1
|
Rubinstein Y, Moshkovitz M, Ottenheimer I, Shapira S, Tiomkin S, Avitan L. A detailed quantification of larval zebrafish behavioral repertoire uncovers principles of hunting behavior. iScience 2025; 28:112213. [PMID: 40235586 PMCID: PMC11999616 DOI: 10.1016/j.isci.2025.112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
During goal-directed behavior, animals select actions from a diverse repertoire of movements. Accurately quantifying this complex and high-dimensional repertoire is essential to uncovering the underlying rules that guide the behavior. Here, we developed a low-dimensional mathematical model that accurately reproduces the complete and continuous repertoire of hunting larval zebrafish. We show that fish position and change in heading angle following a movement are coupled, such that the choice of one of them limits the other. This repertoire structure uncovered fundamental principles of movements, showing that fish rotate around an identified rotation point and then move forward or backward. Moreover, it identified a new guiding rule of the hunt: fish turn to face the prey in each movement and then move forward or backward. These results present the first low-dimensional and continuous description of movements repertoire, uncover guiding behavioral rules, and offer insights into the underlying motor control.
Collapse
Affiliation(s)
- Yoav Rubinstein
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Maayan Moshkovitz
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Itay Ottenheimer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sapir Shapira
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Stas Tiomkin
- Computer Science Department, Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Lilach Avitan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Dowell CK, Hawkins T, Bianco IH. Subsets of extraocular motoneurons produce kinematically distinct saccades during hunting and exploration. Curr Biol 2025; 35:554-573.e6. [PMID: 39818217 DOI: 10.1016/j.cub.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs. In this study, we used two closely related but kinematically distinct types of saccadic eye movement in larval zebrafish as a model to examine circuit control of movement diversity. In contrast to the prevailing view of a final common pathway, we found that in the oculomotor nucleus, distinct subsets of motoneurons were engaged for each saccade type. This type-specific recruitment was topographically organized and aligned with ultrastructural differences in motoneuron morphology and afferent synaptic innervation. Medially located motoneurons were active for both saccade types, and circuit tracing revealed a type-agnostic premotor pathway that appears to control their recruitment. By contrast, a laterally located subset of motoneurons was specifically active for hunting-associated saccades and received premotor input from pretectal hunting command neurons. Our data support a model in which generalist and action-specific premotor pathways engage distinct subsets of motoneurons to elicit varied movements of the same body part that subserve distinct behavioral functions.
Collapse
Affiliation(s)
- Charles K Dowell
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas Hawkins
- Department of Cell & Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Bansal P, Roitman MF, Jung EE. Modulation of Hypothalamic Dopamine Neuron Activity by Interaction Between Caloric State and Amphetamine in Zebrafish Larvae. J Neurosci Res 2024; 102:e25396. [PMID: 39513618 DOI: 10.1002/jnr.25396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
Dopamine (DA) signaling is evoked by both food and drugs that humans come to abuse. Moreover, physiological state (e.g., hunger versus satiety) can modulate the response. However, there is great heterogeneity among DA neurons. Limited studies have been performed that could resolve the interaction between physiological state and drug responsivity across groups of DA neurons. Here, we measured the activity of neurons in transgenic Tg (th2:GCaMP7s) zebrafish larva that expresses a calcium indicator (GCaMP7s) in A11 (posterior tuberculum) and a part of A14 (caudal hypothalamus and intermediate hypothalamus) DA populations located in the hypothalamus of the larval zebrafish. Fish were recorded in one of two physiological states: ad-libitum fed (AL) and food deprived (FD) and before and after acute exposure to different doses of the stimulant drug amphetamine (0, 0.7, and 1.5 μM). We quantified fluorescence change, activity duration, peak rise/fall time, and latency in the calcium spikes of the DA neurons. Our results show that baseline DA neuron activity amplitude, spike duration, and correlation between inter- and intra-DA neurons were higher in the FD than in the AL state. Dose-dependent AMPH treatment further increased the intensity of these parameters in the neuron spikes but only in the FD state. The DA activity correlation relatively increased in AL state post-AMPH treatment. Given that hunger increases drug reactivity and the probability of relapse to drug seeking, the results support populations of DA neurons as potential critical mediators of the interaction between physiological state and drug reinforcement.
