1
|
Perpiñá-Clérigues C, Mellado S, Galiana-Roselló C, García-García F, Pascual M. Unraveling the Impact of TLR4 and Sex on Chronic Alcohol Consumption-Induced Lipidome Dysregulation in Extracellular Vesicles. J Proteome Res 2025; 24:1197-1208. [PMID: 39907520 DOI: 10.1021/acs.jproteome.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The lipids that form extracellular vesicles (EVs) play critical structural and regulatory roles, and cutting-edge bioinformatics strategies have shown the ability to decipher lipid metabolism and related molecular mechanisms. We previously demonstrated that alcohol abuse induces an inflammatory immune response through Toll-like receptor 4 (TLR4), leading to structural and cognitive dysfunction. This study evaluated how TLR4 and sex as variables (male/female) impact the lipidome of plasma-resident EVs after chronic alcohol exposure. Using a mouse model of chronic ethanol exposure in wild-type and TLR4-deficient mice, enrichment networks generated by LINEX2 highlighted significant ethanol-induced changes in the EV lipid substrate-product of enzyme reactions associated with glycerophospholipid metabolism. We also demonstrated ethanol-induced differences in Lipid Ontology enrichment analysis in EVs, focusing on terms related to lipid bilayer properties. A lipid abundance analysis revealed higher amounts of significant lipid subclasses in all experimental comparisons associated with inflammatory responses and EV biogenesis/secretion. These findings suggest that interrogating EV lipid abundance with a sensitive lipidomic-based strategy can provide deep insight into the molecular mechanisms underlying biological processes associated with sex, alcohol consumption, and TLR4 immune responses and open new avenues for biomarker identification and therapeutic development.
Collapse
Affiliation(s)
- Carla Perpiñá-Clérigues
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Cristina Galiana-Roselló
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
2
|
Brumm S, Singh MK, Kriechbaum C, Richter S, Huhn K, Kucera T, Baumann S, Wolters H, Takada S, Jürgens G. N-terminal domain of ARF-GEF GNOM prevents heterodimerization with functionally divergent GNL1 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:772-785. [PMID: 36106415 DOI: 10.1111/tpj.15979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary change following gene duplication can lead to functionally divergent paralogous proteins. If comprising identical subunits their random assortment would also form potentially detrimental heteromeric proteins. In Arabidopsis, the ARF GTPase guanine-nucleotide exchange factor GNOM is essential for polar recycling of auxin-efflux transporter PIN1 from endosomes to the basal plasma membrane whereas its paralog GNL1 mediates retrograde Golgi-endoplasmic reticulum traffic. Here we show that both GNOM and GNL1 form homodimers but no heterodimers. To assess the biological significance of this, we generated transgenic plants expressing engineered heterodimer-compatible GNOM variants. Those plants showed developmental defects such as the failure to produce lateral roots. To identify mechanisms underlying heterodimer prevention, we analyzed interactions of the N-terminal dimerization and cyclophilin-binding (DCB) domain. Each DCB domain interacted with the complementary fragment (ΔDCB) both of their own and of the paralogous protein. However, only DCBGNOM interacted with itself whereas DCBGNL1 failed to interact with itself and with DCBGNOM . GNOM variants in which the DCB domain was removed or replaced by DCBGNL1 revealed a role for DCB-DCB interaction in the prevention of GNOM-GNL1 heterodimers whereas DCB-ΔDCB interaction was essential for dimer formation and GNOM function. Our data suggest a model of early DCB-DCB interaction that facilitates GNOM homodimer formation, indirectly precluding formation of detrimental heterodimers.
