis, our results highlight a previously unrecognized phagocytic role of the lymph gland in cellular immunity. EV-mediated virulence strategies described for L. heterotoma are likely to be shared by other parasitoid wasps; their understanding can improve the design and development of novel therapeutics and biopesticides as well as help protect biodiversity. Parasitoid wasps serve as biological control agents of agricultural insect pests and are worthy of study. Many parasitic wasps develop inside their hosts to emerge as free-living adults. To overcome the resistance of their hosts, parasitic wasps use varied and ingenious strategies such as mimicry, evasion, bioactive venom, virus-like particles, viruses, and extracellular vesicles (EVs). We describe the effects of a unique class of EVs containing virulence proteins and produced in the venom of wasps that parasitize fruit flies of Drosophila species. EVs from Leptopilina heterotoma are widely distributed throughout the Drosophila hosts’ circulatory system after infection. They enter and kill macrophages by destroying the very same subcellular machinery that facilitates their uptake. An important protein in this process, Rab5, is needed to maintain the identity of the macrophage; when Rab5 function is reduced, macrophages turn into a different cell type called lamellocytes. Activities in the EVs can eliminate lamellocytes as well. EVs also interfere with the hosts’ genetic program that promotes lamellocyte differentiation needed to block parasite development. Thus, wasps combine specific preemptive and reactive strategies to deplete their hosts of the very cells that would otherwise sequester and kill them. These findings have applied value in agricultural pest control and medical therapeutics.
Collapse
|
17
|
Di Giovanni D, Lepetit D, Guinet B, Bennetot B, Boulesteix M, Couté Y, Bouchez O, Ravallec M, Varaldi J. A Behavior-Manipulating Virus Relative as a Source of Adaptive Genes for Drosophila Parasitoids. Mol Biol Evol 2021; 37:2791-2807. [PMID: 32080746 DOI: 10.1093/molbev/msaa030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some species of parasitic wasps have domesticated viral machineries to deliver immunosuppressive factors to their hosts. Up to now, all described cases fall into the Ichneumonoidea superfamily, which only represents around 10% of hymenoptera diversity, raising the question of whether such domestication occurred outside this clade. Furthermore, the biology of the ancestral donor viruses is completely unknown. Since the 1980s, we know that Drosophila parasitoids belonging to the Leptopilina genus, which diverged from the Ichneumonoidea superfamily 225 Ma, do produce immunosuppressive virus-like structure in their reproductive apparatus. However, the viral origin of these structures has been the subject of debate. In this article, we provide genomic and experimental evidence that those structures do derive from an ancestral virus endogenization event. Interestingly, its close relatives induce a behavior manipulation in present-day wasps. Thus, we conclude that virus domestication is more prevalent than previously thought and that behavior manipulation may have been instrumental in the birth of such associations.
Collapse
Affiliation(s)
- Deborah Di Giovanni
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - David Lepetit
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Benjamin Guinet
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Bastien Bennetot
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France.,Ecologie Systématique & Evolution (UMR 8079), Université Paris Sud, Orsay, France
| | - Matthieu Boulesteix
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Yohann Couté
- Université de Grenoble Alpes, CEA, Inserm, IRIG-BGE, Grenoble, France
| | - Olivier Bouchez
- Institut National de la Recherche Agronomique (INRA), US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Marc Ravallec
- UMR 1333 INRAE - Université Montpellier "Diversité, Génomes et Interactions Microorganismes-Insectes" (DGIMI), Montpellier, France
| | - Julien Varaldi
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| |
Collapse
|
18
|
Huang J, Chen J, Fang G, Pang L, Zhou S, Zhou Y, Pan Z, Zhang Q, Sheng Y, Lu Y, Liu Z, Zhang Y, Li G, Shi M, Chen X, Zhan S. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat Commun 2021; 12:234. [PMID: 33431897 PMCID: PMC7801585 DOI: 10.1038/s41467-020-20332-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Parasitoids are ubiquitous in natural ecosystems. Parasitic strategies are highly diverse among parasitoid species, yet their underlying genetic bases are poorly understood. Here, we focus on the divergent adaptation of a specialist and a generalist drosophilid parasitoids. We find that a novel protein (Lar) enables active immune suppression by lysing the host lymph glands, eventually leading to successful parasitism by the generalist. Meanwhile, another novel protein (Warm) contributes to a passive strategy by attaching the laid eggs to the gut and other organs of the host, leading to incomplete encapsulation and helping the specialist escape the host immune response. We find that these diverse parasitic strategies both originated from lateral gene transfer, followed with duplication and specialization, and that they might contribute to the shift in host ranges between parasitoids. Our results increase our understanding of how novel gene functions originate and how they contribute to host adaptation.