Collapse
Affiliation(s)
- Pushkar Bansal
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mitchell F Roitman
- Department of Psychology, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Erica E Jung
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Dowell CK, Lau JYN, Antinucci P, Bianco IH. Kinematically distinct saccades are used in a context-dependent manner by larval zebrafish. Curr Biol 2024; 34:4382-4396.e5. [PMID: 39236716 DOI: 10.1016/j.cub.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Saccades are rapid eye movements that are used by all species with good vision. In this study, we set out to characterize the complete repertoire of larval zebrafish horizontal saccades to gain insight into their contributions to visually guided behavior and underlying neural control. We identified five saccade types, defined by systematic differences in kinematics and binocular coordination, which were differentially expressed across a variety of behavioral contexts. Conjugate saccades formed a large group that serves at least four functions. These include fast phases of the optokinetic nystagmus, visual scanning in stationary animals, and shifting gaze in coordination with body turns. In addition, we discovered a previously undescribed pattern of eye-body coordination in which small conjugate saccades partially oppose head rotation to maintain gaze during forward locomotion. Convergent saccades were coordinated with body movements to foveate prey targets during hunting. Detailed kinematic analysis showed that conjugate and convergent saccades differed in the millisecond coordination of the eyes and body and followed distinct velocity main sequence relationships. This challenges the prevailing view that all horizontal saccades are controlled by a common brainstem circuit and instead indicates saccade-type-specific neural control.
Collapse
Affiliation(s)
- Charles K Dowell
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Joanna Y N Lau
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Paride Antinucci
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Hoy JL. Defense behavior: Midbrain mechanisms magnify multisensory menaces. Curr Biol 2024; 34:R831-R833. [PMID: 39255769 DOI: 10.1016/j.cub.2024.07.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
'Jump scares' are particularly robust when visuals are paired with coherent sound. A new study demonstrates that connectivity between the superior colliculus and parabigeminal nucleus generates multimodal enhancement of visually triggered defensiveness, revealing a novel multisensory threat augmentation mechanism.
Collapse
Affiliation(s)
- Jennifer L Hoy
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
6
|
Peng B, Huang JJ, Li Z, Zhang LI, Tao HW. Cross-modal enhancement of defensive behavior via parabigemino-collicular projections. Curr Biol 2024; 34:3616-3631.e5. [PMID: 39019036 PMCID: PMC11373540 DOI: 10.1016/j.cub.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Effective detection and avoidance from environmental threats are crucial for animals' survival. Integration of sensory cues associated with threats across different modalities can significantly enhance animals' detection and behavioral responses. However, the neural circuit-level mechanisms underlying the modulation of defensive behavior or fear response under simultaneous multimodal sensory inputs remain poorly understood. Here, we report in mice that bimodal looming stimuli combining coherent visual and auditory signals elicit more robust defensive/fear reactions than unimodal stimuli. These include intensified escape and prolonged hiding, suggesting a heightened defensive/fear state. These various responses depend on the activity of the superior colliculus (SC), while its downstream nucleus, the parabigeminal nucleus (PBG), predominantly influences the duration of hiding behavior. PBG temporally integrates visual and auditory signals and enhances the salience of threat signals by amplifying SC sensory responses through its feedback projection to the visual layer of the SC. Our results suggest an evolutionarily conserved pathway in defense circuits for multisensory integration and cross-modality enhancement.
Collapse
Affiliation(s)
- Bo Peng
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhong Li
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
7
|
Baier H, Scott EK. The Visual Systems of Zebrafish. Annu Rev Neurosci 2024; 47:255-276. [PMID: 38663429 DOI: 10.1146/annurev-neuro-111020-104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The zebrafish visual system has become a paradigmatic preparation for behavioral and systems neuroscience. Around 40 types of retinal ganglion cells (RGCs) serve as matched filters for stimulus features, including light, optic flow, prey, and objects on a collision course. RGCs distribute their signals via axon collaterals to 12 retinorecipient areas in forebrain and midbrain. The major visuomotor hub, the optic tectum, harbors nine RGC input layers that combine information on multiple features. The retinotopic map in the tectum is locally adapted to visual scene statistics and visual subfield-specific behavioral demands. Tectal projections to premotor centers are topographically organized according to behavioral commands. The known connectivity in more than 20 processing streams allows us to dissect the cellular basis of elementary perceptual and cognitive functions. Visually evoked responses, such as prey capture or loom avoidance, are controlled by dedicated multistation pathways that-at least in the larva-resemble labeled lines. This architecture serves the neuronal code's purpose of driving adaptive behavior.
