1
|
Ursids evolved early and continuously to be low-protein macronutrient omnivores. Sci Rep 2022; 12:15251. [PMID: 36085304 PMCID: PMC9463165 DOI: 10.1038/s41598-022-19742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
The eight species of bears world-wide consume a wide variety of diets. Some are specialists with extensive anatomical and physiological adaptations necessary to exploit specific foods or environments [e.g., polar bears (Ursus maritimus), giant pandas (Ailuropoda melanoleuca), and sloth bears (Melursus ursinus)], while the rest are generalists. Even though ursids evolved from a high-protein carnivore, we hypothesized that all have become low-protein macronutrient omnivores. While this dietary strategy has already been described for polar bears and brown bears (Ursus arctos), a recent study on giant pandas suggested their macronutrient selection was that of the ancestral high-protein carnivore. Consumption of diets with inappropriate macronutrient profiles has been associated with increased energy expenditure, ill health, failed reproduction, and premature death. Consequently, we conducted feeding and preference trials with giant pandas and sloth bears, a termite and ant-feeding specialist. Both giant pandas and sloth bears branched off from the ursid lineage a million or more years before polar bears and brown bears. We found that giant pandas are low-protein, high-carbohydrate omnivores, whereas sloth bears are low-protein, high-fat omnivores. The preference for low protein diets apparently occurred early in the evolution of ursids and may have been critical to their world-wide spread.
Collapse
|
2
|
Yao R, Dai Q, Wu T, Yang Z, Chen H, Liu G, Zhu Y, Qi D, Yang X, Luo W, Gu X, Yang X, Zhu L. Fly-over phylogeny across invertebrate to vertebrate: The giant panda and insects share a highly similar gut microbiota. Comput Struct Biotechnol J 2021; 19:4676-4683. [PMID: 34504662 PMCID: PMC8390952 DOI: 10.1016/j.csbj.2021.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023] Open
Abstract
Many studies highlight that host phylogeny and diet are the two main factors influencing the animal gut microbiota. However, the internal mechanisms driving the evolution of animal gut microbiota may be more complex and complicated than we previously realized. Here, based on a large-scale meta-analysis of animal gut microbiota (16 s RNA gene data from approximately 1,800 samples; 108 metagenomes) across a wide taxonomic range of hosts, from invertebrate to vertebrate, we found high similarity in the gut microbial community (high proportion of Gammaproteobacteria (Pseudomonas)) of invertebrate insects and vertebrate bamboo-eating pandas (giant panda and red panda), which might be associated their plant-eating behavior and the presence of oxygen in the intestinal tract. A Pseudomonas strain-level analysis using 108 metagenomes further revealed that the response to either host niches or selection by the host might further lead to host-specific strains (or sub-strains) among the different hosts congruent with their evolutionary history. In this study, we uncovered new insights into the current understanding of the evolution of animals and their gut microbiota.
Collapse
Affiliation(s)
- Ran Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qinlong Dai
- Sichuan Liziping National Nature Reserve, Shimian, China
- Shimian Research Center of Giant Panda Small Population Conservation and Rejuvenation, Shimian, China
| | - Tonggui Wu
- East China Coastal Forest Ecosystem Long-term Research Station, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou Zhejiang, China
| | | | - Hua Chen
- Mingke Biotechnology Co., Ltd., Hangzhou, China
| | - Guoqi Liu
- Mingke Biotechnology Co., Ltd., Hangzhou, China
| | - Yudong Zhu
- Sichuan Liziping National Nature Reserve, Shimian, China
- Shimian Research Center of Giant Panda Small Population Conservation and Rejuvenation, Shimian, China
| | - Dunwu Qi
- Chengdu Giant Panda Breeding Center, Chengdu, China
| | - Xu Yang
- Chengdu Xinagai Information Technology Co., Ltd., Chengdu, China
| | - Wei Luo
- Sichuan Liziping National Nature Reserve, Shimian, China
- Shimian Research Center of Giant Panda Small Population Conservation and Rejuvenation, Shimian, China
| | - Xiaodong Gu
- Sichuan Station of Wildlife Survey and Management, Chengdu, China
| | - Xuyu Yang
- Sichuan Station of Wildlife Survey and Management, Chengdu, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Corresponding author.
