1
|
Yaguchi H, Matsushita M, Maekawa K. Protein-rich trophallactic contents transferred from reproductives are crucial for termite soldier differentiation in Zootermopsis nevadensis. JOURNAL OF INSECT PHYSIOLOGY 2025; 162:104797. [PMID: 40154942 DOI: 10.1016/j.jinsphys.2025.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Polyphenic castes exist for colony success in social animals. A primer pheromone has been suggested as a well-known regulator of caste development, but the basis of chemical communication has remained elusive over the last few decades. In termites, a long-standing hypothesis is that reproductive-secreted juvenile hormone (JH) plays a role as a primer pheromone involved in soldier differentiation. Here, we tested whether exogenous JH is necessary to induce differentiation of soldiers in the dampwood termite Zootermopsis nevadensis. The unique characteristic of this termite is that soldier-destined individuals can be monitored during their ontogeny under natural conditions. Furthermore, oral-anal trophallactic interactions with reproductives are required for soldier differentiation. First, knockdown of JH biosynthetic genes using RNA interference (RNAi) resulted in the reduction of soldier formation but did not affect the frequency of trophallactic interaction from reproductives to RNAi-treated individuals. Next, we compared the effect of parental replacement on soldier differentiation. Old-age reproductives had fewer stimulus effects on the differentiation of soldier-destined individuals compared to young-age reproductives. This difference in stimulus effects was derived from the protein levels within the digestive fluids of the king, but not those of the queen. Consequently, there is little or no possibility that JH itself plays a role as a primer pheromone. Alternatively, we propose that protein-rich nutrients in trophallactic fluids from reproductives are sufficient to induce high JH levels in larvae required for soldier differentiation.
Collapse
Affiliation(s)
- Hajime Yaguchi
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan; Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Makoto Matsushita
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| |
Collapse
|
2
|
Perez A, Johnson BR. Centrality of Hygienic Honey Bee Workers in Colony Social Networks. INSECTS 2025; 16:58. [PMID: 39859639 PMCID: PMC11766216 DOI: 10.3390/insects16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Many social and environmental variables can affect the interactions among individuals in an insect colony that fundamentally structure its social organization. Along with important attributes such as age and caste, immunity-related factors such as the performance of sanitary tasks or exposure to a pathogen can also influence an individual's social interactions and their place in the resulting social network. Most work on this subject has supported the hypothesis that health-compromised individuals will exhibit altered social or spatial behavior that presumably limits the spread of infection. Here, we test this hypothesis using honey bee workers recently involved in hygienic behavior, an important set of sanitary tasks in which unhealthy brood are uncapped and then removed from the colony. Using static social networks, we quantify the interaction patterns of workers recently involved in hygienic tasks and compare their network centrality to non-hygienic workers. Using dynamic networks, we analyze the capability of hygienic workers to spread a potential infection throughout the colony. We find no substantial differences in how connected hygienic workers are in the network, and we show that hygienic workers would spread a novel infection throughout the colony to the same extent as non-hygienic workers. Our results suggest that experience with certain sanitary tasks may not necessarily produce rapid changes in social behavior. This work highlights the importance of considering the benefits of remaining socially integrated in important information networks and the temporal limitations for how quickly organized immune responses can occur in response to potential infections.
Collapse
Affiliation(s)
- Adrian Perez
- Department of Entomology and Nematology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | | |
Collapse
|
3
|
Rein C, Grünke M, Traynor K, Rosenkranz P. From consumption to excretion: Lithium concentrations in honey bees (Apis mellifera) after lithium chloride application and time-dependent effects on Varroa destructor. PEST MANAGEMENT SCIENCE 2024; 80:5799-5808. [PMID: 39016664 DOI: 10.1002/ps.8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Owing to its systemic mode-of-action and ease of application, lithium chloride (LiCl) is an ideal varroacide for the control of Varroa destructor infestations in honey bee colonies. To better understand how LiCl functions within a colony, we screened different parts of honey bee anatomy for lithium accumulation. We wanted to elucidate the time-dependent effects of LiCl on V. destructor and its metabolism within honey bees when they were fed continuous LiCl treatments, as well as evaluate potential adverse effects such as accumulation in the hypopharyngeal glands of nurse bees, which could