Collapse
Affiliation(s)
- Herwig Baier
- Department of Genes-Circuits-Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany;
| | - Ethan K Scott
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Corrales Parada CD, Mayer U, Chagnaud BP. The Dorsal Part of the Anterior Tuberal Nucleus Responds to Auditory Stimulation in Zebrafish ( Danio rerio). eNeuro 2024; 11:ENEURO.0062-24.2024. [PMID: 38918052 PMCID: PMC11236576 DOI: 10.1523/eneuro.0062-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The zebrafish, a widely used model in neurobiology, relies on hearing in aquatic environments. Unfortunately, its auditory pathways have mainly been studied in larvae. In this study, we examined the involvement of the anterior tuberal nucleus (AT) in auditory processing in adult zebrafish. Our tract-tracing experiments revealed that the dorsal subdivision of AT is strongly bidirectionally connected to the central nucleus of the torus semicircularis (TSc), a major auditory nucleus in fishes. Immunohistochemical visualization of the ribosomal protein S6 (pS6) phosphorylation to map neural activity in response to auditory stimulation substantiated this finding: the dorsal but not the ventral part of AT responded strongly to auditory stimulation. A similar response to auditory stimulation was present in the TSc but not in the nucleus isthmi, a visual region, which we used as a control for testing if the pS6 activation was specific to the auditory stimulation. We also measured the time course of pS6 phosphorylation, which was previously unreported in teleost fish. After auditory stimulation, we found that pS6 phosphorylation peaked between 100 and 130 min and returned to baseline levels after 190 min. This information will be valuable for the design of future pS6 experiments. Our results suggest an anatomical and functional subdivision of AT, where only the dorsal part connects to the auditory network and processes auditory information.
Collapse
Affiliation(s)
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 TN, Italy
| | - Boris P Chagnaud
- Institute for Biology, Karl-Franzens-University Graz, Graz 8010 ST, Austria
| |
Collapse
|
9
|
Karaduman A, Karoglu-Eravsar ET, Adams MM, Kafaligonul H. Passive exposure to visual motion leads to short-term changes in the optomotor response of aging zebrafish. Behav Brain Res 2024; 460:114812. [PMID: 38104637 DOI: 10.1016/j.bbr.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Numerous studies have shown that prior visual experiences play an important role in sensory processing and adapting behavior in a dynamic environment. A repeated and passive presentation of visual stimulus is one of the simplest procedures to manipulate acquired experiences. Using this approach, we aimed to investigate exposure-based visual learning of aging zebrafish and how cholinergic intervention is involved in exposure-induced changes. Our measurements included younger and older wild-type zebrafish and achesb55/+ mutants with decreased acetylcholinesterase activity. We examined both within-session and across-day changes in the zebrafish optomotor responses to repeated and passive exposure to visual motion. Our findings revealed short-term (within-session) changes in the magnitude of optomotor response (i.e., the amount of position shift by fish as a response to visual motion) rather than long-term and persistent effects across days. Moreover, the observed short-term changes were age- and genotype-dependent. Compared to the initial presentations of motion within a session, the magnitude of optomotor response to terminal presentations decreased in the older zebrafish. There was a similar robust decrease specific to achesb55/+ mutants. Taken together, these results point to short-term (within-session) alterations in the motion detection of adult zebrafish and suggest differential effects of neural aging and cholinergic system on the observed changes. These findings further provide important insights into adult zebrafish optomotor response to visual motion and contribute to understanding this reflexive behavior in the short- and long-term stimulation profiles.
Collapse
Affiliation(s)
- Aysenur Karaduman
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Selcuk University, Konya, Türkiye
| | - Michelle M Adams
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Bilkent University, Ankara, Türkiye
| | - Hulusi Kafaligonul
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye.
| |
Collapse
|
10
|
Ali MA, Lischka K, Preuss SJ, Trivedi CA, Bollmann JH. A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion. Nat Commun 2023; 14:7592. [PMID: 37996414 PMCID: PMC10667368 DOI: 10.1038/s41467-023-43255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
In motor control, the brain not only sends motor commands to the periphery, but also generates concurrent internal signals known as corollary discharge (CD) that influence sensory information processing around the time of movement. CD signals are important for identifying sensory input arising from self-motion and to compensate for it, but the underlying mechanisms remain unclear. Using whole-cell patch clamp recordings from neurons in the zebrafish optic tectum, we discovered an inhibitory synaptic signal, temporally locked to spontaneous and visually driven locomotion. This motor-related inhibition was appropriately timed to counteract visually driven excitatory input arising from the fish's own motion, and transiently suppressed tectal spiking activity. High-resolution calcium imaging revealed localized motor-related signals in the tectal neuropil and the upstream torus longitudinalis, suggesting that CD enters the tectum via this pathway. Together, our results show how visual processing is suppressed during self-motion by motor-related phasic inhibition. This may help explain perceptual saccadic suppression observed in many species.
