1
|
Kim K, Piekarz KM, Stolfi A. A gene regulatory network for specification and morphogenesis of a Mauthner Cell homolog in non-vertebrate chordates. Dev Biol 2025; 522:51-63. [PMID: 40096956 PMCID: PMC11994291 DOI: 10.1016/j.ydbio.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025]
Abstract
Transcriptional regulation of gene expression is an indispensable process in multicellular development, yet we still do not fully understand how the complex networks of transcription factors operating in neuronal precursors coordinately control the expression of effector genes that shape morphogenesis and terminal differentiation. Here we break down in greater detail a provisional regulatory circuit downstream of the transcription factor Pax3/7 operating in the descending decussating neurons (ddNs) of the tunicate Ciona robusta. The ddNs are a pair of hindbrain neurons proposed to be homologous to the Mauthner cells of anamniotes, and Pax3/7 is sufficient and necessary for their specification. We show that different transcription factors downstream of Pax3/7, namely Pou4, Lhx1/5, and Dmbx, regulate distinct "branches" of this ddN network that appear to be dedicated to different developmental tasks. Some of these network branches are shared with other neurons throughout the larva, reinforcing the idea that modularity is likely a key feature of such networks. We discuss these ideas and their evolutionary implications here, including the observation that homologs of all four transcription factors (Pax3/7, Lhx5, Pou4f3, and Dmbx1) are key for the specification of cranial neural crest in vertebrates.
Collapse
Affiliation(s)
- Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, USA
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, USA.
| |
Collapse
|
2
|
Yalcinbas EA, Ajanaku B, Nelson ED, Garcia-Flores R, Eagles NJ, Montgomery KD, Stolz JM, Wu J, Divecha HR, Chandra A, Bharadwaj RA, Bach S, Rajpurohit A, Tao R, Pertea G, Shin JH, Kleinman JE, Hyde TM, Weinberger DR, Huuki-Myers LA, Collado-Torres L, Maynard KR. Transcriptomic analysis of the human habenula in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582081. [PMID: 38463979 PMCID: PMC10925152 DOI: 10.1101/2024.02.26.582081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Pathophysiology of many neuropsychiatric disorders, including schizophrenia (SCZD), is linked to habenula (Hb) function. While pharmacotherapies and deep brain stimulation targeting the Hb are emerging as promising therapeutic treatments, little is known about the cell type-specific transcriptomic organization of the human Hb or how it is altered in SCZD. Here we define the molecular neuroanatomy of the human Hb and identify transcriptomic changes in individuals with SCZD compared to neurotypical controls. Utilizing Hb-enriched postmortem human brain tissue, we performed single nucleus RNA-sequencing (snRNA-seq; n=7 neurotypical donors) and identified 17 molecularly defined Hb cell types across 16,437 nuclei, including 3 medial and 7 lateral Hb populations, several of which were conserved between rodents and humans. Single molecule fluorescent in situ hybridization (smFISH; n=3 neurotypical donors) validated snRNA-seq Hb cell types and mapped their spatial locations. Bulk RNA-sequencing and cell type deconvolution in Hb-enriched tissue from 35 individuals with SCZD and 33 neurotypical controls yielded 45 SCZD-associated differentially expressed genes (DEGs, FDR < 0.05), with 32 (71%) unique to Hb-enriched tissue. eQTL analysis identified 717 independent SNP-gene pairs (FDR < 0.05), where either the SNP is a SCZD risk variant (16 pairs) or the gene is a SCZD DEG (7 pairs). eQTL and SCZD risk colocalization analysis identified 16 colocalized genes. These results identify topographically organized cell types with distinct molecular signatures in the human Hb and demonstrate unique genetic changes associated with SCZD, thereby providing novel molecular insights into the role of Hb in neuropsychiatric disorders. One Sentence Summary Transcriptomic analysis of the human habenula and identification of molecular changes associated with schizophrenia risk and illness state.
Collapse
|
3
|
Robertson HE, Sebé-Pedrós A, Saudemont B, Loe-Mie Y, Zakrzewski AC, Grau-Bové X, Mailhe MP, Schiffer P, Telford MJ, Marlow H. Single cell atlas of Xenoturbella bocki highlights limited cell-type complexity. Nat Commun 2024; 15:2469. [PMID: 38503762 PMCID: PMC10951248 DOI: 10.1038/s41467-024-45956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
Phylogenetic analyses over the last two decades have united a few small, and previously orphan clades, the nematodermatids, acoels and xenoturbelids, into the phylum Xenacoelomorpha. Some phylogenetic analyses support a sister relationship between Xenacoelomorpha and Ambulacraria (Xenambulacraria), while others suggest that Xenacoelomorpha may be sister to the rest of the Bilateria (Nephrozoa). An understanding of the cell type complements of Xenacoelomorphs is essential to assessing these alternatives as well as to our broader understanding of bilaterian cell type evolution. Employing whole organism single-cell RNA-seq in the marine xenacoelomorph worm Xenoturbella bocki, we show that Xenambulacrarian nerve nets share regulatory features and a peptidergic identity with those found in cnidarians and protostomes and more broadly share muscle and gland cell similarities with other metazoans. Taken together, these data are consistent with broad homologies of animal gland, muscle, and neurons as well as more specific affinities between Xenoturbella and acoel gut and epidermal tissues, consistent with the monophyly of Xenacoelomorpha.
Collapse
Affiliation(s)
- Helen E Robertson
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Anne-C Zakrzewski
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marie-Pierre Mailhe
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Philipp Schiffer
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Institute of Zoology, Section Developmental Biology, University of Cologne, Köln, Wormlab, Germany
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA.
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.
| |
Collapse
|
4
|
Fisher J, Verhagen M, Long Z, Moissidis M, Yan Y, He C, Wang J, Micoli E, Alastruey CM, Moors R, Marín O, Mi D, Lim L. Cortical somatostatin long-range projection neurons and interneurons exhibit divergent developmental trajectories. Neuron 2024; 112:558-573.e8. [PMID: 38086373 DOI: 10.1016/j.neuron.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/22/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024]
Abstract
The mammalian cerebral cortex contains an extraordinary diversity of cell types that emerge by implementing different developmental programs. Delineating when and how cellular diversification occurs is particularly challenging for cortical inhibitory neurons because they represent a small proportion of all cortical cells and have a protracted development. Here, we combine single-cell RNA sequencing and spatial transcriptomics to characterize the emergence of neuronal diversity among somatostatin-expressing (SST+) cells in mice. We found that SST+ inhibitory neurons segregate during embryonic stages into long-range projection (LRP) neurons and two types of interneurons, Martinotti cells and non-Martinotti cells, following distinct developmental trajectories. Two main subtypes of LRP neurons and several subtypes of interneurons are readily distinguishable in the embryo, although interneuron diversity is likely refined during early postnatal life. Our results suggest that the timing for cellular diversification is unique for different subtypes of SST+ neurons and particularly divergent for LRP neurons and interneurons.
Collapse
Affiliation(s)
- Josephine Fisher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Marieke Verhagen
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Zhen Long
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Monika Moissidis
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Yiming Yan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenyi He
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyu Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Elia Micoli
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Clara Milían Alastruey
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Rani Moors
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK.
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Lynette Lim
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Xu C, Ramos TB, Rogers EM, Reiser MB, Doe CQ. Homeodomain proteins hierarchically specify neuronal diversity and synaptic connectivity. eLife 2024; 12:RP90133. [PMID: 38180023 PMCID: PMC10942767 DOI: 10.7554/elife.90133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
How our brain generates diverse neuron types that assemble into precise neural circuits remains unclear. Using Drosophila lamina neuron types (L1-L5), we show that the primary homeodomain transcription factor (HDTF) brain-specific homeobox (Bsh) is initiated in progenitors and maintained in L4/L5 neurons to adulthood. Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates while repressing the HDTF Zfh1 to prevent ectopic L1/L3 fates (control: L1-L5; Bsh-knockdown: L1-L3), thereby generating lamina neuronal diversity for normal visual sensitivity. Subsequently, in L4 neurons, Bsh and Ap function in a feed-forward loop to activate the synapse recognition molecule DIP-β, thereby bridging neuronal fate decision to synaptic connectivity. Expression of a Bsh:Dam, specifically in L4, reveals Bsh binding to the DIP-β locus and additional candidate L4 functional identity genes. We propose that HDTFs function hierarchically to coordinate neuronal molecular identity, circuit formation, and function. Hierarchical HDTFs may represent a conserved mechanism for linking neuronal diversity to circuit assembly and function.