Collapse
Affiliation(s)
- Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China.
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhongqiu Pan
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Qichao Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yixiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China. .,State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Wan B, Poirié M, Gatti JL. Parasitoid wasp venom vesicles (venosomes) enter Drosophila melanogaster lamellocytes through a flotillin/lipid raft-dependent endocytic pathway. Virulence 2020; 11:1512-1521. [PMID: 33135553 PMCID: PMC7605353 DOI: 10.1080/21505594.2020.1838116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Venosomes are extracellular vesicles found in the venom of Leptopilina endoparasitoids wasps, which transport and target virulence factors to impair the parasitoid egg encapsulation by the lamellocytes of their Drosophila melanogaster host larva. Using the co-immunolocalization of fluorescent L. boulardi venosomes and one of the putative-transported virulence factors, LbGAP, with known markers of cellular endocytosis, we show that venosomes endocytosis by lamellocytes is not a process dependent on clathrin or macropinocytosis and internalization seems to bypass the early endosomal compartment Rab5. After internalization, LbGAP colocalizes strongly with flotillin-1 and the GPI-anchored protein Atilla/L1 (a lamellocyte surface marker) suggesting that entry occurs via a flotillin/lipid raft-dependent pathway. Once internalized, venosomes reach all intracellular compartments, including late and recycling endosomes, lysosomes, and the endoplasmic reticulum network. Venosomes therefore enter their target cells by a specific mechanism and the virulence factors are widely distributed in the lamellocytes' compartments to impair their functions.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d’Azur, INRAE, CNRS, ISA, France
| | | | | |
Collapse
|
20
|
Ye X, Yan Z, Yang Y, Xiao S, Chen L, Wang J, Wang F, Xiong S, Mei Y, Wang F, Yao H, Song Q, Li F, Fang Q, Werren JH, Ye G. A chromosome-level genome assembly of the parasitoid wasp Pteromalus puparum. Mol Ecol Resour 2020; 20:1384-1402. [PMID: 32562592 DOI: 10.1111/1755-0998.13206] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/30/2023]
Abstract
Parasitoid wasps represent a large proportion of hymenopteran species. They have complex evolutionary histories and are important biocontrol agents. To advance parasitoid research, a combination of Illumina short-read, PacBio long-read and Hi-C scaffolding technologies was used to develop a high-quality chromosome-level genome assembly for Pteromalus puparum, which is an important pupal endoparasitoid of caterpillar pests. The chromosome-level assembly has aided in studies of venom and detoxification genes. The assembled genome size is 338 Mb with a contig N50 of 38.7 kb and a scaffold N50 of 1.16 Mb. Hi-C analysis assembled scaffolds onto five chromosomes and raised the scaffold N50 to 65.8 Mb, with more than 96% of assembled bases located on chromosomes. Gene annotation was assisted by RNA sequencing for the two sexes and four different life stages. Analysis detected 98% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set, supporting a high-quality assembly and annotation. In total, 40.1% (135.6 Mb) of the assembly is composed of repetitive sequences, and 14,946 protein-coding genes were identified. Although venom genes play important roles in parasitoid biology, their spatial distribution on chromosomes was poorly understood. Mapping has revealed venom gene tandem arrays for serine proteases, pancreatic lipase-related proteins and kynurenine-oxoglutarate transaminases, which have amplified in the P. puparum lineage after divergence from its common ancestor with Nasonia vitripennis. In addition, there is a large expansion of P450 genes in P. puparum. These examples illustrate how chromosome-level genome assembly can provide a valuable resource for molecular, evolutionary and biocontrol studies of parasitoid wasps.