Collapse
Affiliation(s)
- Mir Ahsan Ali
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina Lischka
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Stephanie J Preuss
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Springer Nature Group, Heidelberg, Germany
| | - Chintan A Trivedi
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Dept Cell and Developmental Biology, University College London, London, UK
| | - Johann H Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- Bernstein Center Freiburg, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
Ogawa Y, Nicholas S, Thyselius M, Leibbrandt R, Nowotny T, Knight JC, Nordström K. Descending neurons of the hoverfly respond to pursuits of artificial targets. Curr Biol 2023; 33:4392-4404.e5. [PMID: 37776861 DOI: 10.1016/j.cub.2023.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
Many animals use motion vision information to control dynamic behaviors. Predatory animals, for example, show an exquisite ability to detect rapidly moving prey, followed by pursuit and capture. Such target detection is not only used by predators but is also important in conspecific interactions, such as for male hoverflies defending their territories against conspecific intruders. Visual target detection is believed to be subserved by specialized target-tuned neurons found in a range of species, including vertebrates and arthropods. However, how these target-tuned neurons respond to actual pursuit trajectories is currently not well understood. To redress this, we recorded extracellularly from target-selective descending neurons (TSDNs) in male Eristalis tenax hoverflies. We show that they have dorso-frontal receptive fields with a preferred direction up and away from the visual midline. We reconstructed visual flow fields as experienced during pursuits of artificial targets (black beads). We recorded TSDN responses to six reconstructed pursuits and found that each neuron responded consistently at remarkably specific time points but that these time points differed between neurons. We found that the observed spike probability was correlated with the spike probability predicted from each neuron's receptive field and size tuning. Interestingly, however, the overall response rate was low, with individual neurons responding to only a small part of each reconstructed pursuit. In contrast, the TSDN population responded to substantially larger proportions of the pursuits but with lower probability. This large variation between neurons could be useful if different neurons control different parts of the behavioral output.
Collapse
Affiliation(s)
- Yuri Ogawa
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Sarah Nicholas
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Malin Thyselius
- Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 701 82, Sweden
| | - Richard Leibbrandt
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - James C Knight
- School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Karin Nordström
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden.
| |
Collapse
|
12
|
Nicholas S, Ogawa Y, Nordström K. Dual Receptive Fields Underlying Target and Wide-Field Motion Sensitivity in Looming-Sensitive Descending Neurons. eNeuro 2023; 10:ENEURO.0188-23.2023. [PMID: 37429705 PMCID: PMC10368147 DOI: 10.1523/eneuro.0188-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023] Open
Abstract
Responding rapidly to visual stimuli is fundamental for many animals. For example, predatory birds and insects alike have amazing target detection abilities, with incredibly short neural and behavioral delays, enabling efficient prey capture. Similarly, looming objects need to be rapidly avoided to ensure immediate survival, as these could represent approaching predators. Male Eristalis tenax hoverflies are nonpredatory, highly territorial insects that perform high-speed pursuits of conspecifics and other territorial intruders. During the initial stages of the pursuit, the retinal projection of the target is very small, but this grows to a larger object before physical interaction. Supporting such behaviors, E. tenax and other insects have both target-tuned and loom-sensitive neurons in the optic lobes and the descending pathways. We here show that these visual stimuli are not necessarily encoded in parallel. Indeed, we describe a class of descending neurons that respond to small targets, to looming and to wide-field stimuli. We show that these descending neurons have two distinct receptive fields where the dorsal receptive field is sensitive to the motion of small targets and the ventral receptive field responds to larger objects or wide-field stimuli. Our data suggest that the two receptive fields have different presynaptic input, where the inputs are not linearly summed. This novel and unique arrangement could support different behaviors, including obstacle avoidance, flower landing, and target pursuit or capture.