negatively impact queens and larvae. RESULTS Cage experiments reveal rapid acaricidal onset, with >95% mite mortality within 48 h of treatment. Bee hemolymph analysis supports these observations, showing a rapid increase in lithium concentration within 12 h of treatment, followed by stabilization at a constant level. Lithium accumulates in the rectum of caged bees (≤475.5 mg kg-1 after 7 days of feeding 50 mm LiCl), reflecting the bees' metabolic and excretion process. Despite concerns about potential accumulation in hypopharyngeal glands, low lithium levels of only 0.52 mg kg-1 suggest minimal risk to the queen and 1st- and 2nd-instar larvae. Cessation of LiCl treatment results in a rapid decline in mite mortality in the first 5 days, which increases again thereafter, resulting in mite mortality of 77-90% after 10 days. CONCLUSION These findings help optimize LiCl application in colonies to achieve high Varroa mortality without unwanted adverse effects and provide important baseline data for future registration. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Carolin Rein
- State Institute of Bee Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Grünke
- State Institute of Bee Research, University of Hohenheim, Stuttgart, Germany
| | - Kirsten Traynor
- State Institute of Bee Research, University of Hohenheim, Stuttgart, Germany
| | - Peter Rosenkranz
- State Institute of Bee Research, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Rein C, Blumenschein M, Traynor K, Rosenkranz P. Lithium chloride treatments in free flying honey bee colonies: efficacy, brood survival, and within-colony distribution. Parasitol Res 2023; 123:67. [PMID: 38133834 PMCID: PMC10746590 DOI: 10.1007/s00436-023-08084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The efficacy of various lithium chloride (LiCl) applications in eradicating the parasitic mite Varroa destructor in honey bee colonies was investigated, with a specific focus on its impact on brood development. In broodless colonies (3 weeks post queen caging), the highest efficacy of 98% was achieved with a 9-day treatment of 2.5 kg of candy spiked with 50 mM LiCl. A shorter 5-day treatment with 2 kg of 50 mM LiCl candy resulted in an efficacy of 78%. In colonies with brood, a repeated short-term application of 4 × 0.5 kg 50 mM LiCl candy yielded an efficacy of 88%. LiCl treatment led to a removal of the first batch of brood reared after release of the queen. However, no long-term effects on colony growth were observed, and the colonies successfully overwintered. Additionally, the study demonstrated that lithium is rapidly distributed among the bees of a colony within 2 days, yet only low concentrations were detected in stored food samples. This suggests that the bees efficiently absorb and distribute lithium within the colony. The harvested honey in the following spring revealed a lithium concentration of 0.1-0.2 mg/kg, which is below naturally occurring lithium levels in honey. Based on these findings, LiCl can be considered an effective and easy-to-apply acaricide in broodless colonies, and even in colonies with brood, it had good efficacy and no long-term effects on colony survival. Further research may be necessary to determine the optimal treatment period for achieving an efficacy over 95%.
Collapse
Affiliation(s)
- Carolin Rein
- State Institute of Bee Research, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Marius Blumenschein
- State Institute of Bee Research, University of Hohenheim, 70599, Stuttgart, Germany
| | - Kirsten Traynor
- State Institute of Bee Research, University of Hohenheim, 70599, Stuttgart, Germany
| | - Peter Rosenkranz
- State Institute of Bee Research, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
5
|
Stoldt M, Collin E, Macit MN, Foitzik S. Brain and antennal transcriptomes of host ants reveal potential links between behaviour and the functioning of socially parasitic colonies. Mol Ecol 2023; 32:5170-5185. [PMID: 37540194 DOI: 10.1111/mec.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Insect social parasites are characterized by exploiting the hosts' social behaviour. Why exactly hosts direct their caring behaviour towards these parasites and their offspring remains largely unstudied. One hypothesis is that hosts do not perceive their social environment as altered and accept the parasitic colony as their own. We used the ant Leptothorax acervorum, host of the dulotic, obligate social parasite Harpagoxenus sublaevis, to shed light on molecular mechanisms underlying behavioural exploitation by contrasting tissue-specific transcriptomes in young host workers. Host pupae were experimentally (re-)introduced into fragments of their original, another conspecific, heterospecific or parasitic colony. Brain and antennal mRNA was extracted and sequenced from adult ants after they had lived in the experimental colony for at least 50 days after eclosion. The resulting transcriptomes of L. acervorum revealed that ants were indeed affected by their social environment. Host brain transcriptomes were altered by the presence of social parasites, suggesting that the parasitic environment influences brain activity, which may be linked to behavioural changes. Transcriptional activity in the antennae changed most with the presence of unrelated individuals, regardless of whether they were conspecifics or parasites. This suggests early priming of odour perception, which was further supported by sensory perception of odour as an enriched function of differentially expressed genes. Furthermore, gene expression in the antennae, but not in the brain corresponded to ant worker behaviour before sampling. Our study demonstrated that the exploitation of social behaviours by brood parasites correlates with transcriptomic alterations in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Erwann Collin