Collapse
Affiliation(s)
- Xinhai Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Department of Biology, University of Rochester, Rochester, NY, USA
| | - Zhichao Yan
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi Yang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Longfei Chen
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Fei Li
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Du J, Lin Z, Volovych O, Lu Z, Zou Z. A RhoGAP venom protein from Microplitis mediator suppresses the cellular response of its host Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103675. [PMID: 32173445 DOI: 10.1016/j.dci.2020.103675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Female parasitoid wasps normally inject virulence factors together with eggs into their host to counter host immunity defenses. A newly identified RhoGAP protein in the venom of Microplitis mediator compromises the cellular immunity of its host, Helicoverpa armigera. RhoGAP1 proteins entered H. armigera hemocytes, and the host cellular cytoskeleton was disrupted. Depletion of MmGAP1 by injection of dsRNA or antibody increased the wasp egg encapsulation rate. An immunoprecipitation assay of overexpressed MmGAP1 protein in a Helicoverpa cell line showed that MmGAP1 interacts with many cellular cytoskeleton associated proteins as well as Rho GTPases. A yeast two-hybrid and a pull-down assay demonstrated that MmGAP1 interacts with H. armigera RhoA and Cdc42. These results show that the RhoGAP protein in M. mediator can destroy the H. armigera hemocyte cellular cytoskeleton, restrain host cellular immune defense, and increase the probability of successful parasitism.
Collapse
Affiliation(s)
- Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 311300, China.
| |
Collapse
|
22
|
Wang J, Jin H, Schlenke T, Yang Y, Wang F, Yao H, Fang Q, Ye G. Lipidomics reveals how the endoparasitoid wasp Pteromalus puparum manipulates host energy stores for its young. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158736. [PMID: 32438058 DOI: 10.1016/j.bbalip.2020.158736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/02/2023]
Abstract
Endoparasitoid wasps inject venom along with their eggs to adjust the physiological and nutritional environment inside their hosts to benefit the development of their offspring. In particular, wasp venoms are known to modify host lipid metabolism, lipid storage in the fat body, and release of lipids into the hemolymph, but how venoms accomplish these functions remains unclear. Here, we use an UPLC-MS-based lipidomics approach to analyze the identities and concentrations of lipids in both fat body and hemolymph of host cabbage butterfly (Pieris rapae) infected by the pupal endoparasitoid Pteromalus puparum. During infection, host fat body levels of highly unsaturated, soluble triacylglycerides (TAGs) increased while less unsaturated, less soluble forms decreased. Furthermore, in infected host hemolymph, overall levels of TAG and phospholipids (the major component of cell membranes) increased, suggesting that fat body cells are destroyed and their contents are dispersed. Altogether, these data suggest that wasp venom induces host fat body TAGs to be transformed into lower melting point (more liquid) forms and released into the host hemolymph following infection, allowing simple absorption and nutritional acquisition by wasp larvae. Finally, cholesteryl esters (CEs, a dietary lipid derived from cholesterol) increased in host hemolymph following infection with no concomitant decrease in host cholesterol, implying that the wasp may provide this necessary food resource to its offspring via its venom. This study provides novel insight into how parasitoid infection alters lipid metabolism in insect hosts, and begins to uncover the wasp venom proteins responsible for host physiological changes and offspring development.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Hongxia Jin
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Todd Schlenke
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Yi Yang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Wey B, Heavner ME, Wittmeyer KT, Briese T, Hopper KR, Govind S. Immune Suppressive Extracellular Vesicle Proteins of Leptopilina heterotoma Are Encoded in the Wasp Genome. G3 (BETHESDA, MD.) 2020; 10:1-12. [PMID: 31676506 PMCID: PMC6945029 DOI: 10.1534/g3.119.400349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
Leptopilina heterotoma are obligate parasitoid wasps that develop in the body of their Drosophila hosts. During oviposition, female wasps introduce venom into the larval hosts' body cavity. The venom contains discrete, 300 nm-wide, mixed-strategy extracellular vesicles (MSEVs), until recently referred to as virus-like particles. While the crucial immune suppressive functions of L. heterotoma MSEVs have remained undisputed, their biotic nature and origin still remain controversial. In recent proteomics analyses of L. heterotoma MSEVs, we identified 161 proteins in three classes: conserved eukaryotic proteins, infection and immunity related proteins, and proteins without clear annotation. Here we report 246 additional proteins from the L. heterotoma MSEV proteome. An enrichment analysis of the entire proteome supports vesicular nature of these structures. Sequences for more than 90% of these proteins are present in the whole-body transcriptome. Sequencing and de novo assembly of the 460 Mb-sized L. heterotoma genome revealed 90% of MSEV proteins have coding regions within the genomic scaffolds. Altogether, these results explain the stable association of MSEVs with their wasps, and like other wasp structures, their vertical inheritance. While our results do not rule out a viral origin of MSEVs, they suggest that a similar strategy for co-opting cellular machinery for immune suppression may be shared by other wasps to gain advantage over their hosts. These results are relevant to our understanding of the evolution of figitid and related wasp species.