Collapse
Affiliation(s)
- Sarah Nicholas
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5001, Australia
| | - Yuri Ogawa
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5001, Australia
| | - Karin Nordström
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5001, Australia
- Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
13
|
Fenk LA, Riquelme JL, Laurent G. Interhemispheric competition during sleep. Nature 2023; 616:312-318. [PMID: 36949193 PMCID: PMC10097603 DOI: 10.1038/s41586-023-05827-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Our understanding of the functions and mechanisms of sleep remains incomplete, reflecting their increasingly evident complexity1-3. Likewise, studies of interhemispheric coordination during sleep4-6 are often hard to connect precisely to known sleep circuits and mechanisms. Here, by recording from the claustra of sleeping bearded dragons (Pogona vitticeps), we show that, although the onsets and offsets of Pogona rapid-eye-movement (REMP) and slow-wave sleep are coordinated bilaterally, these two sleep states differ markedly in their inter-claustral coordination. During slow-wave sleep, the claustra produce sharp-wave ripples independently of one another, showing no coordination. By contrast, during REMP sleep, the potentials produced by the two claustra are precisely coordinated in amplitude and time. These signals, however, are not synchronous: one side leads the other by about 20 ms, with the leading side switching typically once per REMP episode or in between successive episodes. The leading claustrum expresses the stronger activity, suggesting bilateral competition. This competition does not occur directly between the two claustra or telencephalic hemispheres. Rather, it occurs in the midbrain and depends on the integrity of a GABAergic (γ-aminobutyric-acid-producing) nucleus of the isthmic complex, which exists in all vertebrates and is known in birds to underlie bottom-up attention and gaze control. These results reveal that a winner-take-all-type competition exists between the two sides of the brain of Pogona, which originates in the midbrain and has precise consequences for claustrum activity and coordination during REMP sleep.
Collapse
Affiliation(s)
- Lorenz A Fenk
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Juan Luis Riquelme
- Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
14
|
Zylbertal A, Bianco IH. Recurrent network interactions explain tectal response variability and experience-dependent behavior. eLife 2023; 12:78381. [PMID: 36943029 PMCID: PMC10030118 DOI: 10.7554/elife.78381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Response variability is an essential and universal feature of sensory processing and behavior. It arises from fluctuations in the internal state of the brain, which modulate how sensory information is represented and transformed to guide behavioral actions. In part, brain state is shaped by recent network activity, fed back through recurrent connections to modulate neuronal excitability. However, the degree to which these interactions influence response variability and the spatial and temporal scales across which they operate, are poorly understood. Here, we combined population recordings and modeling to gain insights into how neuronal activity modulates network state and thereby impacts visually evoked activity and behavior. First, we performed cellular-resolution calcium imaging of the optic tectum to monitor ongoing activity, the pattern of which is both a cause and consequence of changes in network state. We developed a minimal network model incorporating fast, short range, recurrent excitation and long-lasting, activity-dependent suppression that reproduced a hallmark property of tectal activity - intermittent bursting. We next used the model to estimate the excitability state of tectal neurons based on recent activity history and found that this explained a portion of the trial-to-trial variability in visually evoked responses, as well as spatially selective response adaptation. Moreover, these dynamics also predicted behavioral trends such as selective habituation of visually evoked prey-catching. Overall, we demonstrate that a simple recurrent interaction motif can be used to estimate the effect of activity upon the incidental state of a neural network and account for experience-dependent effects on sensory encoding and visually guided behavior.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Zhu SI, Goodhill GJ. From perception to behavior: The neural circuits underlying prey hunting in larval zebrafish. Front Neural Circuits 2023; 17:1087993. [PMID: 36817645 PMCID: PMC9928868 DOI: 10.3389/fncir.2023.1087993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
A key challenge for neural systems is to extract relevant information from the environment and make appropriate behavioral responses. The larval zebrafish offers an exciting opportunity for studying these sensing processes and sensory-motor transformations. Prey hunting is an instinctual behavior of zebrafish that requires the brain to extract and combine different attributes of the sensory input and form appropriate motor outputs. Due to its small size and transparency the larval zebrafish brain allows optical recording of whole-brain activity to reveal the neural mechanisms involved in prey hunting and capture. In this review we discuss how the larval zebrafish brain processes visual information to identify and locate prey, the neural circuits governing the generation of motor commands in response to prey, how hunting behavior can be modulated by internal states and experience, and some outstanding questions for the field.