Collapse
Affiliation(s)
- Chundi Xu
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Tyler B Ramos
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Edward M Rogers
- Janelia Research Campus, Howard Hughes Medical Institute, Helix DriveAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Helix DriveAshburnUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
6
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Bozzo M, Bellitto D, Amaroli A, Ferrando S, Schubert M, Candiani S. Retinoic Acid and POU Genes in Developing Amphioxus: A Focus on Neural Development. Cells 2023; 12:cells12040614. [PMID: 36831281 PMCID: PMC9953854 DOI: 10.3390/cells12040614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
POU genes are a family of evolutionarily conserved transcription factors with key functions in cell type specification and neurogenesis. In vitro experiments have indicated that the expression of some POU genes is controlled by the intercellular signaling molecule retinoic acid (RA). In this work, we aimed to characterize the roles of RA signaling in the regulation of POU genes in vivo. To do so, we studied POU genes during the development of the cephalochordate amphioxus, an animal model crucial for understanding the evolutionary origins of vertebrates. The expression patterns of amphioxus POU genes were assessed at different developmental stages by chromogenic in situ hybridization and hybridization chain reaction. Expression was further assessed in embryos subjected to pharmacological manipulation of endogenous RA signaling activity. In addition to a detailed description of the effects of these treatments on amphioxus POU gene expression, our survey included the first description of Pou2 and Pou6 expression in amphioxus embryos. We found that Pit-1, Pou2, Pou3l, and Pou6 expression are not affected by alterations of endogenous RA signaling levels. In contrast, our experiments indicated that Brn1/2/4 and Pou4 expression are regulated by RA signaling in the endoderm and the nerve cord, respectively. The effects of the treatments on Pou4 expression in the nerve cord revealed that, in developing amphioxus, RA signaling plays a dual role by (1) providing anteroposterior patterning information to neural cells and (2) specifying neural cell types. This finding is coherent with a terminal selector function of Pou4 for GABAergic neurons in amphioxus and represents the first description of RA-induced changes in POU gene expression in vivo.
Collapse
Affiliation(s)
- Matteo Bozzo
- Dipartimento di Scienze della Terra dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy
- Correspondence: (M.B.); (S.C.); Tel.: +39-0103358043 (M.B.); +39-0103358051 (S.C.)
| | - Deianira Bellitto
- Dipartimento di Scienze della Terra dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy
| | - Andrea Amaroli
- Dipartimento di Scienze della Terra dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy
| | - Sara Ferrando
- Dipartimento di Scienze della Terra dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Simona Candiani
- Dipartimento di Scienze della Terra dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, 16132 Genoa, Italy
- Correspondence: (M.B.); (S.C.); Tel.: +39-0103358043 (M.B.); +39-0103358051 (S.C.)
| |
Collapse
|
8
|
Nadal-Nicolás FM, Galindo-Romero C, Lucas-Ruiz F, Marsh-Amstrong N, Li W, Vidal-Sanz M, Agudo-Barriuso M. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zool Res 2023; 44:226-248. [PMID: 36594396 PMCID: PMC9841181 DOI: 10.24272/j.issn.2095-8137.2022.308] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Univocal identification of retinal ganglion cells (RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision- and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRβ, and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRβ in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRβ were not suitable markers of viability.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Nicholas Marsh-Amstrong
- Department of Ophthalmology and Vision Science, University of California, Davis, CA 95817, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| |
Collapse
|
9
|
Özel MN, Gibbs CS, Holguera I, Soliman M, Bonneau R, Desplan C. Coordinated control of neuronal differentiation and wiring by sustained transcription factors. Science 2022; 378:eadd1884. [PMID: 36480601 DOI: 10.1126/science.add1884] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The large diversity of cell types in nervous systems presents a challenge in identifying the genetic mechanisms that encode it. Here, we report that nearly 200 distinct neurons in the Drosophila visual system can each be defined by unique combinations of on average 10 continuously expressed transcription factors. We show that targeted modifications of this terminal selector code induce predictable conversions of neuronal fates that appear morphologically and transcriptionally complete. Cis-regulatory analysis of open chromatin links one of these genes to an upstream patterning factor that specifies neuronal fates in stem cells. Experimentally validated network models describe the synergistic regulation of downstream effectors by terminal selectors and ecdysone signaling during brain wiring. Our results provide a generalizable framework of how specific fates are implemented in postmitotic neurons.
Collapse
Affiliation(s)
| | - Claudia Skok Gibbs
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
| | - Mennah Soliman
- Department of Biology, New York University, New York, NY 10003, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA.,Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.,New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Feng W, Destain H, Smith JJ, Kratsios P. Maintenance of neurotransmitter identity by Hox proteins through a homeostatic mechanism. Nat Commun 2022; 13:6097. [PMID: 36243871 PMCID: PMC9569373 DOI: 10.1038/s41467-022-33781-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hox transcription factors play fundamental roles during early patterning, but they are also expressed continuously, from embryonic stages through adulthood, in the nervous system. However, the functional significance of their sustained expression remains unclear. In C. elegans motor neurons (MNs), we find that LIN-39 (Scr/Dfd/Hox4-5) is continuously required during post-embryonic life to maintain neurotransmitter identity, a core element of neuronal function. LIN-39 acts directly to co-regulate genes that define cholinergic identity (e.g., unc-17/VAChT, cho-1/ChT). We further show that LIN-39, MAB-5 (Antp/Hox6-8) and the transcription factor UNC-3 (Collier/Ebf) operate in a positive feedforward loop to ensure continuous and robust expression of cholinergic identity genes. Finally, we identify a two-component design principle for homeostatic control of Hox gene expression in adult MNs: Hox transcriptional autoregulation is counterbalanced by negative UNC-3 feedback. These findings uncover a noncanonical role for Hox proteins during post-embryonic life, critically broadening their functional repertoire from early patterning to the control of neurotransmitter identity.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Honorine Destain
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
- University of Chicago Neuroscience Institute, Chicago, IL, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Sepers JJ, Verstappen NHM, Vo AA, Ragle JM, Ruijtenberg S, Ward JD, Boxem M. The mIAA7 degron improves auxin-mediated degradation in Caenorhabditiselegans. G3 (BETHESDA, MD.) 2022; 12:jkac222. [PMID: 36029236 PMCID: PMC9526053 DOI: 10.1093/g3journal/jkac222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 04/08/2023]
Abstract
Auxin-inducible degradation is a powerful tool for the targeted degradation of proteins with spatiotemporal control. One limitation of the auxin-inducible degradation system is that not all proteins are degraded efficiently. Here, we demonstrate that an alternative degron sequence, termed mIAA7, improves the efficiency of degradation in Caenorhabditiselegans, as previously reported in human cells. We tested the depletion of a series of proteins with various subcellular localizations in different tissue types and found that the use of the mIAA7 degron resulted in faster depletion kinetics for 5 out of 6 proteins tested. The exception was the nuclear protein HIS-72, which was depleted with similar efficiency as with the conventional AID* degron sequence. The mIAA7 degron also increased the leaky degradation for 2 of the tested proteins. To overcome this problem, we combined the mIAA7 degron with the C. elegans AID2 system, which resulted in complete protein depletion without detectable leaky degradation. Finally, we show that the degradation of ERM-1, a highly stable protein that is challenging to deplete, could be improved further by using multiple mIAA7 degrons. Taken together, the mIAA7 degron further increases the power and applicability of the auxin-inducible degradation system. To facilitate the generation of mIAA7-tagged proteins using CRISPR/Cas9 genome engineering, we generated a toolkit of plasmids for the generation of dsDNA repair templates by PCR.