Collapse
Affiliation(s)
- Brian Wey
- Biology Department, The City College of New York, 160 Convent Avenue, New York, 10031
- PhD Program in Biology, The Graduate Center of the City University of New York
| | - Mary Ellen Heavner
- Biology Department, The City College of New York, 160 Convent Avenue, New York, 10031
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, 10016
- Laboratory of Host-Pathogen Biology, Rockefeller University, 1230 York Ave, New York, 10065
| | - Kameron T Wittmeyer
- USDA-ARS, Beneficial Insect Introductions Research Unit, Newark, DE 19713, and
| | - Thomas Briese
- Center of Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, 10032
| | - Keith R Hopper
- USDA-ARS, Beneficial Insect Introductions Research Unit, Newark, DE 19713, and
| | - Shubha Govind
- Biology Department, The City College of New York, 160 Convent Avenue, New York, 10031,
- PhD Program in Biology, The Graduate Center of the City University of New York
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, 10016
| |
Collapse
|
24
|
Yang L, Wan B, Wang BB, Liu MM, Fang Q, Song QS, Ye GY. The Pupal Ectoparasitoid Pachycrepoideus vindemmiae Regulates Cellular and Humoral Immunity of Host Drosophila melanogaster. Front Physiol 2019; 10:1282. [PMID: 31680999 PMCID: PMC6798170 DOI: 10.3389/fphys.2019.01282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
The immunological interaction between Drosophila melanogaster and its larval parasitoids has been thoroughly investigated, however, little is known about the interaction between the host and its pupal parasitoids. Pachycrepoideus vindemmiae, a pupal ectoparasitoid of D. melanogaster, injects venom into its host while laying eggs on the puparium, which regulates host immunity and interrupts host development. To resist the invasion of parasitic wasps, various immune defense strategies have been developed in their hosts as a consequence of co-evolution. In this study, we mainly focused on the host immunomodulation by P. vindemmiae and thoroughly investigated cellular and humoral immune response, including cell adherence, cell viability, hemolymph melanization and the Toll, Imd, and JAK/STAT immune pathways. Our results indicated that venom had a significant inhibitory effect on lamellocyte adherence and induced plasmatocyte cell death. Venom injection and in vitro incubation strongly inhibited hemolymph melanization. More in-depth investigation revealed that the Toll and Imd immune pathways were immediately activated upon parasitization, followed by the JAK/STAT pathway, which was activated within the first 24 h post-parasitism. These regulatory effects were further validated by qPCR. Our present study manifested that P. vindemmiae regulated the cellular and humoral immune system of host D. melanogaster in many aspects. These findings lay the groundwork for studying the immunological interaction between D. melanogaster and its pupal parasitoid.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bin Wan
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bei-Bei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Ming Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi-Sheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Wan B, Goguet E, Ravallec M, Pierre O, Lemauf S, Volkoff AN, Gatti JL, Poirié M. Venom Atypical Extracellular Vesicles as Interspecies Vehicles of Virulence Factors Involved in Host Specificity: The Case of a Drosophila Parasitoid Wasp. Front Immunol 2019; 10:1688. [PMID: 31379874 PMCID: PMC6653201 DOI: 10.3389/fimmu.2019.01688] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 01/30/2023] Open
Abstract
Endoparasitoid wasps, which lay eggs inside the bodies of other insects, use various strategies to protect their offspring from the host immune response. The hymenopteran species of the genus Leptopilina, parasites of Drosophila, rely on the injection of a venom which contains proteins and peculiar vesicles (hereafter venosomes). We show here that the injection of purified L. boulardi venosomes is sufficient to impair the function of the Drosophila melanogaster lamellocytes, a hemocyte type specialized in the defense against wasp eggs, and thus the parasitic success of the wasp. These venosomes seem to have a unique extracellular biogenesis in the wasp venom apparatus where they acquire specific secreted proteins/virulence factors and act as a transport system to deliver these compounds into host lamellocytes. The level of venosomes entry into lamellocytes of different Drosophila species was correlated with the rate of parasitism success of the wasp, suggesting that this venosome-cell interaction may represent a new evolutionary level of host-parasitoid specificity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Emilie Goguet
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Marc Ravallec
- INRA, Univ. Montpellier, UMR 1333 "Microorganism and Insect Diversity, Genomes and Interactions" (DGIMI), Montpellier, France
| | - Olivier Pierre
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Anne-Nathalie Volkoff
- INRA, Univ. Montpellier, UMR 1333 "Microorganism and Insect Diversity, Genomes and Interactions" (DGIMI), Montpellier, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
26
|
Teng Z, Wu H, Ye X, Xiong S, Xu G, Wang F, Fang Q, Ye G. An Ovarian Protein Involved in Passive Avoidance of an Endoparasitoid To Evade Its Host Immune Response. J Proteome Res 2019; 18:2695-2705. [PMID: 31244211 DOI: 10.1021/acs.jproteome.8b00824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through a combination of transcriptomic and proteomic analyses, we identified 817 secreted ovarian proteins from an endoparasitoid wasp, Cotesia chilonis, of which five proteins are probably involved in passive evasion. The results of an encapsulation assay revealed that one of these passive evasion-associated proteins (Crp32B), a homologue of a 32-kDa protein (Crp32) from C. rubecula, could protect resin beads from being encapsulated by host hemocytes in a dose-dependent manner. Crp32B is transcribed in ovarian cells, nurse cells, follicular cells, and oocytes, and the protein is located throughout the ovary and on the egg surface. Moreover, Crp32B has antigenic similarity to several host components. These results indicate that C. chilonis may use molecular mimicry as a mechanism to avoid host cellular immune response.