Collapse
Affiliation(s)
- Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
16
|
Bhandiwad AA, Chu NC, Semenova SA, Holmes GA, Burgess HA. A cerebellar-prepontine circuit for tonic immobility triggered by an inescapable threat. SCIENCE ADVANCES 2022; 8:eabo0549. [PMID: 36170356 PMCID: PMC9519051 DOI: 10.1126/sciadv.abo0549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Sudden changes in the environment are frequently perceived as threats and provoke defensive behavioral states. One such state is tonic immobility, a conserved defensive strategy characterized by powerful suppression of movement and motor reflexes. Tonic immobility has been associated with multiple brainstem regions, but the underlying circuit is unknown. Here, we demonstrate that a strong vibratory stimulus evokes tonic immobility in larval zebrafish defined by suppressed locomotion and sensorimotor responses. Using a circuit-breaking screen and targeted neuron ablations, we show that cerebellar granule cells and a cluster of glutamatergic ventral prepontine neurons (vPPNs) that express key stress-associated neuropeptides are critical components of the circuit that suppresses movement. The complete sensorimotor circuit transmits information from sensory ganglia through the cerebellum to vPPNs to regulate reticulospinal premotor neurons. These results show that cerebellar regulation of a neuropeptide-rich prepontine structure governs a conserved and ancestral defensive behavior that is triggered by an inescapable threat.
Collapse
Affiliation(s)
- Ashwin A. Bhandiwad
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | - Svetlana A. Semenova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - George A. Holmes
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | |
Collapse
|
17
|
Ecological decision-making: From circuit elements to emerging principles. Curr Opin Neurobiol 2022; 74:102551. [DOI: 10.1016/j.conb.2022.102551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
|
18
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Tesmer AL, Fields NP, Robles E. Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum. BMC Biol 2022; 20:24. [PMID: 35073895 PMCID: PMC8788132 DOI: 10.1186/s12915-021-01222-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background A continued effort in neuroscience aims to understand the way brain circuits consisting of diverse neuronal types generate complex behavior following sensory input. A common feature of vertebrate visual systems is that lower-order and higher-order visual areas are reciprocally connected. Feedforward projections confer visual responsiveness to higher-order visual neurons while feedback projections likely serve to modulate responses of lower-order visual neurons in a context-dependent manner. Optic tectum is the largest first-order visual brain area in zebrafish and is reciprocally connected with the torus longitudinalis (TL), a second-order visual brain area that does not receive retinal input. A functional role for feedback projections from TL to tectum has not been identified. Here we aim to understand how this feedback contributes to visual processing. Results In this study, we demonstrate that TL feedback projections to tectum drive binocular integration and spatial summation in a defined tectal circuit. We performed genetically targeted, cell type-specific functional imaging in tectal pyramidal neurons (PyrNs) and their two input neuron populations: retinal ganglion cells (RGCs) and neurons in TL. We find that PyrNs encode gradual changes in scene luminance using a complement of three distinct response classes that encode different light intensity ranges. Functional imaging of RGC inputs to tectum suggest that these response classes originate in the retina and RGC input specifies PyrN functional classes. In contrast, TL input serves to endow PyrNs with large, compound receptive fields that span both retinal hemifields. Conclusions These findings reveal a novel role for the zebrafish TL in driving binocular integration and spatial summation in tectal PyrNs. The neural circuit we describe generates a population of tectal neurons with large receptive fields tailored for detecting changes in the visual scene. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01222-x.