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Maide Nesibe Macit
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
6
|
Bles O, Deneubourg JL, Sueur C, Nicolis SC. A Data-Driven Simulation of the Trophallactic Network and Intranidal Food Flow Dissemination in Ants. Animals (Basel) 2022; 12:2963. [PMID: 36359087 PMCID: PMC9655576 DOI: 10.3390/ani12212963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
Food sharing can occur in both social and non-social species, but it is crucial in eusocial species, in which only some group members collect food. This food collection and the intranidal (i.e., inside the nest) food distribution through trophallactic (i.e., mouth-to-mouth) exchanges are fundamental in eusocial insects. However, the behavioural rules underlying the regulation and the dynamics of food intake and the resulting networks of exchange are poorly understood. In this study, we provide new insights into the behavioural rules underlying the structure of trophallactic networks and food dissemination dynamics within the colony. We build a simple data-driven model that implements interindividual variability and the division of labour to investigate the processes of food accumulation/dissemination inside the nest, both at the individual and collective levels. We also test the alternative hypotheses (no variability and no division of labour). The division of labour, combined with inter-individual variability, leads to predictions of the food dynamics and exchange networks that run, contrary to the other models. Our results suggest a link between the interindividual heterogeneity of the trophallactic behaviours, the food flow dynamics and the network of trophallactic events. Our results show that a slight level of heterogeneity in the number of trophallactic events is enough to generate the properties of the experimental networks and seems to be crucial for the creation of efficient trophallactic networks. Despite the relative simplicity of the model rules, efficient trophallactic networks may emerge as the networks observed in ants, leading to a better understanding of the evolution of self-organisation in such societies.
Collapse
Affiliation(s)
- Olivier Bles
- Center for Nonlinear Phenomena and Complex Systems (Cenoli)—CP 231, Université Libre de Bruxelles (ULB), B-1050 Bruxelles, Belgium
| | - Jean-Louis Deneubourg
- Center for Nonlinear Phenomena and Complex Systems (Cenoli)—CP 231, Université Libre de Bruxelles (ULB), B-1050 Bruxelles, Belgium
| | - Cédric Sueur
- Université de Strasbourg, CNRS (Centre National de la Recherche Scientifique), IPHC (Institut Pluridisciplinaire Hubert Curien), UMR 7178, 67000 Strasbourg, France
- Institut Universitaire de France, 75005 Paris, France
| | - Stamatios C. Nicolis
- Center for Nonlinear Phenomena and Complex Systems (Cenoli)—CP 231, Université Libre de Bruxelles (ULB), B-1050 Bruxelles, Belgium
| |
Collapse
|
7
|
Chen J, Du Y. Fire ants feed their nestmates with their own venom. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104437. [PMID: 35970221 DOI: 10.1016/j.jinsphys.2022.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Venom secretion is widely used by ants for disease control and more generally as an external surface disinfectant. Here we report evidence that Solenopsis invicta feed their nestmates with their own venom. Venom alkaloids were found in crops and midguts of ants at concentration levels that have previously been reported as effective against various pathogens. These venom alkaloids were found in midguts of the larvae, indicating that trophallaxis must be involved in the transfer of venom, since larvae do not produce alkaloids and they depend on workers to be fed. After the mating flight, the female alates shed their wings, burrow into the soil, and start new colonies. The new queen provided alkaloids to her first batch of larvae in the new colony. Since the crops of female alates contain venom alkaloids donated from their nestmate workers, the transfer of worker alkaloids to new generation occurred. After minim adult workers emerged, they took the role in providing venom to the larvae in the colony. Minim adult workers eventually died out and the normal workers became the venom donors in the colony. Although other functions may be possible, considering the well-known antimicrobial property of venom alkaloids and their detected concentration levels, venom in the digestive system is most likely used as an internal antibiotic by fire ants.
Collapse
Affiliation(s)
- Jian Chen
- USDA-ARS, Biological Control of Pests Research Unit, Stoneville, MS 38776, USA.
