1
|
Schuster T, Amoah A, Vollmer A, Marka G, Niemann J, Saçma M, Sakk V, Soller K, Vogel M, Grigoryan A, Wlaschek M, Scharffetter-Kochanek K, Mulaw M, Geiger H. Quantitative determination of the spatial distribution of components in single cells with CellDetail. Nat Commun 2024; 15:10250. [PMID: 39592623 PMCID: PMC11599593 DOI: 10.1038/s41467-024-54638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The distribution of biomolecules within cells changes upon aging and diseases. To quantitatively determine the spatial distribution of components inside cells, we built the user-friendly open-source 3D-cell-image analysis platform Cell Detection and Analysis of Intensity Lounge (CellDetail). The algorithm within CellDetail is based on the concept of the dipole moment. CellDetail provides quantitative values for the distribution of the polarity proteins Cdc42 and Tubulin in young and aged hematopoietic stem cells (HSCs). Septin proteins form networks within cells that are critical for cell compartmentalization. We uncover a reduced level of organization of the Septin network within aged HSCs and within senescent human fibroblasts. Changes in the Septin network structure might therefore be a common feature of aging. The level of organization of the network of Septin proteins in aged HSCs can be restored to a youthful level by pharmacological attenuation of the activity of the small RhoGTPase Cdc42.
Collapse
Affiliation(s)
- Tanja Schuster
- Institute of Molecular Medicine, Ulm University, Ulm, Germany.
| | - Amanda Amoah
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
- Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Gina Marka
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Julian Niemann
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Mehmet Saçma
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Mona Vogel
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Ani Grigoryan
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | | | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Ramos M, Martín-García R, Curto MÁ, Gómez-Delgado L, Moreno MB, Sato M, Portales E, Osumi M, Rincón SA, Pérez P, Ribas JC, Cortés JC. Fission yeast Bgs1 glucan synthase participates in the control of growth polarity and membrane traffic. iScience 2024; 27:110477. [PMID: 39156640 PMCID: PMC11326927 DOI: 10.1016/j.isci.2024.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Rod-shaped fission yeast grows through cell wall expansion at poles and septum, synthesized by essential glucan synthases. Bgs1 synthesizes the linear β(1,3)glucan of primary septum at cytokinesis. Linear β(1,3)glucan is also present in the wall poles, suggesting additional Bgs1 roles in growth polarity. Our study reveals an essential collaboration between Bgs1 and Tea1-Tea4, but not other polarity factors, in controlling growth polarity. Simultaneous absence of Bgs1 function and Tea1-Tea4 causes complete loss of growth polarity, spread of other glucan synthases, and spherical cell formation, indicating this defect is specifically due to linear β(1,3)glucan absence. Furthermore, linear β(1,3)glucan absence induces actin patches delocalization and sterols spread, which are ultimately responsible for the growth polarity loss without Tea1-Tea4. This suggests strong similarities in Bgs1 functions controlling actin structures during cytokinesis and polarized growth. Collectively, our findings unveil that cell wall β(1,3)glucan regulates polarized growth, like the equivalent extracellular matrix in neuronal cells.
Collapse
Affiliation(s)
- Mariona Ramos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Ángeles Curto
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Laura Gómez-Delgado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Belén Moreno
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Mamiko Sato
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Elvira Portales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Masako Osumi
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
- Integrated Imaging Research Support (IIRS), Villa Royal Hirakawa 103, 1-7-5 Hirakawa-cho, Chiyoda-ku, Tokyo, Japan
| | - Sergio A. Rincón
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C. Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C.G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Zhang L, Zhang Y, Liu Y, Miao W, Ai J, Li J, Peng S, Li S, Ye L, Zeng R, Shi X, Ma J, Lin Y, Kuang W, Cui R. Multi-omics analysis revealed that the protein kinase MoKin1 affected the cellular response to endoplasmic reticulum stress in the rice blast fungus, Magnaporthe oryzae. BMC Genomics 2024; 25:449. [PMID: 38714914 PMCID: PMC11077741 DOI: 10.1186/s12864-024-10337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.
Collapse
Affiliation(s)
- Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yankun Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wenjing Miao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jingyu Ai
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jingling Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Song Peng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Rong Zeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
4
|
Duan Y, Chen X, Wang T, Li M. The serine/threonine protein kinase MpSTE1 directly governs hyphal branching in Monascus spp. Appl Microbiol Biotechnol 2024; 108:255. [PMID: 38446219 PMCID: PMC10917826 DOI: 10.1007/s00253-024-13093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Monascus spp. are commercially important fungi due to their ability to produce beneficial secondary metabolites such as the cholesterol-lowering agent lovastatin and natural food colorants azaphilone pigments. Although hyphal branching intensively influenced the production of these secondary metabolites, the pivotal regulators of hyphal development in Monascus spp. remain unclear. To identify these important regulators, we developed an artificial intelligence (AI)-assisted image analysis tool for quantification of hyphae-branching and constructed a random T-DNA insertion library. High-throughput screening revealed that a STE kinase, MpSTE1, was considered as a key regulator of hyphal branching based on the hyphal phenotype. To further validate the role of MpSTE1, we generated an mpSTE1 gene knockout mutant, a complemented mutant, and an overexpression mutant (OE::mpSTE1). Microscopic observations revealed that overexpression of mpSTE1 led to a 63% increase in branch number while deletion of mpSTE1 reduced the hyphal branching by 68% compared to the wild-type strain. In flask cultures, the strain OE::mpSTE1 showed accelerated growth and glucose consumption. More importantly, the strain OE::mpSTE1 produced 9.2 mg/L lovastatin and 17.0 mg/L azaphilone pigments, respectively, 47.0% and 30.1% higher than those of the wild-type strain. Phosphoproteomic analysis revealed that MpSTE1 directly phosphorylated 7 downstream signal proteins involved in cell division, cytoskeletal organization, and signal transduction. To our best knowledge, MpSTE1 is reported as the first characterized regulator for tightly regulating the hyphal branching in Monascus spp. These findings significantly expanded current understanding of the signaling pathway governing the hyphal branching and development in Monascus spp. Furthermore, MpSTE1 and its analogs were demonstrated as promising targets for improving production of valuable secondary metabolites. KEY POINTS: • MpSTE1 is the first characterized regulator for tightly regulating hyphal branching • Overexpression of mpSTE1 significantly improves secondary metabolite production • A high-throughput image analysis tool was developed for counting hyphal branching.