Collapse
|
20
|
Madden ME, Suminaite D, Ortiz E, Early JJ, Koudelka S, Livesey MR, Bianco IH, Granato M, Lyons DA. CNS Hypomyelination Disrupts Axonal Conduction and Behavior in Larval Zebrafish. J Neurosci 2021; 41:9099-9111. [PMID: 34544838 PMCID: PMC8570833 DOI: 10.1523/jneurosci.0842-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Myelination is essential for central nervous system (CNS) formation, health and function. As a model organism, larval zebrafish have been extensively employed to investigate the molecular and cellular basis of CNS myelination, because of their genetic tractability and suitability for non-invasive live cell imaging. However, it has not been assessed to what extent CNS myelination affects neural circuit function in zebrafish larvae, prohibiting the integration of molecular and cellular analyses of myelination with concomitant network maturation. To test whether larval zebrafish might serve as a suitable platform with which to study the effects of CNS myelination and its dysregulation on circuit function, we generated zebrafish myelin regulatory factor (myrf) mutants with CNS-specific hypomyelination and investigated how this affected their axonal conduction properties and behavior. We found that myrf mutant larvae exhibited increased latency to perform startle responses following defined acoustic stimuli. Furthermore, we found that hypomyelinated animals often selected an impaired response to acoustic stimuli, exhibiting a bias toward reorientation behavior instead of the stimulus-appropriate startle response. To begin to study how myelination affected the underlying circuitry, we established electrophysiological protocols to assess various conduction properties along single axons. We found that the hypomyelinated myrf mutants exhibited reduced action potential conduction velocity and an impaired ability to sustain high-frequency action potential firing. This study indicates that larval zebrafish can be used to bridge molecular and cellular investigation of CNS myelination with multiscale assessment of neural circuit function.SIGNIFICANCE STATEMENT Myelination of CNS axons is essential for their health and function, and it is now clear that myelination is a dynamic life-long process subject to modulation by neuronal activity. However, it remains unclear precisely how changes to myelination affects animal behavior and underlying action potential conduction along axons in intact neural circuits. In recent years, zebrafish have been employed to study cellular and molecular mechanisms of myelination, because of their relatively simple, optically transparent, experimentally tractable vertebrate nervous system. Here we find that changes to myelination alter the behavior of young zebrafish and action potential conduction along individual axons, providing a platform to integrate molecular, cellular, and circuit level analyses of myelination using this model.
Collapse
Affiliation(s)
- M E Madden
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - D Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - E Ortiz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J J Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - S Koudelka
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - M R Livesey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - I H Bianco
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - M Granato
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - D A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
21
|
Mancienne T, Marquez-Legorreta E, Wilde M, Piber M, Favre-Bulle I, Vanwalleghem G, Scott EK. Contributions of Luminance and Motion to Visual Escape and Habituation in Larval Zebrafish. Front Neural Circuits 2021; 15:748535. [PMID: 34744637 PMCID: PMC8568047 DOI: 10.3389/fncir.2021.748535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animals from insects to humans perform visual escape behavior in response to looming stimuli, and these responses habituate if looms are presented repeatedly without consequence. While the basic visual processing and motor pathways involved in this behavior have been described, many of the nuances of predator perception and sensorimotor gating have not. Here, we have performed both behavioral analyses and brain-wide cellular-resolution calcium imaging in larval zebrafish while presenting them with visual loom stimuli or stimuli that selectively deliver either the movement or the dimming properties of full loom stimuli. Behaviorally, we find that, while responses to repeated loom stimuli habituate, no such habituation occurs when repeated movement stimuli (in the absence of luminance changes) are presented. Dim stimuli seldom elicit escape responses, and therefore cannot habituate. Neither repeated movement stimuli nor repeated dimming stimuli habituate the responses to subsequent full loom stimuli, suggesting that full looms are required for habituation. Our calcium imaging reveals that motion-sensitive neurons are abundant in the brain, that dim-sensitive neurons are present but more rare, and that neurons responsive to both stimuli (and to full loom stimuli) are concentrated in the tectum. Neurons selective to full loom stimuli (but not to movement or dimming) were not evident. Finally, we explored whether movement- or dim-sensitive neurons have characteristic response profiles during habituation to full looms. Such functional links between baseline responsiveness and habituation rate could suggest a specific role in the brain-wide habituation network, but no such relationships were found in our data. Overall, our results suggest that, while both movement- and dim-sensitive neurons contribute to predator escape behavior, neither plays a specific role in brain-wide visual habituation networks or in behavioral habituation.