Collapse
Affiliation(s)
- Sabine Brumm
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Manoj K Singh
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Choy Kriechbaum
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Sandra Richter
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Kerstin Huhn
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Tim Kucera
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Sarah Baumann
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Hanno Wolters
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Shinobu Takada
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Gerd Jürgens
- Center for Plant Molecular Biology (ZMBP), Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Ohashi Y, Tremel S, Masson GR, McGinney L, Boulanger J, Rostislavleva K, Johnson CM, Niewczas I, Clark J, Williams RL. Membrane characteristics tune activities of endosomal and autophagic human VPS34 complexes. eLife 2020; 9:58281. [PMID: 32602837 PMCID: PMC7326497 DOI: 10.7554/elife.58281] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
The lipid kinase VPS34 orchestrates diverse processes, including autophagy, endocytic sorting, phagocytosis, anabolic responses and cell division. VPS34 forms various complexes that help adapt it to specific pathways, with complexes I and II being the most prominent ones. We found that physicochemical properties of membranes strongly modulate VPS34 activity. Greater unsaturation of both substrate and non-substrate lipids, negative charge and curvature activate VPS34 complexes, adapting them to their cellular compartments. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) of complexes I and II on membranes elucidated structural determinants that enable them to bind membranes. Among these are the Barkor/ATG14L autophagosome targeting sequence (BATS), which makes autophagy-specific complex I more active than the endocytic complex II, and the Beclin1 BARA domain. Interestingly, even though Beclin1 BARA is common to both complexes, its membrane-interacting loops are critical for complex II, but have only a minor role for complex I.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Shirley Tremel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Glenn Robert Masson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Lauren McGinney
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Jerome Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Ksenia Rostislavleva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | | | | | - Roger L Williams
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| |
Collapse
|
4
|
Hassanpour M, Rezaie J, Darabi M, Hiradfar A, Rahbarghazi R, Nouri M. Autophagy modulation altered differentiation capacity of CD146 + cells toward endothelial cells, pericytes, and cardiomyocytes. Stem Cell Res Ther 2020; 11:139. [PMID: 32216836 PMCID: PMC7099797 DOI: 10.1186/s13287-020-01656-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background To date, many attempts are employed to increase the regenerative potential of stem cells. In this study, we evaluated the hypothesis of whether an autophagy modulation could alter differentiation potency of CD146+ cells into mature pericyte, endothelial, and cardiomyocyte lineage. Methods In this study, CD146+cells were enriched from the human bone marrow aspirates and trans-differentiated into mature endothelial cells, pericytes, and cardiomyocytes after exposure to autophagy stimulator (50-μM Met)/inhibitor (15-μM HCQ). The protein levels of autophagy proteins were monitored by western blotting. NO content was measured using the Griess assay. Using real-time PCR assay and western blotting, we monitored the lineage protein and gene levels. Pro-inflammatory cytokine and angiocrine factors were measured by ELISA. The fatty acid change was determined by gas chromatography. We also measured exosome secretion capacity by measuring AChE activity and real-time PCR assay. Result Data revealed the modulation of autophagy factors, Beclin-1, P62, and LC3 II/I ratio in differentiating CD146+ cells after exposure to Met and HCQ (p < 0.05). The inhibition of autophagy increased NO content compared to the Met-treated cells (p < 0.05). Real-time PCR analysis showed that the treatment of CD146+ cells with autophagy modulators altered the expression of VE-cadherin, cTnI, and α-SMA (p < 0.05). Met increased the expression of VE-cadherin, α-SMA, and cTnI compared to the HCQ-treated cells (p < 0.05) while western blotting revealed the protein synthesis of all lineage-specific proteins under the stimulation and inhibition of autophagy. None statistically significant differences were found in the levels of Tie-1, Tie-2, VEGFR-1, and VEGFR-2 after autophagy modulation. Fatty acid profile analysis revealed the increase of unsaturated fatty acids after exposure to HCQ (p < 0.05). The treatment of cells with HCQ increased the levels of TNF-α and IL-6 compared to the Met-treated cells. Data revealed the increase of exosome biogenesis and secretion to the supernatant in cells treated with HCQ compared to the Met groups (p < 0.05). Conclusions In summary, autophagy modulation could alter differentiation potency of CD146+cells which is important in cardiac regeneration.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirataollah Hiradfar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.
| |
Collapse
|
5
|
Parakh S, Perri ER, Jagaraj CJ, Ragagnin AMG, Atkin JD. Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 2019; 53:623-651. [PMID: 30741580 DOI: 10.1080/10409238.2018.1553926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rab GTPases are becoming increasingly implicated in neurodegenerative disorders, although their role in amyotrophic lateral sclerosis (ALS) has been somewhat overlooked. However, dysfunction of intracellular transport is gaining increasing attention as a pathogenic mechanism in ALS. Many previous studies have focused axonal trafficking, and the extreme length of axons in motor neurons may contribute to their unique susceptibility in this disorder. In contrast, the role of transport defects within the cell body has been relatively neglected. Similarly, whilst Rab GTPases control all intracellular membrane trafficking events, their role in ALS is poorly understood. Emerging evidence now highlights this family of proteins in ALS, particularly the discovery that C9orf72 functions in intra transport in conjunction with several Rab GTPases. Here, we summarize recent updates on cellular transport defects in ALS, with a focus on Rab GTPases and how their dysfunction may specifically target neurons and contribute to pathophysiology. We discuss the molecular mechanisms associated with dysfunction of Rab proteins in ALS. Finally, we also discuss dysfunction in other modes of transport recently implicated in ALS, including nucleocytoplasmic transport and the ER-mitochondrial contact regions (MAM compartment), and speculate whether these may also involve Rab GTPases.
Collapse
Affiliation(s)
- S Parakh
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - E R Perri
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - C J Jagaraj
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - A M G Ragagnin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - J D Atkin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|