Collapse
Affiliation(s)
- Yali Duan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Xizhu Chen
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Tingya Wang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Mu Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China.
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
5
|
Igarashi MG, Bhattacharjee R, Willet AH, Gould KL. Polarity kinases that phosphorylate F-BAR protein Cdc15 have unique localization patterns during cytokinesis and contributions to preventing tip septation in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000965. [PMID: 37746062 PMCID: PMC10517346 DOI: 10.17912/micropub.biology.000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
The Schizosaccharomyces pombe F-BAR protein, Cdc15, facilitates the linkage between the cytokinetic ring and the plasma membrane. Cdc15 is phosphorylated on many sites by four polarity kinases and this antagonizes membrane interaction. Dephosphorylation of Cdc15 during mitosis induces its phase separation, allowing oligomerization, membrane association, and protein partner binding. Here, using live cell imaging we examined whether spatial separation of Cdc15 from its four identified kinases potentially explains their diverse effects on tip septation and the mitotic Cdc15 phosphorylation state. We identified a correlation between kinase localization and their ability to antagonize Cdc15 cytokinetic ring and membrane localization.
Collapse
Affiliation(s)
- Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
- Current address: Biophysical Sciences, University of Chicago, Chicago, IL, US
| | - Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
- Current address: Twist Bioscience, Quincy, MA, US
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| |
Collapse
|
6
|
Bhattacharjee R, Hall AR, Mangione MC, Igarashi MG, Roberts-Galbraith RH, Chen JS, Vavylonis D, Gould KL. Multiple polarity kinases inhibit phase separation of F-BAR protein Cdc15 and antagonize cytokinetic ring assembly in fission yeast. eLife 2023; 12:83062. [PMID: 36749320 PMCID: PMC9904764 DOI: 10.7554/elife.83062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2023] Open
Abstract
The F-BAR protein Cdc15 is essential for cytokinesis in Schizosaccharomyces pombe and plays a key role in attaching the cytokinetic ring (CR) to the plasma membrane (PM). Cdc15's abilities to bind to the membrane and oligomerize via its F-BAR domain are inhibited by phosphorylation of its intrinsically disordered region (IDR). Multiple cell polarity kinases regulate Cdc15 IDR phosphostate, and of these the DYRK kinase Pom1 phosphorylation sites on Cdc15 have been shown in vivo to prevent CR formation at cell tips. Here, we compared the ability of Pom1 to control Cdc15 phosphostate and cortical localization to that of other Cdc15 kinases: Kin1, Pck1, and Shk1. We identified distinct but overlapping cohorts of Cdc15 phosphorylation sites targeted by each kinase, and the number of sites correlated with each kinases' abilities to influence Cdc15 PM localization. Coarse-grained simulations predicted that cumulative IDR phosphorylation moves the IDRs of a dimer apart and toward the F-BAR tips. Further, simulations indicated that the overall negative charge of phosphorylation masks positively charged amino acids necessary for F-BAR oligomerization and membrane interaction. Finally, simulations suggested that dephosphorylated Cdc15 undergoes phase separation driven by IDR interactions. Indeed, dephosphorylated but not phosphorylated Cdc15 undergoes liquid-liquid phase separation to form droplets in vitro that recruit Cdc15 binding partners. In cells, Cdc15 phosphomutants also formed PM-bound condensates that recruit other CR components. Together, we propose that a threshold of Cdc15 phosphorylation by assorted kinases prevents Cdc15 condensation on the PM and antagonizes CR assembly.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Aaron R Hall
- Department of Physics, Lehigh UniversityBethlehemUnited States
| | - MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Maya G Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh UniversityBethlehemUnited States,Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
7
|
Bellingham-Johnstun K, Commer B, Levesque B, Tyree ZL, Laplante C. Imp2p forms actin-dependent clusters and imparts stiffness to the contractile ring. Mol Biol Cell 2022; 33:ar145. [PMID: 36287824 PMCID: PMC9727792 DOI: 10.1091/mbc.e22-06-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The contractile ring must anchor to the plasma membrane and cell wall to transmit its tension. F-BAR domain containing proteins including Imp2p and Cdc15p in fission yeast are likely candidate anchoring proteins based on their mutant phenotypes. Cdc15p is a node component, links the actin bundle to the plasma membrane, recruits Bgs1p to the division plane, prevents contractile ring sliding, and contributes to the stiffness of the contractile ring. Less is known about Imp2p. We found that similarly to Cdc15p, Imp2p contributes to the stiffness of the contractile ring and assembles into protein clusters. Imp2p clusters contain approximately eight Imp2p dimers and depend on the actin network for their stability at the division plane. Importantly, Imp2p and Cdc15p reciprocally affect the amount of each other in the contractile ring, indicating that the two proteins influence each other during cytokinesis, which may partially explain their similar phenotypes.