Collapse
Affiliation(s)
- Jorian J Sepers
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Noud H M Verstappen
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - An A Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Suzan Ruijtenberg
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
12
|
Widespread employment of conserved C. elegans homeobox genes in neuronal identity specification. PLoS Genet 2022; 18:e1010372. [PMID: 36178933 PMCID: PMC9524666 DOI: 10.1371/journal.pgen.1010372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Homeobox genes are prominent regulators of neuronal identity, but the extent to which their function has been probed in animal nervous systems remains limited. In the nematode Caenorhabditis elegans, each individual neuron class is defined by the expression of unique combinations of homeobox genes, prompting the question of whether each neuron class indeed requires a homeobox gene for its proper identity specification. We present here progress in addressing this question by extending previous mutant analysis of homeobox gene family members and describing multiple examples of homeobox gene function in different parts of the C. elegans nervous system. To probe homeobox function, we make use of a number of reporter gene tools, including a novel multicolor reporter transgene, NeuroPAL, which permits simultaneous monitoring of the execution of multiple differentiation programs throughout the entire nervous system. Using these tools, we add to the previous characterization of homeobox gene function by identifying neuronal differentiation defects for 14 homeobox genes in 24 distinct neuron classes that are mostly unrelated by location, function and lineage history. 12 of these 24 neuron classes had no homeobox gene function ascribed to them before, while in the other 12 neuron classes, we extend the combinatorial code of transcription factors required for specifying terminal differentiation programs. Furthermore, we demonstrate that in a particular lineage, homeotic identity transformations occur upon loss of a homeobox gene and we show that these transformations are the result of changes in homeobox codes. Combining the present with past analyses, 113 of the 118 neuron classes of C. elegans are now known to require a homeobox gene for proper execution of terminal differentiation programs. Such broad deployment indicates that homeobox function in neuronal identity specification may be an ancestral feature of animal nervous systems.
Collapse
|
13
|
Kepler LD, McDiarmid TA, Rankin CH. Rapid assessment of the temporal function and phenotypic reversibility of neurodevelopmental disorder risk genes in Caenorhabditis elegans. Dis Model Mech 2022; 15:dmm049359. [PMID: 35363276 PMCID: PMC9092656 DOI: 10.1242/dmm.049359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Recent studies have indicated that some phenotypes caused by decreased function of select neurodevelopmental disorder (NDD) risk genes can be reversed by restoring gene function in adulthood. However, few of the hundreds of risk genes have been assessed for adult phenotypic reversibility. We developed a strategy to rapidly assess the temporal requirements and phenotypic reversibility of NDD risk gene orthologs using a conditional protein degradation system and machine-vision phenotypic profiling in Caenorhabditis elegans. We measured how degrading and re-expressing orthologs of EBF3, BRN3A and DYNC1H1 at multiple periods throughout development affect 30 morphological, locomotor, sensory and learning phenotypes. We found that phenotypic reversibility was possible for each gene studied. However, the temporal requirements of gene function and degree of rescue varied by gene and phenotype. This work highlights the critical need to assess multiple windows of degradation and re-expression and a large number of phenotypes to understand the many roles a gene can have across the lifespan. This work also demonstrates the benefits of using a high-throughput model system to prioritize NDD risk genes for re-expression studies in other organisms.
Collapse
Affiliation(s)
- Lexis D. Kepler
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Troy A. McDiarmid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
- Department of Genome Sciences, University of Washington School of Medicine, Foege Building S-250 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
14
|
Vidal B, Gulez B, Cao WX, Leyva-Diaz E, Reilly MB, Tekieli T, Hobert O. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. eLife 2022; 11:76003. [PMID: 35324425 PMCID: PMC8989417 DOI: 10.7554/elife.76003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Burcu Gulez
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Wen Xi Cao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Eduardo Leyva-Diaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Tessa Tekieli
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
15
|
Hills-Muckey K, Martinez MAQ, Stec N, Hebbar S, Saldanha J, Medwig-Kinney TN, Moore FEQ, Ivanova M, Morao A, Ward JD, Moss EG, Ercan S, Zinovyeva AY, Matus DQ, Hammell CM. An engineered, orthogonal auxin analog/AtTIR1(F79G) pairing improves both specificity and efficacy of the auxin degradation system in Caenorhabditis elegans. Genetics 2022; 220:iyab174. [PMID: 34739048 PMCID: PMC9097248 DOI: 10.1093/genetics/iyab174] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 (AtTIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of AtTIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex [SKR-1/2-CUL-1-F-box (SCF)], targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by AtTIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin derivative/mutant AtTIR1 pair [C. elegans AID version 2 (C.e.AIDv2)] that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant AtTIR1(F79G) allele that alters the ligand-binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID-targets, the addition of 5-Ph-IAA to culture media of animals expressing AtTIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the AtTIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant AtTIR1(F79G) allele expand the utility of the AID system and broaden the number of proteins that can be effectively targeted with it.
Collapse
Affiliation(s)
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natalia Stec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shilpa Hebbar
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Joanne Saldanha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Ivanova
- Department of Molecular Biology, Rowan University, Stratford, NJ 08084, USA
| | - Ana Morao
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - J D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eric G Moss
- Department of Molecular Biology, Rowan University, Stratford, NJ 08084, USA
| | - Sevinc Ercan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
16
|
Popsuj S, Stolfi A. Ebf Activates Expression of a Cholinergic Locus in a Multipolar Motor Ganglion Interneuron Subtype in Ciona. Front Neurosci 2022; 15:784649. [PMID: 34975385 PMCID: PMC8719597 DOI: 10.3389/fnins.2021.784649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Conserved transcription factors termed “terminal selectors” regulate neuronal sub-type specification and differentiation through combinatorial transcriptional regulation of terminal differentiation genes. The unique combinations of terminal differentiation gene products in turn contribute to the functional identities of each neuron. One well-characterized terminal selector is COE (Collier/Olf/Ebf), which has been shown to activate cholinergic gene batteries in C. elegans motor neurons. However, its functions in other metazoans, particularly chordates, is less clear. Here we show that the sole COE ortholog in the non-vertebrate chordate Ciona robusta, Ebf, controls the expression of the cholinergic locus VAChT/ChAT in a single dorsal interneuron of the larval Motor Ganglion, which is presumed to be homologous to the vertebrate spinal cord. We propose that, while the function of Ebf as a regulator of cholinergic neuron identity conserved across bilaterians, its exact role may have diverged in different cholinergic neuron subtypes (e.g., interneurons vs. motor neurons) in chordate-specific motor circuits.
Collapse
Affiliation(s)
- Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
17
|
Ozment E, Tamvacakis AN, Zhou J, Rosiles-Loeza PY, Escobar-Hernandez EE, Fernandez-Valverde SL, Nakanishi N. Cnidarian hair cell development illuminates an ancient role for the class IV POU transcription factor in defining mechanoreceptor identity. eLife 2021; 10:74336. [PMID: 34939935 PMCID: PMC8846589 DOI: 10.7554/elife.74336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g. sea anemones and jellyfishes) is the sister group to well-studied Bilateria (e.g. flies and vertebrates), and has two mechanosensory cell types – a lineage-specific sensory effector known as the cnidocyte, and a classical mechanosensory neuron referred to as the hair cell. While developmental genetics of cnidocytes is increasingly understood, genes essential for cnidarian hair cell development are unknown. Here, we show that the class IV POU homeodomain transcription factor (POU-IV) – an indispensable regulator of mechanosensory cell differentiation in Bilateria and cnidocyte differentiation in Cnidaria – controls hair cell development in the sea anemone cnidarian Nematostella vectensis. N. vectensis POU-IV is postmitotically expressed in tentacular hair cells, and is necessary for development of the apical mechanosensory apparatus, but not of neurites, in hair cells. Moreover, it binds to deeply conserved DNA recognition elements, and turns on a unique set of effector genes – including the transmembrane receptor-encoding gene polycystin 1 – specifically in hair cells. Our results suggest that POU-IV directs differentiation of cnidarian hair cells and cnidocytes via distinct gene regulatory mechanisms, and support an evolutionarily ancient role for POU-IV in defining the mature state of mechanosensory neurons.