| | - Yuzhe Du
- USDA-ARS, Southern Insect Management Research Unit, Stoneville, MS 38776, USA
| |
Collapse
|
8
|
Lee SK. "Cutting and Burning Guts" Nourish the Young Caenorhabditis elegans lyse their guts to produce nutritious yolk milk to feed larvae. Mol Cells 2022; 45:1-3. [PMID: 35114642 PMCID: PMC8819495 DOI: 10.14348/molcells.2021.5036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Sciences, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
9
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
10
|
Kern CC, Townsend S, Salzmann A, Rendell NB, Taylor GW, Comisel RM, Foukas LC, Bähler J, Gems D. C. elegans feed yolk to their young in a form of primitive lactation. Nat Commun 2021; 12:5801. [PMID: 34611154 PMCID: PMC8492707 DOI: 10.1038/s41467-021-25821-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
The nematode Caenorhabditis elegans exhibits rapid senescence that is promoted by the insulin/IGF-1 signalling (IIS) pathway via regulated processes that are poorly understood. IIS also promotes production of yolk for egg provisioning, which in post-reproductive animals continues in an apparently futile fashion, supported by destructive repurposing of intestinal biomass that contributes to senescence. Here we show that post-reproductive mothers vent yolk which can be consumed by larvae and promotes their growth. This implies that later yolk production is not futile; instead vented yolk functions similarly to milk. Moreover, yolk venting is promoted by IIS. These findings suggest that a self-destructive, lactation-like process effects resource transfer from postreproductive C. elegans mothers to offspring, in a fashion reminiscent of semelparous organisms that reproduce in a single, suicidal burst. That this process is promoted by IIS provides insights into how and why IIS shortens lifespan in C. elegans.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - StJohn Townsend
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Antoine Salzmann
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Nigel B Rendell
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, NW3 2PF, UK
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, NW3 2PF, UK
| | - Ruxandra M Comisel
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Lazaros C Foukas
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Gems D, Kern CC, Nour J, Ezcurra M. Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol 2021; 9:688788. [PMID: 34513830 PMCID: PMC8430333 DOI: 10.3389/fcell.2021.688788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carina C. Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Joseph Nour
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
12
|
Khalife A, Peeters C. Food storage and morphological divergence between worker and soldier castes in a subterranean myrmicine ant, Carebara perpusilla. J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1890851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Adam Khalife
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Sorbonne Université, UPEC, CNRS, INRA, IRD, France
| | - Christian Peeters
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Sorbonne Université, UPEC, CNRS, INRA, IRD, France
| |
Collapse
|
13
|
Honeybee Communication: There’s More on the Dancefloor. Curr Biol 2019; 29:R285-R287. [DOI: 10.1016/j.cub.2019.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Capodeanu-Nägler A, Prang MA, Trumbo ST, Vogel H, Eggert AK, Sakaluk SK, Steiger S. Offspring dependence on parental care and the role of parental transfer of oral fluids in burying beetles. Front Zool 2018; 15:33. [PMID: 30279721 PMCID: PMC6116493 DOI: 10.1186/s12983-018-0278-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/13/2018] [Indexed: 12/30/2022] Open
Abstract
Background Immature stages of many animals can forage and feed on their own, whereas others depend on their parents’ assistance to obtain or process food. But how does such dependency evolve, and which offspring and parental traits are involved? Burying beetles (Nicrophorus) provide extensive biparental care, including food provisioning to their offspring. Interestingly, there is substantial variation in the reliance of offspring on post-hatching care among species. Here, we examine the proximate mechanisms underlying offspring dependence, focusing on the larvae of N. orbicollis, which are not able to survive in the absence of parents. We specifically asked whether the high offspring dependence is caused by (1) a low starvation tolerance, (2) a low ability to self-feed or (3) the need to obtain parental oral fluids. Finally, we determined how much care (i.e. duration of care) they require to be able to survive. Results We demonstrate that N. orbicollis larvae are not characterized by a lower starvation tolerance than larvae of the more independent species. Hatchlings of N. orbicollis are generally able to self-feed, but the efficiency depends on the kind of food presented and differs from the more independent species. Further, we show that even when providing highly dependent N. orbicollis larvae with easy ingestible liquefied mice carrion, only few of them survived to pupation. However, adding parental oral fluids significantly increased their survival rate. Finally, we demonstrate that survival and growth of dependent N. orbicollis larvae is increased greatly by only a few hours of parental care. Conclusions Considering the fact that larvae of other burying beetle species are able to survive in the absence of care, the high dependence of N. orbicollis larvae is puzzling. Even though they have not lost the ability to self-feed, an easily digestible, liquefied carrion meal is not sufficient to ensure their survival. However, our results indicate that the transfer of parental oral fluids is an essential component of care. In the majority of mammals, offspring rely on the exchange of fluids (i.e. milk) to survive, and our findings suggest that even in subsocial insects, such as burying beetles, parental fluids can significantly affect offspring survival.
Collapse
Affiliation(s)
| | - Madlen A Prang
- 2Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany
| | - Stephen T Trumbo
- 3Department of Ecology and Evolutionary Biology, University of Connecticut, Waterbury, CT USA
| | - Heiko Vogel
- 4Department of Entomology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Anne-Katrin Eggert
- 5Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120 USA
| | - Scott K Sakaluk
- 5Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120 USA
| | - Sandra Steiger
- 1Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,2Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|