Collapse
Affiliation(s)
| | - Blake Commer
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607
| | - Brié Levesque
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607
| | - Zoe L Tyree
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607
| | - Caroline Laplante
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
8
|
Ramsey J, McIntosh B, Renfro D, Aleksander SA, LaBonte S, Ross C, Zweifel AE, Liles N, Farrar S, Gill JJ, Erill I, Ades S, Berardini TZ, Bennett JA, Brady S, Britton R, Carbon S, Caruso SM, Clements D, Dalia R, Defelice M, Doyle EL, Friedberg I, Gurney SMR, Hughes L, Johnson A, Kowalski JM, Li D, Lovering RC, Mans TL, McCarthy F, Moore SD, Murphy R, Paustian TD, Perdue S, Peterson CN, Prüß BM, Saha MS, Sheehy RR, Tansey JT, Temple L, Thorman AW, Trevino S, Vollmer AC, Walbot V, Willey J, Siegele DA, Hu JC. Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO). PLoS Comput Biol 2021; 17:e1009463. [PMID: 34710081 PMCID: PMC8553046 DOI: 10.1371/journal.pcbi.1009463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills.
Collapse
Affiliation(s)
- Jolene Ramsey
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
- Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| | - Brenley McIntosh
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Daniel Renfro
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Suzanne A. Aleksander
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Sandra LaBonte
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Curtis Ross
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
- Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| | - Adrienne E. Zweifel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Nathan Liles
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Shabnam Farrar
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Sarah Ades
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tanya Z. Berardini
- The Arabidopsis Information Resource, Phoenix Bioinformatics, Newark, California, United States of America
| | - Jennifer A. Bennett
- Department of Biology and Earth Science, Otterbein University, Westerville, Ohio, United States of America
| | - Siobhan Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, California, United States of America
| | - Robert Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Seth Carbon
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Steven M. Caruso
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Dave Clements
- Department of Biology, John Hopkins University, Baltimore, Maryland, United States of America
| | - Ritu Dalia
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Meredith Defelice
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Erin L. Doyle
- Biology Department, Doane University, Crete, Nebraska, United States of America
| | - Iddo Friedberg
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Susan M. R. Gurney
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lee Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Allison Johnson
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jason M. Kowalski
- Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America
| | - Donghui Li
- The Arabidopsis Information Resource, Phoenix Bioinformatics, Newark, California, United States of America
| | - Ruth C. Lovering
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Tamara L. Mans
- Department of Biochemistry and Biotechnology, Minnesota State University Moorhead, Brooklyn Park, Minnesota, United States of America
| | - Fiona McCarthy
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Sean D. Moore
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
| | - Rebecca Murphy
- Department of Biology, Centenary College of Louisiana, Shreveport, Louisiana, United States of America
| | - Timothy D. Paustian
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sarah Perdue
- Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America
| | - Celeste N. Peterson
- Biology Department, Suffolk University, Boston, Massachusetts, United States of America
| | - Birgit M. Prüß
- Microbiological Sciences Department, North Dakota State University, Fargo, North Dakota, United States of America
| | - Margaret S. Saha
- Department of Biology, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Robert R. Sheehy
- Biology Department, Radford University, Radford, Virginia, United States of America
| | - John T. Tansey
- Department of Biochemistry and Molecular Biology, Otterbein University, Westerville, Ohio, United States of America
| | - Louise Temple
- School of Integrated Sciences, James Madison University, Harrisonburg, Virginia, United States of America
| | - Alexander William Thorman
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Saul Trevino
- Department of Chemistry, Math, and Physics, Houston Baptist University, Houston, Texas, United States of America
| | - Amy Cheng Vollmer
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joanne Willey
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Deborah A. Siegele
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - James C. Hu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
- Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
9
|
Willet AH, Igarashi MG, Chen JS, Bhattacharjee R, Ren L, Cullati SN, Elmore ZC, Roberts-Galbraith RH, Johnson AE, Beckley JR, Gould KL. Phosphorylation in the intrinsically disordered region of F-BAR protein Imp2 regulates its contractile ring recruitment. J Cell Sci 2021; 134:271847. [PMID: 34279633 DOI: 10.1242/jcs.258645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
The F-BAR protein Imp2 is an important contributor to cytokinesis in the fission yeast, Schizosaccharomyces pombe. Because cell cycle regulated phosphorylation of the central intrinsically disordered region (IDR) of the Imp2 paralog, Cdc15, controls Cdc15 oligomerization state, localization, and ability to bind protein partners, we investigated whether Imp2 is similarly phosphoregulated. We found that Imp2 is endogenously phosphorylated on 28 sites within its IDR with the bulk of phosphorylation being constitutive. In vitro, casein kinase 1 (CK1) Hhp1 and Hhp2 can phosphorylate 17 sites and Cdk1 the remaining 11 sites. Mutations that prevent Cdk1 phosphorylation result in precocious Imp2 recruitment to the cell division site, and mutations designed to mimic these phosphorylation events delay Imp2 CR accumulation. Mutations that eliminated CK1 phosphorylation sites allowed CR sliding, and phosphomimetic substitutions at these sites reduced Imp2 protein levels and slowed CR constriction. Thus, like Cdc15, the Imp2 IDR is phosphorylated at many sites by multiple kinases. In contrast to Cdc15, for which phosphorylation plays a major cell cycle regulatory role, Imp2 phosphorylation is primarily constitutive with milder effects on localization and function.