Collapse
Affiliation(s)
- Ethan Ozment
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Arianna N Tamvacakis
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Pablo Yamild Rosiles-Loeza
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | | | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Nagayasu Nakanishi
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| |
Collapse
|
18
|
Traets JJ, van der Burght SN, Rademakers S, Jansen G, van Zon JS. Mechanism of life-long maintenance of neuron identity despite molecular fluctuations. eLife 2021; 10:66955. [PMID: 34908528 PMCID: PMC8735970 DOI: 10.7554/elife.66955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cell fate is maintained over long timescales, yet molecular fluctuations can lead to spontaneous loss of this differentiated state. Our simulations identified a possible mechanism that explains life-long maintenance of ASE neuron fate in Caenorhabditis elegans by the terminal selector transcription factor CHE-1. Here, fluctuations in CHE-1 level are buffered by the reservoir of CHE-1 bound at its target promoters, which ensures continued che-1 expression by preferentially binding the che-1 promoter. We provide experimental evidence for this mechanism by showing that che-1 expression was resilient to induced transient CHE-1 depletion, while both expression of CHE-1 targets and ASE function were lost. We identified a 130 bp che-1 promoter fragment responsible for this resilience, with deletion of a homeodomain binding site in this fragment causing stochastic loss of ASE identity long after its determination. Because network architectures that support this mechanism are highly conserved in cell differentiation, it may explain stable cell fate maintenance in many systems.
Collapse
Affiliation(s)
| | | | | | - Gert Jansen
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Jeroen S van Zon
- Quantitative Developmental Biology, AMOLF, Amsterdam, Netherlands
| |
Collapse
|
19
|
Cahoon CK, Libuda DE. Conditional immobilization for live imaging Caenorhabditis elegans using auxin-dependent protein depletion. G3-GENES GENOMES GENETICS 2021; 11:6362942. [PMID: 34534266 PMCID: PMC8527506 DOI: 10.1093/g3journal/jkab310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
The visualization of biological processes using fluorescent proteins and dyes in living organisms has enabled numerous scientific discoveries. The nematode Caenorhabditis elegans is a widely used model organism for live imaging studies since the transparent nature of the worm enables imaging of nearly all tissues within a whole, intact animal. While current techniques are optimized to enable the immobilization of hermaphrodite worms for live imaging, many of these approaches fail to successfully restrain the smaller male worms. To enable live imaging of worms of both sexes, we developed a new genetic, conditional immobilization tool that uses the auxin-inducible degron (AID) system to immobilize both adult and larval hermaphrodite and male worms for live imaging. Based on chromosome location, mutant phenotype, and predicted germline consequence, we identified and AID-tagged three candidate genes (unc-18, unc-104, and unc-52). Strains with these AID-tagged genes were placed on auxin and tested for mobility and germline defects. Among the candidate genes, auxin-mediated depletion of UNC-18 caused significant immobilization of both hermaphrodite and male worms that was also partially reversible upon removal from auxin. Notably, we found that male worms require a higher concentration of auxin for a similar amount of immobilization as hermaphrodites, thereby suggesting a potential sex-specific difference in auxin absorption and/or processing. In both males and hermaphrodites, depletion of UNC-18 did not largely alter fertility, germline progression, nor meiotic recombination. Finally, we demonstrate that this new genetic tool can successfully immobilize both sexes enabling live imaging studies of sexually dimorphic features in C. elegans.
Collapse
Affiliation(s)
- Cori K Cahoon
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Diana E Libuda
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| |
Collapse
|
20
|
Hobert O. Homeobox genes and the specification of neuronal identity. Nat Rev Neurosci 2021; 22:627-636. [PMID: 34446866 DOI: 10.1038/s41583-021-00497-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
The enormous diversity of cell types that characterizes any animal nervous system is defined by neuron-type-specific gene batteries that endow cells with distinct anatomical and functional properties. To understand how such cellular diversity is genetically specified, one needs to understand the gene regulatory programmes that control the expression of cell-type-specific gene batteries. The small nervous system of the nematode Caenorhabditis elegans has been comprehensively mapped at the cellular and molecular levels, which has enabled extensive, nervous system-wide explorations into whether there are common underlying mechanisms that specify neuronal cell-type diversity. One principle that emerged from these studies is that transcription factors termed 'terminal selectors' coordinate the expression of individual members of neuron-type-specific gene batteries, thereby assigning unique identities to individual neuron types. Systematic mutant analyses and recent nervous system-wide expression analyses have revealed that one transcription factor family, the homeobox gene family, is broadly used throughout the entire C. elegans nervous system to specify neuronal identity as terminal selectors. I propose that the preponderance of homeobox genes in neuronal identity control is a reflection of an evolutionary trajectory in which an ancestral neuron type was specified by one or more ancestral homeobox genes, and that this functional linkage then duplicated and diversified to generate distinct cell types in an evolving nervous system.
Collapse
Affiliation(s)
- Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
21
|
Kurashina M, Wang J, Lin J, Lee KK, Johal A, Mizumoto K. Sustained expression of unc-4 homeobox gene and unc-37/Groucho in postmitotic neurons specifies the spatial organization of the cholinergic synapses in C. elegans. eLife 2021; 10:66011. [PMID: 34388088 PMCID: PMC8363302 DOI: 10.7554/elife.66011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
Neuronal cell fate determinants establish the identities of neurons by controlling gene expression to regulate neuronal morphology and synaptic connectivity. However, it is not understood if neuronal cell fate determinants have postmitotic functions in synapse pattern formation. Here we identify a novel role for UNC-4 homeobox protein and its corepressor UNC-37/Groucho, in tiled synaptic patterning of the cholinergic motor neurons in Caenorhabditis elegans. We show that unc-4 is not required during neurogenesis but is required in the postmitotic neurons for proper synapse patterning. In contrast, unc-37 is required in both developing and postmitotic neurons. The synaptic tiling defects of unc-4 mutants are suppressed by bar-1/β-catenin mutation, which positively regulates the expression of ceh-12/HB9. Ectopic ceh-12 expression partly underlies the synaptic tiling defects of unc-4 and unc-37 mutants. Our results reveal a novel postmitotic role of neuronal cell fate determinants in synapse pattern formation through inhibiting the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mizuki Kurashina
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada
| | - Jane Wang
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jeffrey Lin
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kathy Kyungeun Lee
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Arpun Johal
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Glenwinkel L, Taylor SR, Langebeck-Jensen K, Pereira L, Reilly MB, Basavaraju M, Rafi I, Yemini E, Pocock R, Sestan N, Hammarlund M, Miller DM, Hobert O. In silico analysis of the transcriptional regulatory logic of neuronal identity specification throughout the C. elegans nervous system. eLife 2021; 10:e64906. [PMID: 34165430 PMCID: PMC8225391 DOI: 10.7554/elife.64906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The generation of the enormous diversity of neuronal cell types in a differentiating nervous system entails the activation of neuron type-specific gene batteries. To examine the regulatory logic that controls the expression of neuron type-specific gene batteries, we interrogate single cell expression profiles of all 118 neuron classes of the Caenorhabditis elegans nervous system for the presence of DNA binding motifs of 136 neuronally expressed C. elegans transcription factors. Using a phylogenetic footprinting pipeline, we identify cis-regulatory motif enrichments among neuron class-specific gene batteries and we identify cognate transcription factors for 117 of the 118 neuron classes. In addition to predicting novel regulators of neuronal identities, our nervous system-wide analysis at single cell resolution supports the hypothesis that many transcription factors directly co-regulate the cohort of effector genes that define a neuron type, thereby corroborating the concept of so-called terminal selectors of neuronal identity. Our analysis provides a blueprint for how individual components of an entire nervous system are genetically specified.