| |
Collapse
|
3
|
De Cuyper A, Winkler DE, Tütken T, Bosch G, Hummel J, Kreuzer M, Muñoz Saravia A, Janssens GPJ, Clauss M. Digestion of bamboo compared to grass and lucerne in a small hindgut fermenting herbivore, the guinea pig (Cavia porcellus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:128-140. [PMID: 34411456 DOI: 10.1002/jez.2538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022]
Abstract
Bamboo is an enigmatic forage, representing a niche food for pandas and bamboo lemurs. Bamboo might not represent a suitable forage for herbivores relying on fermentative digestion, potentially due to its low fermentability. To test this hypothesis, guinea pigs (n = 36) were used as model species and fed ad libitum with one of three forages (bamboo, lucerne, or timothy grass) in a fresh or dried state, with six individuals per group, for 3 weeks. The nutrient composition and in vitro fermentation profile of bamboo displayed low fermentation potential, i.e. high lignin and silica levels together with a gas production (Hohenheim gas test) at 12 h of only 36% of that of lucerne and grass. Although silica levels were more abundant in the leftovers of (almost) all groups, guinea pigs did not select against lignin on bamboo. Dry matter (DM) intake was highest and DM digestibility lowest on the bamboo forage. Total short-chain fatty acid levels in caecal content were highest for lucerne and lowest for grass and bamboo. Bamboo-fed guinea pigs had a lower body weight gain than the grass and lucerne group. The forage hydration state did not substantially affect digestion, but dry forage led to a numerically higher total wet gut fill. Although guinea pigs increased DM intake on the bamboo diet, the negative effects on fermentation of lignin and silica in bamboo seemed overriding. For herbivores that did not evolutionary adapt, bamboo as an exclusive food resource can be considered as inadequate.
Collapse
Affiliation(s)
- Annelies De Cuyper
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daniela E Winkler
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany.,Department of Natural Environmental Studies, Graduate School of 12 Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Thomas Tütken
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
| | - Guido Bosch
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, AH Wageningen, The Netherlands
| | - Jürgen Hummel
- Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Arturo Muñoz Saravia
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert P J Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Succession of Intestinal Microbial Structure of Giant Pandas ( Ailuropoda melanoleuca) during Different Developmental Stages and Its Correlation with Cellulase Activity. Animals (Basel) 2021; 11:ani11082358. [PMID: 34438815 PMCID: PMC8388744 DOI: 10.3390/ani11082358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Giant pandas (Ailuropoda melanoleuca) are endangered animals and are uniquely inhabitant in China. These rare animals have gradually developed bamboo-eating adaptability through persistent evolution. Intestinal microbes play an important role in the digestion, absorption, metabolism, and development of giant pandas especially by facilizing the degradation of bamboo polysaccharides such as cellulose. Currently, genes directly related to cellulose degradation have not been identified in the genome of giant panda, and cellulose digestion is therefore likely dependent on intestinal microbes. This study analyzed the changes in intestinal microbial structure of giant pandas (cubs, sub-adults, and adults) in different developmental stages. The impact was also assessed with the changes in food composition probed into the succession regularity of intestinal microbes and the activities of intestinal flora on the digestion and utilization of cellulose in bamboo. Abstract The interaction between intestinal microbial flora and giant pandas (Ailuropoda melanoleuca) is indispensable for the healthy development of giant pandas. In this study, we analysed the diversity of bacteria and fungi in the intestines of six giant pandas (two pandas in each development stage) with a high-throughput sequencing technique to expand the relative variation in abundance of dominant microbes and potential cellulose-degradation genera in the intestines of the giant pandas and to explore the correlation between dominant microbial genera in the intestines and cellulose digestion activities of giant pandas. The results showed that the intestinal bacterial diversity of young giant pandas was higher than that of sub-adult and adult giant pandas, and Shannon’s diversity index was about 2.0. The intestinal bacterial diversity of giant pandas from sub-adult to adult (mature stage) stage showed an increasing trend, but the intestinal fungal diversity showed no considerable regular relations with their ages. The microbial composition and abundance of giant pandas changed in different developmental stages. Pearson correlation analysis and path analysis showed that there was a close relationship between the dominant microbes in the intestines of giant pandas, and the interaction between microbial genera might affect the cellulose digestion ability of giant pandas. Generally, the digestibility of cellulose degraders in pandas was still insufficient, with low enzymic activity and immature microbial structure. Therefore, the utilization and digestion of bamboo cellulose still might not be a main source of energy for pandas.