Collapse
Affiliation(s)
- Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Maya G Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Sierra N Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Zachary C Elmore
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Alyssa E Johnson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
10
|
Ghosh C, Uppala JK, Sathe L, Hammond CI, Anshu A, Pokkuluri PR, Turk BE, Dey M. Phosphorylation of Pal2 by the protein kinases Kin1 and Kin2 modulates HAC1 mRNA splicing in the unfolded protein response in yeast. Sci Signal 2021; 14:14/684/eaaz4401. [PMID: 34035143 DOI: 10.1126/scisignal.aaz4401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During cellular stress in the budding yeast Saccharomyces cerevisiae, an endoplasmic reticulum (ER)-resident dual kinase and RNase Ire1 splices an intron from HAC1 mRNA in the cytosol, thereby releasing its translational block. Hac1 protein then activates an adaptive cellular stress response called the unfolded protein response (UPR) that maintains ER homeostasis. The polarity-inducing protein kinases Kin1 and Kin2 contribute to HAC1 mRNA processing. Here, we showed that an RNA-protein complex that included the endocytic proteins Pal1 and Pal2 mediated HAC1 mRNA splicing downstream of Kin1 and Kin2. We found that Pal1 and Pal2 bound to the 3' untranslated region (3'UTR) of HAC1 mRNA, and a yeast strain lacking both Pal1 and Pal2 was deficient in HAC1 mRNA processing. We also showed that Kin1 and Kin2 directly phosphorylated Pal2, and that a nonphosphorylatable Pal2 mutant could not rescue the UPR defect in a pal1Δ pal2Δ strain. Thus, our work uncovers a Kin1/2-Pal2 signaling pathway that coordinates HAC1 mRNA processing and ER homeostasis.
Collapse
Affiliation(s)
- Chandrima Ghosh
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Jagadeesh Kumar Uppala
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Leena Sathe
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Charlotte I Hammond
- Department of Biological Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Ashish Anshu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - P Raj Pokkuluri
- Bioscience Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Madhusudan Dey
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
11
|
Magliozzi JO, Sears J, Cressey L, Brady M, Opalko HE, Kettenbach AN, Moseley JB. Fission yeast Pak1 phosphorylates anillin-like Mid1 for spatial control of cytokinesis. J Cell Biol 2021; 219:151784. [PMID: 32421151 PMCID: PMC7401808 DOI: 10.1083/jcb.201908017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/09/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Protein kinases direct polarized growth by regulating the cytoskeleton in time and space and could play similar roles in cell division. We found that the Cdc42-activated polarity kinase Pak1 colocalizes with the assembling contractile actomyosin ring (CAR) and remains at the division site during septation. Mutations in pak1 led to defects in CAR assembly and genetic interactions with cytokinesis mutants. Through a phosphoproteomic screen, we identified novel Pak1 substrates that function in polarized growth and cytokinesis. For cytokinesis, we found that Pak1 regulates the localization of its substrates Mid1 and Cdc15 to the CAR. Mechanistically, Pak1 phosphorylates the Mid1 N-terminus to promote its association with cortical nodes that act as CAR precursors. Defects in Pak1-Mid1 signaling lead to misplaced and defective division planes, but these phenotypes can be rescued by synthetic tethering of Mid1 to cortical nodes. Our work defines a new signaling mechanism driven by a cell polarity kinase that promotes CAR assembly in the correct time and place.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Jack Sears
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH.,Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Lauren Cressey
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH.,Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Marielle Brady
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Hannah E Opalko
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH.,Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
12
|
Pujari I, Thomas A, Rai PS, Satyamoorthy K, Babu VS. Cell size: a key determinant of meristematic potential in plant protoplasts. ABIOTECH 2021; 2:96-104. [PMID: 36304480 PMCID: PMC9590549 DOI: 10.1007/s42994-020-00033-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/18/2020] [Indexed: 06/16/2023]
Abstract
Metabolic pathway reconstruction and gene edits for native natural product synthesis in single plant cells are considered to be less complicated when compared to the production of non-native metabolites. Being an efficient eukaryotic system, plants encompass suitable post-translational modifications. However, slow cell division rate and heterogeneous nature is an impediment for consistent product retrieval from plant cells. Plant cell synchrony can be attained in cultures developed in vitro. Isolated plant protoplasts capable of division, can potentially enhance the unimpaired yield of target bioactives, similar to microbes and unicellular eukaryotes. Evidence from yeast experiments suggests that 'critical cell size' and division rates for enhancement machinery, primarily depend on culture conditions and nutrient availability. The cell size control mechanisms in Arabidopsis shoot apical meristem is analogous to yeast notably, fission yeast. If protoplasts isolated from plants are subjected to cell size studies and cell cycle progression in culture, it will answer the underlying molecular mechanisms such as, unicellular to multicellular transition states, longevity, senescence, 'cell-size resetting' during organogenesis, and adaptation to external cues.