Collapse
Affiliation(s)
- Lori Glenwinkel
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | | | - Laura Pereira
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Manasa Basavaraju
- Department of Neurobiology, Yale University School of MedicineNew HavenUnited States
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Ibnul Rafi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Roger Pocock
- Biotech Research and Innovation Centre, University of CopenhagenCopenhagenDenmark
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash UniversityMelbourneAustralia
| | - Nenad Sestan
- Department of Neurobiology, Yale University School of MedicineNew HavenUnited States
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neurobiology, Yale University School of MedicineNew HavenUnited States
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
23
|
Xiang C, Frietze KK, Bi Y, Li Y, Dal Pozzo V, Pal S, Alexander N, Baubet V, D’Acunto V, Mason CE, Davuluri RV, Dahmane N. RP58 Represses Transcriptional Programs Linked to Nonneuronal Cell Identity and Glioblastoma Subtypes in Developing Neurons. Mol Cell Biol 2021; 41:e0052620. [PMID: 33903225 PMCID: PMC8315738 DOI: 10.1128/mcb.00526-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
How mammalian neuronal identity is progressively acquired and reinforced during development is not understood. We have previously shown that loss of RP58 (ZNF238 or ZBTB18), a BTB/POZ-zinc finger-containing transcription factor, in the mouse brain leads to microcephaly, corpus callosum agenesis, and cerebellum hypoplasia and that it is required for normal neuronal differentiation. The transcriptional programs regulated by RP58 during this process are not known. Here, we report for the first time that in embryonic mouse neocortical neurons a complex set of genes normally expressed in other cell types, such as those from mesoderm derivatives, must be actively repressed in vivo and that RP58 is a critical regulator of these repressed transcriptional programs. Importantly, gene set enrichment analysis (GSEA) analyses of these transcriptional programs indicate that repressed genes include distinct sets of genes significantly associated with glioma progression and/or pluripotency. We also demonstrate that reintroducing RP58 in glioma stem cells leads not only to aspects of neuronal differentiation but also to loss of stem cell characteristics, including loss of stem cell markers and decrease in stem cell self-renewal capacities. Thus, RP58 acts as an in vivo master guardian of the neuronal identity transcriptome, and its function may be required to prevent brain disease development, including glioma progression.
Collapse
Affiliation(s)
- Chaomei Xiang
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Karla K. Frietze
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Yingtao Bi
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Chicago, Illinois, USA
| | - Yanwen Li
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Valentina Dal Pozzo
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Noah Alexander
- Weill Cornell Medical College, Department of Physiology and Biophysics, New York, New York, USA
| | - Valerie Baubet
- Children's Hospital of Philadelphia, Center for Data Driven Discovery in Biomedicine (D3b), Philadelphia, Pennsylvania, USA
| | - Victoria D’Acunto
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Christopher E. Mason
- Weill Cornell Medical College, Department of Physiology and Biophysics, New York, New York, USA
| | - Ramana V. Davuluri
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Chicago, Illinois, USA
| | - Nadia Dahmane
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
- University of Pennsylvania School of Medicine, Department of Neurosurgery, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Masoudi N, Yemini E, Schnabel R, Hobert O. Piecemeal regulation of convergent neuronal lineages by bHLH transcription factors in Caenorhabditis elegans. Development 2021; 148:dev199224. [PMID: 34100067 PMCID: PMC8217713 DOI: 10.1242/dev.199224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022]
Abstract
Cells of the same type can be generated by distinct cellular lineages that originate in different parts of the developing embryo ('lineage convergence'). Several Caenorhabditis elegans neuron classes composed of left/right or radially symmetric class members display such lineage convergence. We show here that the C. elegans Atonal homolog lin-32 is differentially expressed in neuronal lineages that give rise to left/right or radially symmetric class members. Loss of lin-32 results in the selective loss of the expression of pan-neuronal markers and terminal selector-type transcription factors that confer neuron class-specific features. Another basic helix-loop-helix (bHLH) gene, the Achaete-Scute homolog hlh-14, is expressed in a mirror image pattern relative to lin-32 and is required to induce neuronal identity and terminal selector expression on the contralateral side of the animal. These findings demonstrate that distinct lineage histories converge via different bHLH factors at the level of induction of terminal selector identity determinants, which thus serve as integrators of distinct lineage histories. We also describe neuron-to-neuron identity transformations in lin-32 mutants, which we propose to also be the result of misregulation of terminal selector gene expression.
Collapse
Affiliation(s)
- Neda Masoudi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
25
|
Webb BD, Evans A, Naidich TP, M Bird L, Parikh S, Fernandez Garcia M, Henderson LB, Millan F, Si Y, Brennand KJ, Hung P, Rucker JC, Wheeler PG, Schadt EE. Haploinsufficiency of POU4F1 causes an ataxia syndrome with hypotonia and intention tremor. Hum Mutat 2021; 42:685-693. [PMID: 33783914 DOI: 10.1002/humu.24201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/06/2022]
Abstract
De novo, heterozygous, loss-of-function variants were identified in Pou domain, class 4, transcription factor 1 (POU4F1) via whole-exome sequencing in four independent probands presenting with ataxia, intention tremor, and hypotonia. POU4F1 is expressed in the developing nervous system, and mice homozygous for null alleles of Pou4f1 exhibit uncoordinated movements with newborns being unable to successfully right themselves to feed. Head magnetic resonance imaging of the four probands was reviewed and multiple abnormalities were noted, including significant cerebellar vermian atrophy and hypertrophic olivary degeneration in one proband. Transcriptional activation of the POU4F1 p.Gln306Arg protein was noted to be decreased when compared with wild type. These findings suggest that heterozygous, loss-of-function variants in POU4F1 are causative of a novel ataxia syndrome.
Collapse
Affiliation(s)
- Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anthony Evans
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas P Naidich
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Sumit Parikh
- Neurometabolism & Neurogenetics, Cleveland Clinic, Cleveland, Ohio, USA
| | - Meilin Fernandez Garcia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Yue Si
- GeneDx, Gaithersburg, Maryland, USA
| | - Kristen J Brennand
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Hung
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Janet C Rucker
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA.,Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
26
|
Ashley GE, Duong T, Levenson MT, Martinez MAQ, Johnson LC, Hibshman JD, Saeger HN, Palmisano NJ, Doonan R, Martinez-Mendez R, Davidson BR, Zhang W, Ragle JM, Medwig-Kinney TN, Sirota SS, Goldstein B, Matus DQ, Dickinson DJ, Reiner DJ, Ward JD. An expanded auxin-inducible degron toolkit for Caenorhabditis elegans. Genetics 2021; 217:iyab006. [PMID: 33677541 PMCID: PMC8045686 DOI: 10.1093/genetics/iyab006] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/10/2021] [Indexed: 12/30/2022] Open
Abstract
The auxin-inducible degron (AID) system has emerged as a powerful tool to conditionally deplete proteins in a range of organisms and cell types. Here, we describe a toolkit to augment the use of the AID system in Caenorhabditis elegans. We have generated a set of single-copy, tissue-specific (germline, intestine, neuron, muscle, pharynx, hypodermis, seam cell, anchor cell) and pan-somatic TIR1-expressing strains carrying a co-expressed blue fluorescent reporter to enable use of both red and green channels in experiments. These transgenes are inserted into commonly used, well-characterized genetic loci. We confirmed that our TIR1-expressing strains produce the expected depletion phenotype for several nuclear and cytoplasmic AID-tagged endogenous substrates. We have also constructed a set of plasmids for constructing repair templates to generate fluorescent protein::AID fusions through CRISPR/Cas9-mediated genome editing. These plasmids are compatible with commonly used genome editing approaches in the C. elegans community (Gibson or SapTrap assembly of plasmid repair templates or PCR-derived linear repair templates). Together these reagents will complement existing TIR1 strains and facilitate rapid and high-throughput fluorescent protein::AID tagging of genes. This battery of new TIR1-expressing strains and modular, efficient cloning vectors serves as a platform for straightforward assembly of CRISPR/Cas9 repair templates for conditional protein depletion.