Collapse
Affiliation(s)
- Ziwen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Huizi Wu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
27
|
Kim-Jo C, Gatti JL, Poirié M. Drosophila Cellular Immunity Against Parasitoid Wasps: A Complex and Time-Dependent Process. Front Physiol 2019; 10:603. [PMID: 31156469 PMCID: PMC6529592 DOI: 10.3389/fphys.2019.00603] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Host-parasitoid interactions are among the most studied interactions between invertebrates because of their fundamental interest - the evolution of original traits in parasitoids - and applied, parasitoids being widely used in biological control. Immunity, and in particular cellular immunity, is central in these interactions, the host encapsulation response being specific for large foreign bodies such as parasitoid eggs. Although already well studied in this species, recent data on Drosophila melanogaster have unquestionably improved knowledge of invertebrate cellular immunity. At the same time, the venomics of parasitoids has expanded, notably those of Drosophila. Here, we summarize and discuss these advances, with a focus on an emerging "time-dependent" view of interactions outcome at the intra- and interspecific level. We also present issues still in debate and prospects for study. Data on the Drosophila-parasitoid model paves the way to new concepts in insect immunity as well as parasitoid wasp strategies to overcome it.
Collapse
Affiliation(s)
| | | | - Marylène Poirié
- INRA, CNRS, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
28
|
Visser B, Hance T, Noël C, Pels C, Kimura MT, Stökl J, Geuverink E, Nieberding CM. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol Evol 2018; 8:7355-7364. [PMID: 30151155 PMCID: PMC6106180 DOI: 10.1002/ece3.4265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/25/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Lipid synthesis can have a major effect on survival and reproduction, yet most insect parasitoids fail to synthesize lipids. For parasitic wasps in the genus Leptopilina, however, studies have suggested that there is intraspecific variation in the ability for lipid synthesis. These studies were performed on only few populations, and a large-scale investigation of both lipogenic ability and population genetic structure is now needed. Here, we first examined lipogenic ability of nine Leptopilina heterotoma populations collected in 2013 and found that five of nine populations synthesized lipids. The 2013 populations could not be used to determine genetic structure; hence, we obtained another 20 populations in 2016 that were tested for lipogenic ability. Thirteen of 20 populations (all Leptopilina heterotoma) were then used to determine the level of genetic differentiation (i.e., haplotype and nucleotide diversity) by sequencing neutral mitochondrial (COI) and nuclear (ITS2) markers. None of the 2016 populations synthesized lipids, and no genetic differentiation was found. Our results did reveal a nearly twofold increase in mean wasp lipid content at emergence in populations obtained in 2016 compared to 2013. We propose that our results can be explained by plasticity in lipid synthesis, where lipogenic ability is determined by environmental factors, such as developmental temperature and/or the amount of lipids carried over from the host.
Collapse
Affiliation(s)
- Bertanne Visser
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Thierry Hance
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Christine Noël
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Christophe Pels
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| | | | - Johannes Stökl
- Institute of Insect BiotechnologyJustus‐Liebig‐University GießenGießenGermany
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| | - Caroline M. Nieberding
- Biodiversity Research Centre (ELIB)Earth and Life Institute (ELI)Université catholique de LouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|