Collapse
Affiliation(s)
- Ipsita Pujari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104 India
| | - Abitha Thomas
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104 India
| | - Padmalatha S. Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Vidhu Sankar Babu
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104 India
| |
Collapse
|
13
|
Magliozzi JO, Moseley JB. Connecting cell polarity signals to the cytokinetic machinery in yeast and metazoan cells. Cell Cycle 2021; 20:1-10. [PMID: 33397181 DOI: 10.1080/15384101.2020.1864941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polarized growth and cytokinesis are two fundamental cellular processes that exist in virtually all cell types. Mechanisms for asymmetric distribution of materials allow for cells to grow in a polarized manner. This gives rise to a variety of cell shapes seen throughout all cell types. Following polarized growth during interphase, dividing cells assemble a cytokinetic ring containing the protein machinery to constrict and separate daughter cells. Here, we discuss how cell polarity signaling pathways act on cytokinesis, with a focus on direct regulation of the contractile actomyosin ring (CAR). Recent studies have exploited phosphoproteomics to identify new connections between cell polarity kinases and CAR proteins. Existing evidence suggests that some polarity kinases guide the local organization of CAR proteins and structures while also contributing to global organization of the division plane within a cell. We provide several examples of this regulation from budding yeast, fission yeast, and metazoan cells. In some cases, kinase-substrate connections point to conserved processes in these different organisms. We point to several examples where future work can indicate the degree of conservation and divergence in the cell division process of these different organisms.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Schutt KL, Moseley JB. The phosphatase inhibitor Sds23 promotes symmetric spindle positioning in fission yeast. Cytoskeleton (Hoboken) 2020; 77:544-557. [PMID: 33280247 PMCID: PMC8195570 DOI: 10.1002/cm.21648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
A hallmark of cell division in eukaryotic cells is the formation and elongation of a microtubule (MT)-based mitotic spindle. Proper positioning of the spindle is critical to ensure equal segregation of the genetic material to the resulting daughter cells. Both the timing of spindle elongation and constriction of the actomyosin contractile ring must be precisely coordinated to prevent missegregation or damage to the genetic material during cellular division. Here, we show that Sds23, an inhibitor of protein phosphatases, contributes to proper positioning of elongating spindles in fission yeast cells. We found that sds23∆ mutant cells exhibit asymmetric spindles that initially elongate asymmetrically toward one end of the dividing cell. Spindle asymmetry in sds23∆ cells results from a defect that is distinct from previously identified mechanisms, including MT protrusions and enlarged vacuoles. Combined with our previous work, this study demonstrates that Sds23, an inhibitor of PP2A-family protein phosphatases, promotes proper positioning of both the bipolar spindle and cytokinetic ring during fission yeast cell division. These two steps ensure the overall symmetry and fidelity of the cell division process.
Collapse
Affiliation(s)
- Katherine L. Schutt
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
15
|
Snider CE, Chandra M, McDonald NA, Willet AH, Collier SE, Ohi MD, Jackson LP, Gould KL. Opposite Surfaces of the Cdc15 F-BAR Domain Create a Membrane Platform That Coordinates Cytoskeletal and Signaling Components for Cytokinesis. Cell Rep 2020; 33:108526. [PMID: 33357436 PMCID: PMC7775634 DOI: 10.1016/j.celrep.2020.108526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Many eukaryotes assemble an actin- and myosin-based cytokinetic ring (CR) on the plasma membrane (PM) for cell division, but how it is anchored there remains unclear. In Schizosaccharomyces pombe, the F-BAR protein Cdc15 links the PM via its F-BAR domain to proteins in the CR’s interior via its SH3 domain. However, Cdc15’s F-BAR domain also directly binds formin Cdc12, suggesting that Cdc15 may polymerize a protein network directly adjacent to the membrane. Here, we determine that the F-BAR domain binds Cdc12 using residues on the face opposite its membrane-binding surface. These residues also bind paxillin-like Pxl1, promoting its recruitment with calcineurin to the CR. Mutation of these F-BAR domain residues results in a shallower CR, with components localizing ~35% closer to the PM than in wild type, and aberrant CR constriction. Thus, F-BAR domains serve as oligomeric membrane-bound platforms that can modulate the architecture of an entire actin structure. Multiple F-BAR domains link actin structures to membrane. Snider et al. show that the flat Cdc15 F-BAR domain utilizes opposite surfaces to bind the plasma membrane and cytokinetic ring proteins simultaneously. Disrupting Cdc15 F-BAR domain’s interaction with proteins results in an overall compression of the entire cytokinetic ring architecture.