Collapse
Affiliation(s)
- Guinevere E Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tam Duong
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Max T Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Londen C Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jonathan D Hibshman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah N Saeger
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ryan Doonan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel Martinez-Mendez
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brittany R Davidson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sydney S Sirota
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel J Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - David J Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
27
|
Tournière O, Dolan D, Richards GS, Sunagar K, Columbus-Shenkar YY, Moran Y, Rentzsch F. NvPOU4/Brain3 Functions as a Terminal Selector Gene in the Nervous System of the Cnidarian Nematostella vectensis. Cell Rep 2021; 30:4473-4489.e5. [PMID: 32234481 DOI: 10.1016/j.celrep.2020.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Terminal selectors are transcription factors that control the morphological, physiological, and molecular features that characterize distinct cell types. Here, we show that, in the sea anemone Nematostella vectensis, NvPOU4 is expressed in post-mitotic cells that give rise to a diverse set of neural cell types, including cnidocytes and NvElav1-expressing neurons. Morphological analyses of NvPOU4 mutants crossed to transgenic reporter lines show that the loss of NvPOU4 does not affect the initial specification of neural cells. Transcriptomes derived from the mutants and from different neural cell populations reveal that NvPOU4 is required for the execution of the terminal differentiation program of these neural cells. These findings suggest that POU4 genes have ancient functions as terminal selectors for morphologically and functionally disparate types of neurons and they provide experimental support for the relevance of terminal selectors for understanding the evolution of cell types.
Collapse
Affiliation(s)
- Océane Tournière
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - David Dolan
- Computational Biology Unit, Department for Informatics, University of Bergen, 5006 Bergen, Norway
| | - Gemma Sian Richards
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway; Department for Biological Sciences, University of Bergen, 5006 Bergen, Norway.
| |
Collapse
|
28
|
Pham K, Masoudi N, Leyva-Díaz E, Hobert O. A nervous system-specific subnuclear organelle in Caenorhabditis elegans. Genetics 2021; 217:1-17. [PMID: 33683371 PMCID: PMC8045701 DOI: 10.1093/genetics/iyaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4-10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.
Collapse
Affiliation(s)
- Kenneth Pham
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
29
|
Wu Y, Zhang X, Wang J, Jin G, Zhang X. Research progress of the transcription factor Brn4 (Review). Mol Med Rep 2021; 23:179. [PMID: 33398372 PMCID: PMC7809911 DOI: 10.3892/mmr.2020.11818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brain 4 (Brn4) is a transcription factor belonging to the POU3 family, and it is important for the embryonic development of the neural tube, inner ear and pancreas. In addition, it serves a crucial role in neural stem cell differentiation and reprogramming. The present review aimed to summarize the chromosomal location, species homology, protein molecular structure and tissue distribution of Brn4, in addition to its biological processes, with the aim of providing a reference of its structure and function for further studies, and its potential use as a gene therapy target.
Collapse
Affiliation(s)
- Yuying Wu
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xunrui Zhang
- Department of Clinical Medicine, Faculty of Medicine, Xinglin College, Nantong University, Nantong, Jiangsu 226008, P.R. China
| | - Jue Wang
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guohua Jin
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinhua Zhang
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
30
|
Tenney AP, Livet J, Belton T, Prochazkova M, Pearson EM, Whitman MC, Kulkarni AB, Engle EC, Henderson CE. Etv1 Controls the Establishment of Non-overlapping Motor Innervation of Neighboring Facial Muscles during Development. Cell Rep 2020; 29:437-452.e4. [PMID: 31597102 PMCID: PMC7032945 DOI: 10.1016/j.celrep.2019.08.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/16/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023] Open
Abstract
The somatotopic motor-neuron projections onto their cognate target muscles are essential for coordinated movement, but how that occurs for facial motor circuits, which have critical roles in respiratory and interactive behaviors, is poorly understood. We report extensive molecular heterogeneity in developing facial motor neurons in the mouse and identify markers of subnuclei and the motor pools innervating specific facial muscles. Facial subnuclei differentiate during migration to the ventral hindbrain, where neurons with progressively later birth dates—and evolutionarily more recent functions—settle in more-lateral positions. One subpopulation marker, ETV1, determines both positional and target muscle identity for neurons of the dorsolateral (DL) subnucleus. In Etv1 mutants, many markers of DL differentiation are lost, and individual motor pools project indifferently to their own and neighboring muscle targets. The resulting aberrant activation patterns are reminiscent of the facial synkinesis observed in humans after facial nerve injury. Tenney et al. demonstrate that embryonic facial motor neurons are transcriptionally diverse as they establish somatotopic innervation of the facial muscles, a process that requires the transcription factor ETV1. Facial-motor axon-targeting errors in Etv1 mutants cause coordination of whisking and eyeblink evocative of human blepharospasm.
Collapse
Affiliation(s)
- Alan P Tenney
- Center for Motor Neuron Biology and Disease (MNC), Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Timothy Belton
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Erica M Pearson
- Center for Motor Neuron Biology and Disease (MNC), Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher E Henderson
- Center for Motor Neuron Biology and Disease (MNC), Columbia University, New York, NY 10032, USA; Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY 10032, USA; Columbia Translational Neuroscience Initiative (CTNI), Columbia University, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| |
Collapse
|
31
|
Lipiec MA, Bem J, Koziński K, Chakraborty C, Urban-Ciećko J, Zajkowski T, Dąbrowski M, Szewczyk ŁM, Toval A, Ferran JL, Nagalski A, Wiśniewska MB. TCF7L2 regulates postmitotic differentiation programmes and excitability patterns in the thalamus. Development 2020; 147:dev.190181. [PMID: 32675279 PMCID: PMC7473649 DOI: 10.1242/dev.190181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Neuronal phenotypes are controlled by terminal selector transcription factors in invertebrates, but only a few examples of such regulators have been provided in vertebrates. We hypothesised that TCF7L2 regulates different stages of postmitotic differentiation in the thalamus, and functions as a thalamic terminal selector. To investigate this hypothesis, we used complete and conditional knockouts of Tcf7l2 in mice. The connectivity and clustering of neurons were disrupted in the thalamo-habenular region in Tcf7l2-/- embryos. The expression of subregional thalamic and habenular transcription factors was lost and region-specific cell migration and axon guidance genes were downregulated. In mice with a postnatal Tcf7l2 knockout, the induction of genes that confer thalamic terminal electrophysiological features was impaired. Many of these genes proved to be direct targets of TCF7L2. The role of TCF7L2 in terminal selection was functionally confirmed by impaired firing modes in thalamic neurons in the mutant mice. These data corroborate the existence of master regulators in the vertebrate brain that control stage-specific genetic programmes and regional subroutines, maintain regional transcriptional network during embryonic development, and induce terminal selection postnatally.