Collapse
|
5
|
Rode KD, Robbins CT, Stricker CA, Taras BD, Tollefson TN. Energetic and health effects of protein overconsumption constrain dietary adaptation in an apex predator. Sci Rep 2021; 11:15309. [PMID: 34321600 PMCID: PMC8319126 DOI: 10.1038/s41598-021-94917-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
Studies of predator feeding ecology commonly focus on energy intake. However, captive predators have been documented to selectively feed to optimize macronutrient intake. As many apex predators experience environmental changes that affect prey availability, limitations on selective feeding can affect energetics and health. We estimated the protein:fat ratio of diets consumed by wild polar bears using a novel isotope-based approach, measured protein:fat ratios selected by zoo polar bears offered dietary choice and examined potential energetic and health consequences of overconsuming protein. Dietary protein levels selected by wild and zoo polar bears were low and similar to selection observed in omnivorous brown bears, which reduced energy intake requirements by 70% compared with lean meat diets. Higher-protein diets fed to zoo polar bears during normal care were concurrent with high rates of mortality from kidney disease and liver cancer. Our results suggest that polar bears have low protein requirements and that limitations on selective consumption of marine mammal blubber consequent to climate change could meaningfully increase their energetic costs. Although bear protein requirements appear lower than those of other carnivores, the energetic and health consequences of protein overconsumption identified in this study have the potential to affect a wide range of taxa.
Collapse
Affiliation(s)
- Karyn D Rode
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA.
| | - Charles T Robbins
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Craig A Stricker
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
| | - Brian D Taras
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Fairbanks, AK, 99701, USA
| | - Troy N Tollefson
- Mazuri Exotic Animal Nutrition, Land O'Lakes, Inc., St. Louis, MO, 63166, USA
| |
Collapse
|
6
|
De Cuyper A, Meloro C, Abraham AJ, Müller DWH, Codron D, Janssens GPJ, Clauss M. The uneven weight distribution between predators and prey: Comparing gut fill between terrestrial herbivores and carnivores. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110683. [PMID: 32097716 DOI: 10.1016/j.cbpa.2020.110683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 11/24/2022]
Abstract
The general observation that secondary consumers ingest highly digestible food and have simple short guts and small abdominal cavities intuitively results in the assumption that mammalian carnivores carry less digesta in their gut compared to herbivores. Due to logistic constraints, this assumption has not been tested quantitatively so far. In this contribution, we estimated the dry matter gut contents (DMC) for 25 species of the order Carnivora (including two strictly herbivorous ones, the giant and the red panda) using the physical 'Occupancy Principle', based on a literature data collection on dry matter intake (DMI), apparent dry matter digestibility (aD DM) and retention time (RT), and compared the results to an existing collection for herbivores. Scaling exponents with body mass (BM) for both carnivores and herbivores were in the same range with DMI ~ BM0.75; aD DM ~ BM0; RT ~ BM0.11 and DMC ~ BM0.88. The trophic level (carnivore vs herbivore) significantly affected all digestive physiology parameters except for RT. Numerically, the carnivore DMI level reached 77%, the RT 32% and DMC only 29% of the corresponding herbivore values, whereas the herbivore aD DM only reached 82% of that of carnivores. Thus, we quantitatively show that carnivores carry less inert mass or gut content compared to herbivores, which putatively benefits them in predator-prey interactions and might have contributed to the evolution towards unguligradism in herbivores. As expected, the two panda species appeared as outliers in the dataset with low aD DM and RT for a herbivore but extremely high DMI values, resulting in DMC in the lower part of the herbivore range. Whereas the difference in DMI and DMC scaling in herbivores might allow larger herbivores to compensate for lower diet quality by ingesting more, this difference may allow larger carnivores not to go for less digestible prey parts, but mainly to increase meal intervals, i.e. not having to hunt on a daily basis.
Collapse
Affiliation(s)
- Annelies De Cuyper
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, England, UK
| | - Andrew J Abraham
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, USA
| | | | - Daryl Codron
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Geert P J Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|