Collapse
Affiliation(s)
- Chloe E Snider
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Scott E Collier
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Yin J, Hao C, Niu G, Wang W, Wang G, Xiang P, Xu JR, Zhang X. FgPal1 regulates morphogenesis and pathogenesis in Fusarium graminearum. Environ Microbiol 2020; 22:5373-5386. [PMID: 33000483 DOI: 10.1111/1462-2920.15266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Ascospores are the primary inoculum in Fusarium graminearum, a causal agent of wheat head blight. In a previous study, FgPAL1 was found to be upregulated in the Fgama1 mutant and important for ascosporogenesis. However, the biological function of this well-conserved gene in filamentous ascomycetes is not clear. In this study, we characterized its functions in growth, differentiation and pathogenesis. The Fgpal1 mutant had severe growth defects and often displayed abnormal hyphal tips. It was defective in infectious growth in rachis tissues and spreading in wheat heads. The Fgpal1 mutant produced conidia with fewer septa and more nuclei per compartment than the wild type. In actively growing hyphal tips, FgPal1-GFP mainly localized to the subapical collar and septa. The FgPal1 and LifeAct partially co-localized at the subapical region in an interdependent manner. The Fgpal1 mutant was normal in meiosis with eight nuclei in developing asci but most asci were aborted. Taken together, our results showed that FgPal1 plays a role in maintaining polarized tip growth and coordination between nuclear division and cytokinesis, and it is also important for infectious growth and developments of ascospores by the free cell formation process.
Collapse
Affiliation(s)
- Jinrong Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
17
|
Yuan R, Ding X, Tan X, Hou Y. Loss of FZO1 gene results in changes of cell dynamics in fission yeast. Int J Mol Med 2020; 46:2194-2206. [PMID: 33125111 PMCID: PMC7595653 DOI: 10.3892/ijmm.2020.4752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fission and fusion dynamics are critical cellular processes, and abnormalities in these processes are associated with severe human disorders, such as Beckwith-Wiedemann syndrome, neurodegenerative diseases, Charcot-Marie-Tooth disease type 6, multiple symmetric lipomatosis and microcephaly. Fuzzy onions protein 1 (Fzo1p) regulates mitochondrial outer membrane fusion. In the present study, Schizosaccharomyces pombe (S. pombe) was used to explore the effect of FZO1 gene deletion on cell dynamics in mitosis. The mitochondrial morphology results showed that the mitochondria appeared to be fragmented and tubular in wild-type cells; however, they were observed to accumulate in fzo1Δ cells. The FZO1 gene deletion was demonstrated to result in slow proliferation, sporogenesis defects, increased microtubule (MT) number and actin contraction defects in S. pombe. The FZO1 gene deletion also affected the rate of spindle elongation and phase time at the metaphase and anaphase, as well as spindle MT organization. Live-cell imaging was performed on mutant strains to observe three distinct kinetochore behaviors (normal, lagging and mis-segregation), as well as abnormal spindle breakage. The FZO1 gene deletion resulted in coenzyme and intermediate metabolite abnormalities as determined via metabolomics analysis. It was concluded that the loss of FZO1 gene resulted in deficiencies in mitochondrial dynamics, which may result in deficiencies in spindle maintenance, chromosome segregation, spindle breakage, actin contraction, and coenzyme and intermediate metabolite levels.
Collapse
Affiliation(s)
- Rongmei Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiumei Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
18
|
Bohnert KA, Rossi AM, Jin QW, Chen JS, Gould KL. Phosphoregulation of the cytokinetic protein Fic1 contributes to fission yeast growth polarity establishment. J Cell Sci 2020; 133:jcs244392. [PMID: 32878942 PMCID: PMC7520453 DOI: 10.1242/jcs.244392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
Cellular polarization underlies many facets of cell behavior, including cell growth. The rod-shaped fission yeast Schizosaccharomyces pombe is a well-established, genetically tractable system for studying growth polarity regulation. S. pombe cells elongate at their two cell tips in a cell cycle-controlled manner, transitioning from monopolar to bipolar growth in interphase when new ends established by the most recent cell division begin to extend. We previously identified cytokinesis as a critical regulator of new end growth and demonstrated that Fic1, a cytokinetic factor, is required for normal polarized growth at new ends. Here, we report that Fic1 is phosphorylated on two C-terminal residues, which are each targeted by multiple protein kinases. Endogenously expressed Fic1 phosphomutants cannot support proper bipolar growth, and the resultant defects facilitate the switch into an invasive pseudohyphal state. Thus, phosphoregulation of Fic1 links the completion of cytokinesis to the re-establishment of polarized growth in the next cell cycle. These findings broaden the scope of signaling events that contribute to regulating S. pombe growth polarity, underscoring that cytokinetic factors constitute relevant targets of kinases affecting new end growth.This article has an associated First Person interview with Anthony M. Rossi, joint first author of the paper.