Collapse
Affiliation(s)
- Marcin Andrzej Lipiec
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.,Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Bem
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Kamil Koziński
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Chaitali Chakraborty
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | | | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Michał Dąbrowski
- Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland
| | | | - Angel Toval
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, Campus de la Salud, 30120 El Palmar, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, Campus de la Salud, 30120 El Palmar, Murcia, Spain
| | - Andrzej Nagalski
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | | |
Collapse
|
32
|
Lorenzo R, Onizuka M, Defrance M, Laurent P. Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes. Nucleic Acids Res 2020; 48:7119-7134. [PMID: 32542321 PMCID: PMC7367206 DOI: 10.1093/nar/gkaa486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) of the Caenorhabditis elegans nervous system offers the unique opportunity to obtain a partial expression profile for each neuron within a known connectome. Building on recent scRNA-seq data and on a molecular atlas describing the expression pattern of ∼800 genes at the single cell resolution, we designed an iterative clustering analysis aiming to match each cell-cluster to the ∼100 anatomically defined neuron classes of C. elegans. This heuristic approach successfully assigned 97 of the 118 neuron classes to a cluster. Sixty two clusters were assigned to a single neuron class and 15 clusters grouped neuron classes sharing close molecular signatures. Pseudotime analysis revealed a maturation process occurring in some neurons (e.g. PDA) during the L2 stage. Based on the molecular profiles of all identified neurons, we predicted cell fate regulators and experimentally validated unc-86 for the normal differentiation of RMG neurons. Furthermore, we observed that different classes of genes functionally diversify sensory neurons, interneurons and motorneurons. Finally, we designed 15 new neuron class-specific promoters validated in vivo. Amongst them, 10 represent the only specific promoter reported to this day, expanding the list of neurons amenable to genetic manipulations.
Collapse
Affiliation(s)
- Ramiro Lorenzo
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Michiho Onizuka
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
33
|
Estacio-Gómez A, Hassan A, Walmsley E, Le LW, Southall TD. Dynamic neurotransmitter specific transcription factor expression profiles during Drosophila development. Biol Open 2020; 9:9/5/bio052928. [PMID: 32493733 PMCID: PMC7286294 DOI: 10.1242/bio.052928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The remarkable diversity of neurons in the nervous system is generated during development, when properties such as cell morphology, receptor profiles and neurotransmitter identities are specified. In order to gain a greater understanding of neurotransmitter specification we profiled the transcription state of cholinergic, GABAergic and glutamatergic neurons in vivo at three developmental time points. We identified 86 differentially expressed transcription factors that are uniquely enriched, or uniquely depleted, in a specific neurotransmitter type. Some transcription factors show a similar profile across development, others only show enrichment or depletion at specific developmental stages. Profiling of Acj6 (cholinergic enriched) and Ets65A (cholinergic depleted) binding sites in vivo reveals that they both directly bind the ChAT locus, in addition to a wide spectrum of other key neuronal differentiation genes. We also show that cholinergic enriched transcription factors are expressed in mostly non-overlapping populations in the adult brain, implying the absence of combinatorial regulation of neurotransmitter fate in this context. Furthermore, our data underlines that, similar to Caenorhabditis elegans, there are no simple transcription factor codes for neurotransmitter type specification. This article has an associated First Person interview with the first author of the paper. Summary: Transcriptome profiling of cholinergic, GABAergic and glutamatergic neurons in Drosophila identified multiple transcription factors as potential regulators of neurotransmitter fate.
Collapse
Affiliation(s)
- Alicia Estacio-Gómez
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Amira Hassan
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Emma Walmsley
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Lily Wong Le
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| |
Collapse
|
34
|
Modular Organization of Cis-regulatory Control Information of Neurotransmitter Pathway Genes in Caenorhabditis elegans. Genetics 2020; 215:665-681. [PMID: 32444379 DOI: 10.1534/genetics.120.303206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
We explore here the cis-regulatory logic that dictates gene expression in specific cell types in the nervous system. We focus on a set of eight genes involved in the synthesis, transport, and breakdown of three neurotransmitter systems: acetylcholine (unc-17 /VAChT, cha-1 /ChAT, cho-1 /ChT, and ace-2 /AChE), glutamate (eat-4 /VGluT), and γ-aminobutyric acid (unc-25 /GAD, unc-46 /LAMP, and unc-47 /VGAT). These genes are specifically expressed in defined subsets of cells in the nervous system. Through transgenic reporter gene assays, we find that the cellular specificity of expression of all of these genes is controlled in a modular manner through distinct cis-regulatory elements, corroborating the previously inferred piecemeal nature of specification of neurotransmitter identity. This modularity provides the mechanistic basis for the phenomenon of "phenotypic convergence," in which distinct regulatory pathways can generate similar phenotypic outcomes (i.e., the acquisition of a specific neurotransmitter identity) in different neuron classes. We also identify cases of enhancer pleiotropy, in which the same cis-regulatory element is utilized to control gene expression in distinct neuron types. We engineered a cis-regulatory allele of the vesicular acetylcholine transporter, unc-17 /VAChT, to assess the functional contribution of a "shadowed" enhancer. We observed a selective loss of unc-17 /VAChT expression in one cholinergic pharyngeal pacemaker motor neuron class and a behavioral phenotype that matches microsurgical removal of this neuron. Our analysis illustrates the value of understanding cis-regulatory information to manipulate gene expression and control animal behavior.
Collapse
|
35
|
Martinez MAQ, Kinney BA, Medwig-Kinney TN, Ashley G, Ragle JM, Johnson L, Aguilera J, Hammell CM, Ward JD, Matus DQ. Rapid Degradation of Caenorhabditis elegans Proteins at Single-Cell Resolution with a Synthetic Auxin. G3 (BETHESDA, MD.) 2020; 10:267-280. [PMID: 31727633 PMCID: PMC6945041 DOI: 10.1534/g3.119.400781] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
As developmental biologists in the age of genome editing, we now have access to an ever-increasing array of tools to manipulate endogenous gene expression. The auxin-inducible degradation system allows for spatial and temporal control of protein degradation via a hormone-inducible Arabidopsis F-box protein, transport inhibitor response 1 (TIR1). In the presence of auxin, TIR1 serves as a substrate-recognition component of the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), ubiquitinating auxin-inducible degron (AID)-tagged proteins for proteasomal degradation. Here, we optimize the Caenorhabditis elegans AID system by utilizing 1-naphthaleneacetic acid (NAA), an indole-free synthetic analog of the natural auxin indole-3-acetic acid (IAA). We take advantage of the photostability of NAA to demonstrate via quantitative high-resolution microscopy that rapid degradation of target proteins can be detected in single cells within 30 min of exposure. Additionally, we show that NAA works robustly in both standard growth media and physiological buffer. We also demonstrate that K-NAA, the water-soluble, potassium salt of NAA, can be combined with microfluidics for targeted protein degradation in C. elegans larvae. We provide insight into how the AID system functions in C. elegans by determining that TIR1 depends on C. elegans SKR-1/2, CUL-1, and RBX-1 to degrade target proteins. Finally, we present highly penetrant defects from NAA-mediated degradation of the FTZ-F1 nuclear hormone receptor, NHR-25, during C. elegans uterine-vulval development. Together, this work improves our use and understanding of the AID system for dissecting gene function at the single-cell level during C. elegans development.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Brian A Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, and
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Guinevere Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - James M Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - Londen Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | | | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794,
| |
Collapse
|
36
|
Kratsios P, Hobert O. Nervous System Development: Flies and Worms Converging on Neuron Identity Control. Curr Biol 2019; 28:R1154-R1157. [PMID: 30300603 DOI: 10.1016/j.cub.2018.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Distinct neuronal cell types display phenotypic similarities such as their neurotransmitter identity. Studies in worms and flies have revealed that this phenotypic convergence can be brought about by distinct transcription factors regulating the same effector genes in different neuron types.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | - Oliver Hobert
- Department of Biology, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
37
|
Aizawa H, Zhu M. Toward an understanding of the habenula's various roles in human depression. Psychiatry Clin Neurosci 2019; 73:607-612. [PMID: 31131942 DOI: 10.1111/pcn.12892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
The habenula is an evolutionarily conserved structure in the vertebrate brain. Lesion and electrophysiological studies in animals have suggested that it is involved in the regulation of monoaminergic activity through projection to the brain stem nuclei. Since studies in animal models of depression and human functional imaging have indicated that increased activity of the habenula is associated with depressive phenotypes, this structure has attracted a surge of interest in neuroscience research. According to pathway- and cell-type-specific dissection of habenular function in animals, we have begun to understand how the heterogeneity of the habenula accounts for alteration of diverse physiological functions in depression. Indeed, recent studies have revealed that the subnuclei embedded in the habenula show a wide variety of molecular profiles not only in neurons but also in glial cells implementing the multifaceted regulatory mechanism for output from the habenula. In this review, we overview the known facts on mediolateral subdivision in the habenular structure, then discuss heterogeneity of the habenular structure from the anatomical and functional viewpoint to understand its emerging role in diverse neural functions relevant to depressive phenotypes. Despite the prevalent use of antidepressants acting on monoamine metabolisms, ~30% of patients with major depression are reported to be treatment-resistant. Thus, cellular mechanisms deciphering such diversity in depressive symptoms would be a promising candidate for the development of new antidepressants.