Collapse
Affiliation(s)
- K Adam Bohnert
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Anthony M Rossi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Quan-Wen Jin
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
19
|
Kampmeyer C, Johansen JV, Holmberg C, Karlson M, Gersing SK, Bordallo HN, Kragelund BB, Lerche MH, Jourdain I, Winther JR, Hartmann-Petersen R. Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. ACS Synth Biol 2020; 9:733-748. [PMID: 32142608 DOI: 10.1021/acssynbio.9b00376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Life is completely dependent on water. To analyze the role of water as a solvent in biology, we replaced water with heavy water (D2O) and investigated the biological effects by a wide range of techniques, using Schizosaccharomyces pombe as model organism. We show that high concentrations of D2O lead to altered glucose metabolism and growth retardation. After prolonged incubation in D2O, cells displayed gross morphological changes, thickened cell walls, and aberrant cytoskeletal organization. By transcriptomics and genetic screens, we show that the solvent replacement activates two signaling pathways: (1) the heat-shock response pathway and (2) the cell integrity pathway. Although the heat-shock response system upregulates various chaperones and other stress-relieving enzymes, we find that the activation of this pathway does not offer any fitness advantage to the cells under the solvent-replaced conditions. However, limiting the D2O-triggered activation of the cell integrity pathway allows cell growth when H2O is completely replaced with D2O. The isolated D2O-tolerant strains may aid biological production of deuterated biomolecules.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jens V. Johansen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Christian Holmberg
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Magnus Karlson
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Sarah K. Gersing
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Heloisa N. Bordallo
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Birthe B. Kragelund
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Mathilde H. Lerche
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Isabelle Jourdain
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Jakob R. Winther
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Bhattacharjee R, Mangione MC, Wos M, Chen JS, Snider CE, Roberts-Galbraith RH, McDonald NA, Presti LL, Martin SG, Gould KL. DYRK kinase Pom1 drives F-BAR protein Cdc15 from the membrane to promote medial division. Mol Biol Cell 2020; 31:917-929. [PMID: 32101481 PMCID: PMC7185970 DOI: 10.1091/mbc.e20-01-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
In many organisms, positive and negative signals cooperate to position the division site for cytokinesis. In the rod-shaped fission yeast Schizosaccharomyces pombe, symmetric division is achieved through anillin/Mid1-dependent positive cues released from the central nucleus and negative signals from the DYRK-family polarity kinase Pom1 at cell tips. Here we establish that Pom1's kinase activity prevents septation at cell tips even if Mid1 is absent or mislocalized. We also find that Pom1 phosphorylation of F-BAR protein Cdc15, a major scaffold of the division apparatus, disrupts Cdc15's ability to bind membranes and paxillin, Pxl1, thereby inhibiting Cdc15's function in cytokinesis. A Cdc15 mutant carrying phosphomimetic versions of Pom1 sites or deletion of Cdc15 binding partners suppresses division at cell tips in cells lacking both Mid1 and Pom1 signals. Thus, inhibition of Cdc15-scaffolded septum formation at cell poles is a key Pom1 mechanism that ensures medial division.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Marcin Wos
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | | | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| |
Collapse
|
21
|
Mangione MC, Snider CE, Gould KL. The intrinsically disordered region of the cytokinetic F-BAR protein Cdc15 performs a unique essential function in maintenance of cytokinetic ring integrity. Mol Biol Cell 2019; 30:2790-2801. [PMID: 31509478 PMCID: PMC6789166 DOI: 10.1091/mbc.e19-06-0314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
Successful separation of two daughter cells (i.e., cytokinesis) is essential for life. Many eukaryotic cells divide using a contractile apparatus called the cytokinetic ring (CR) that associates dynamically with the plasma membrane (PM) and generates force that contributes to PM ingression between daughter cells. In Schizosaccharomyces pombe, important membrane-CR scaffolds include the paralogous F-BAR proteins Cdc15 and Imp2. Their conserved protein structure consists of the archetypal F-BAR domain linked to an SH3 domain by an intrinsically disordered region (IDR). Functions have been assigned to the F-BAR and SH3 domains. In this study we probed the function of the central IDR. We found that the IDR of Cdc15 is essential for viability and cannot be replaced by that of Imp2, whereas the F-BAR domain of Cdc15 can be swapped with several different F-BAR domains, including that of Imp2. Deleting part of the IDR results in CR defects and abolishes calcineurin phosphatase localization to the CR. Together these results indicate that Cdc15's IDR has a nonredundant essential function that coordinates regulation of CR architecture.
Collapse
Affiliation(s)
- MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
22
|
Chen C, Rodriguez Pino M, Haller PR, Verde F. Conserved NDR/LATS kinase controls RAS GTPase activity to regulate cell growth and chronological lifespan. Mol Biol Cell 2019; 30:2598-2616. [PMID: 31390298 PMCID: PMC6740195 DOI: 10.1091/mbc.e19-03-0172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adaptation to the nutritional environment is critical for all cells. RAS GTPase is a highly conserved GTP-binding protein with crucial functions for cell growth and differentiation in response to environmental conditions. Here, we describe a novel mechanism connecting RAS GTPase to nutrient availability in fission yeast. We report that the conserved NDR/LATS kinase Orb6 responds to nutritional cues and regulates Ras1 GTPase activity. Orb6 increases the protein levels of an Ras1 GTPase activator, the guanine nucleotide exchange factor Efc25, by phosphorylating Sts5, a protein bound to efc25 mRNA. By manipulating the extent of Orb6-mediated Sts5 assembly into RNP granules, we can modulate Efc25 protein levels, Ras1 GTPase activity, and, as a result, cell growth and cell survival. Thus, we conclude that the Orb6-Sts5-Ras1 regulatory axis plays a crucial role in promoting cell adaptation, balancing the opposing demands of promoting cell growth and extending chronological lifespan.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Marbelys Rodriguez Pino
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Patrick Roman Haller
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
23
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
24
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
25
|
Niklas KJ, Wayne R, Benítez M, Newman SA. Polarity, planes of cell division, and the evolution of plant multicellularity. PROTOPLASMA 2019; 256:585-599. [PMID: 30368592 DOI: 10.1007/s00709-018-1325-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/22/2018] [Indexed: 05/21/2023]
Abstract
Organisms as diverse as bacteria, fungi, plants, and animals manifest a property called "polarity." The literature shows that polarity emerges as a consequence of different mechanisms in different lineages. However, across all unicellular and multicellular organisms, polarity is evident when cells, organs, or organisms manifest one or more of the following: orientation, axiation, and asymmetry. Here, we review the relationships among these three features in the context of cell division and the evolution of multicellular polarity primarily in plants (defined here to include the algae). Data from unicellular and unbranched filamentous organisms (e.g., Chlamydomonas and Ulothrix) show that cell orientation and axiation are marked by cytoplasmic asymmetries. Branched filamentous organisms (e.g., Cladophora and moss protonema) require an orthogonal reorientation of axiation, or a localized cell asymmetry (e.g., "tip" growth in pollen tubes and fungal hyphae). The evolution of complex multicellular meristematic polarity required a third reorientation of axiation. These transitions show that polarity and the orientation of the future plane(s) of cell division are dyadic dynamical patterning modules that were critical for multicellular eukaryotic organisms.
Collapse
Affiliation(s)
- Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Randy Wayne
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Mariana Benítez
- Instituto de Ecología Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- C3, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
26
|
Hao C, Yin J, Sun M, Wang Q, Liang J, Bian Z, Liu H, Xu J. The meiosis‐specific APC activator
FgAMA1
is dispensable for meiosis but important for ascosporogenesis in
Fusarium graminearum. Mol Microbiol 2019; 111:1245-1262. [DOI: 10.1111/mmi.14219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jinrong Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jie Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jin‐Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| |
Collapse
|
27
|
Jeschke GR, Lou HJ, Weise K, Hammond CI, Demonch M, Brennwald P, Turk BE. Substrate priming enhances phosphorylation by the budding yeast kinases Kin1 and Kin2. J Biol Chem 2018; 293:18353-18364. [PMID: 30305396 DOI: 10.1074/jbc.ra118.005651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/04/2018] [Indexed: 12/27/2022] Open
Abstract
Multisite phosphorylation of proteins is a common mechanism for signal integration and amplification in eukaryotic signaling networks. Proteins are commonly phosphorylated at multiple sites in an ordered manner, whereby phosphorylation by one kinase primes the substrate by generating a recognition motif for a second kinase. Here we show that substrate priming promotes phosphorylation by Saccharomyces cerevisiae Kin1 and Kin2, kinases that regulate cell polarity, exocytosis, and the endoplasmic reticulum (ER) stress response. Kin1/Kin2 phosphorylated substrates within the context of a sequence motif distinct from those of their most closely related kinases. In particular, the rate of phosphorylation of a peptide substrate by Kin1/Kin2 increased >30-fold with incorporation of a phosphoserine residue two residues downstream of the phosphorylation site. Recognition of phosphorylated substrates by Kin1/Kin2 was mediated by a patch of basic residues located in the region of the kinase αC helix. We identified a set of candidate Kin1/Kin2 substrates reported to be dually phosphorylated at sites conforming to the Kin1/Kin2 consensus sequence. One of these proteins, the t-SNARE protein Sec9, was confirmed to be a Kin1/Kin2 substrate both in vitro and in vivo Sec9 phosphorylation by Kin1 in vitro was enhanced by prior phosphorylation at the +2 position. Recognition of primed substrates was not required for the ability of Kin2 to suppress the growth defect of secretory pathway mutants but was necessary for optimal growth under conditions of ER stress. These results suggest that at least some endogenous protein substrates of Kin1/Kin2 are phosphorylated in a priming-dependent manner.
Collapse
Affiliation(s)
- Grace R Jeschke
- From the Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Hua Jane Lou
- From the Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Keith Weise
- From the Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Charlotte I Hammond
- the Department of Biology, Quinnipiac University, Hamden, Connecticut 06518, and
| | - Mallory Demonch
- the Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Patrick Brennwald
- the Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Benjamin E Turk
- From the Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520,.
| |
Collapse
|
28
|
Kin1 kinase localizes at the hyphal septum and is dephosphorylated by calcineurin but is dispensable for septation and virulence in the human pathogen Aspergillus fumigatus. Biochem Biophys Res Commun 2018; 505:740-746. [PMID: 30292408 DOI: 10.1016/j.bbrc.2018.09.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/29/2018] [Indexed: 11/21/2022]
Abstract
Studies in yeasts have implicated the importance of Kin1 protein kinase, a member of the eukaryotic PAR1/MARK/MELK family, in polarized growth, cell division and septation through coordinated activity with the phosphatase, calcineurin. Kin1 is also required for virulence of the fungal pathogens Cryptococcus neoformans and Fusarium graminearum. Here we show that kin1 deletion in the human fungal pathogen Aspergillus fumigatus does not affect hyphal growth and septation but results in differential susceptibility to antifungals targeting the cell wall and cell membrane. The Δkin1 strain remained virulent in a Galleria mellonella model of invasive aspergillosis. Expression of Kin1 tagged to GFP or RFP showed its stable localization at the septum. Co-localization experiments revealed calcineurin (CnaA) localization on either side of Kin1 at the septum suggesting possible interaction. Bimolecular fluorescence complementation assay confirmed the interaction of Kin1 with CnaA at the hyphal tips and septa in the presence of the antifungal caspofungin. Furthermore, phosphoproteomic analyses for the first time revealed Kin1 as a substrate of calcineurin providing novel insight into Kin1 regulation through calcineurin-mediated dephosphorylation mechanism.
Collapse
|