Collapse
Affiliation(s)
- Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Meina Zhu
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
38
|
Lee J, Taylor CA, Barnes KM, Shen A, Stewart EV, Chen A, Xiang YK, Bao Z, Shen K. A Myt1 family transcription factor defines neuronal fate by repressing non-neuronal genes. eLife 2019; 8:e46703. [PMID: 31386623 PMCID: PMC6684318 DOI: 10.7554/elife.46703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular differentiation requires both activation of target cell transcriptional programs and repression of non-target cell programs. The Myt1 family of zinc finger transcription factors contributes to fibroblast to neuron reprogramming in vitro. Here, we show that ztf-11 (Zinc-finger Transcription Factor-11), the sole Caenorhabditis elegans Myt1 homolog, is required for neurogenesis in multiple neuronal lineages from previously differentiated epithelial cells, including a neuron generated by a developmental epithelial-to-neuronal transdifferentiation event. ztf-11 is exclusively expressed in all neuronal precursors with remarkable specificity at single-cell resolution. Loss of ztf-11 leads to upregulation of non-neuronal genes and reduced neurogenesis. Ectopic expression of ztf-11 in epidermal lineages is sufficient to produce additional neurons. ZTF-11 functions together with the MuvB corepressor complex to suppress the activation of non-neuronal genes in neurons. These results dovetail with the ability of Myt1l (Myt1-like) to drive neuronal transdifferentiation in vitro in vertebrate systems. Together, we identified an evolutionarily conserved mechanism to specify neuronal cell fate by repressing non-neuronal genes.
Collapse
Affiliation(s)
- Joo Lee
- Department of BiochemistryStanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Caitlin A Taylor
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of BiologyStanford UniversityStanfordUnited States
| | | | - Ao Shen
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| | | | - Allison Chen
- Developmental Biology ProgramSloan-Kettering InstituteNew YorkUnited States
| | - Yang K Xiang
- Department of PharmacologyUniversity of California, DavisDavisUnited States
| | - Zhirong Bao
- Developmental Biology ProgramSloan-Kettering InstituteNew YorkUnited States
| | - Kang Shen
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of BiologyStanford UniversityStanfordUnited States
| |
Collapse
|
39
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
40
|
Leyva-Díaz E, Hobert O. Transcription factor autoregulation is required for acquisition and maintenance of neuronal identity. Development 2019; 146:146/13/dev177378. [PMID: 31227642 DOI: 10.1242/dev.177378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
The expression of transcription factors that initiate the specification of a unique cellular identity in multicellular organisms is often maintained throughout the life of the respective cell type via an autoregulatory mechanism. It is generally assumed that such autoregulation serves to maintain the differentiated state of a cell. To experimentally test this assumption, we used CRISPR/Cas9-mediated genome engineering to delete a transcriptional autoregulatory, cis-acting motif in the che-1 zinc-finger transcription factor locus, a terminal selector required to specify the identity of the ASE neuron pair during embryonic development of the nematode Caenorhabditis elegans. We show that che-1 autoregulation is indeed required to maintain the differentiated state of the ASE neurons but that it is also required to amplify che-1 expression during embryonic development to reach an apparent minimal threshold to initiate the ASE differentiation program. We conclude that transcriptional autoregulation fulfills two intrinsically linked purposes: one in proper initiation, the other in proper maintenance of terminal differentiation programs.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
41
|
Mukamel EA, Ngai J. Perspectives on defining cell types in the brain. Curr Opin Neurobiol 2019; 56:61-68. [PMID: 30530112 PMCID: PMC6551297 DOI: 10.1016/j.conb.2018.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/10/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
The diversity of brain cell types was one of the earliest observations in modern neuroscience and continues to be one of the central concerns of current neuroscience research. Despite impressive recent progress, including single cell transcriptome and epigenome profiling as well as anatomical methods, we still lack a complete census or taxonomy of brain cell types. We argue this is due partly to the conceptual difficulty in defining a cell type. By considering the biological drivers of cell identity, such as networks of genes and gene regulatory elements, we propose a definition of cell type that emphasizes self-stabilizing regulation. We explore the predictions and hypotheses that arise from this definition. Integration of data from multiple modalities, including molecular profiling of genes and gene products, epigenetic landscape, cellular morphology, connectivity, and physiology, will be essential for a meaningful and broadly useful definition of brain cell types.
Collapse
Affiliation(s)
- Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, CA 92037, United States.
| | - John Ngai
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, QB3 Functional Genomics Laboratory, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
42
|
Neuronal identity control by terminal selectors in worms, flies, and chordates. Curr Opin Neurobiol 2019; 56:97-105. [PMID: 30665084 DOI: 10.1016/j.conb.2018.12.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 11/21/2022]
Abstract
How do post-mitotic neurons acquire and maintain their terminal identity? Genetic mutant analysis in the nematode Caenorhabditis elegans has revealed common molecular programs that control neuronal identity. Neuron type-specific combinations of transcription factors, called terminal selectors, act as master regulatory factors to initiate and maintain terminal identity programs through direct regulation of neuron type-specific effector genes. We will provide here an update on recent studies that solidify the terminal selector concept in worms, flies and chordates. We will also describe how the terminal selector concept has been expanded by recent work in C. elegans to explain neuronal subtype diversification and plasticity of neuronal identity.
Collapse
|
43
|
Developmental Requirement of Homeoprotein Otx2 for Specific Habenulo-Interpeduncular Subcircuits. J Neurosci 2018; 39:1005-1019. [PMID: 30593496 DOI: 10.1523/jneurosci.1818-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 01/11/2023] Open
Abstract
The habenulo-interpeduncular system (HIPS) is now recognized as a critical circuit modulating aversion, reward, and social behavior. There is evidence that dysfunction of this circuit leads to psychiatric disorders. Because psychiatric diseases may originate in developmental abnormalities, it is crucial to investigate the developmental mechanisms controlling the formation of the HIPS. Thus far, this issue has been the focus of limited studies. Here, we explored the developmental processes underlying the formation of the medial habenula (MHb) and its unique output, the interpeduncular nucleus (IPN), in mice independently of their gender. We report that the Otx2 homeobox gene is essential for the proper development of both structures. We show that MHb and IPN neurons require Otx2 at different developmental stages and, in both cases, Otx2 deletion leads to disruption of HIPS subcircuits. Finally, we show that Otx2+ neurons tend to be preferentially interconnected. This study reveals that synaptically connected components of the HIPS, despite radically different developmental strategies, share high sensitivity to Otx2 expression.SIGNIFICANCE STATEMENT Brain reward circuits are highly complex and still poorly understood. In particular, it is important to understand how these circuits form as many psychiatric diseases may arise from their abnormal development. This work shows that Otx2, a critical evolutionary conserved gene implicated in brain development and a predisposing factor for psychiatric diseases, is required for the formation of the habenulo-interpeduncular system (HIPS), an important component of the reward circuit. Otx2 deletion affects multiple processes such as proliferation and migration of HIPS neurons. Furthermore, neurons expressing Otx2 are preferentially interconnected. Therefore, Otx2 expression may represent a code that specifies the connectivity of functional subunits of the HIPS. Importantly, the Otx2 conditional knock-out animals used in this study might represent a new genetic model of psychiatric diseases.
Collapse
|