Collapse
Affiliation(s)
- Tessa Mancienne
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | | | - Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | - Marielle Piber
- School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Itia Favre-Bulle
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
- School of Mathematics and Physics, The University of Queensland, Saint Lucia, QLD, Australia
| | - Gilles Vanwalleghem
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | - Ethan K. Scott
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
22
|
Isa T, Marquez-Legorreta E, Grillner S, Scott EK. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 2021; 31:R741-R762. [PMID: 34102128 DOI: 10.1016/j.cub.2021.04.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer. Here, we will review the organization and intrinsic function of the tectum/superior colliculus and the information that is processed within tectal circuits. We will also discuss tectal/superior colliculus outputs that are conveyed directly to downstream motor circuits or via the thalamus to cortical areas to control various aspects of behavior. The tectum/superior colliculus is evolutionarily conserved among all vertebrates, but tailored to the sensory specialties of each lineage, and its roles have shifted with the emergence of the cerebral cortex in mammals. We will illustrate both the conserved and divergent properties of the tectum/superior colliculus through vertebrate evolution by comparing tectal processing in lampreys belonging to the oldest group of extant vertebrates, larval zebrafish, rodents, and other vertebrates including primates.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
23
|
In vivo calcium imaging reveals disordered interictal network dynamics in epileptic stxbp1b zebrafish. iScience 2021; 24:102558. [PMID: 34142057 PMCID: PMC8184515 DOI: 10.1016/j.isci.2021.102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
STXBP1 mutations are associated with encephalopathy, developmental delay, intellectual disability, and epilepsy. While neural networks are known to operate at a critical state in the healthy brain, network behavior during pathological epileptic states remains unclear. Examining activity during periods between well-characterized ictal-like events (i.e., interictal period) could provide a valuable step toward understanding epileptic networks. To study these networks in the context of STXBP1 mutations, we combine a larval zebrafish model with in vivo fast confocal calcium imaging and extracellular local field potential recordings. Stxbp1b mutants display transient periods of elevated activity among local clusters of interacting neurons. These network "cascade" events were significantly larger in size and duration in mutants. At mesoscale resolution, cascades exhibit neurodevelopmental abnormalities. At single-cell scale, we describe spontaneous hyper-synchronized neuronal ensembles. That calcium imaging reveals uniquely disordered brain states during periods between pathological ictal-like seizure events is striking and represents a potential interictal biomarker.
Collapse
|
24
|
James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021; 9:662916. [PMID: 33937265 PMCID: PMC8081961 DOI: 10.3389/fcell.2021.662916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Research involving autism spectrum disorder (ASD) most frequently focuses on its key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory perception, and communication impairments. These core criteria, however, are often accompanied by numerous comorbidities, many of which result in severe negative impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress is among the most prevalent co-occurring symptom complex, manifesting in upward of 70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family foundations that represent genetically distinct, molecularly defined forms of ASD have identified GI symptoms as an understudied area with significant negative impacts on quality of life for both individuals and their caregivers. Moreover, GI symptoms are also correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances, suggesting that they may exacerbate the defining behavioral symptoms of ASD. Despite these facts (and to the detriment of the community), GI distress remains largely unaddressed by ASD research and is frequently regarded as a symptomatic outcome rather than a potential contributory factor to the behavioral symptoms. Allowing for examination of both ASD's impact on the central nervous system (CNS) as well as its impact on the GI tract and the associated microbiome, the zebrafish has recently emerged as a powerful tool to study ASD. This is in no small part due to the advantages zebrafish present as a model system: their precocious development, their small transparent larval form, and their parallels with humans in genetics and physiology. While ASD research centered on the CNS has leveraged these advantages, there has been a critical lack of GI-centric ASD research in zebrafish models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly, high-throughput ASD drug screens have recently been developed but primarily focus on CNS and behavioral impacts while potential GI impacts have not been investigated. In this review, we aim to explore the great promise of the zebrafish model for elucidating the roles of the gut-brain-microbiome axis in ASD.
Collapse
Affiliation(s)
- David M. James
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | | | - Julio Yanes
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Baharak Moshiree
- Department of Gastroenterology and Hepatology, Atrium Health, Charlotte, NC, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
25
|
Friedrich RW, Wanner AA. Dense Circuit Reconstruction to Understand Neuronal Computation: Focus on Zebrafish. Annu Rev Neurosci 2021; 44:275-293. [PMID: 33730512 DOI: 10.1146/annurev-neuro-110220-013050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dense reconstruction of neuronal wiring diagrams from volumetric electron microscopy data has the potential to generate fundamentally new insights into mechanisms of information processing and storage in neuronal circuits. Zebrafish provide unique opportunities for dynamical connectomics approaches that combine reconstructions of wiring diagrams with measurements of neuronal population activity and behavior. Such approaches have the power to reveal higher-order structure in wiring diagrams that cannot be detected by sparse sampling of connectivity and that is essential for neuronal computations. In the brain stem, recurrently connected neuronal modules were identified that can account for slow, low-dimensional dynamics in an integrator circuit. In the spinal cord, connectivity specifies functional differences between premotor interneurons. In the olfactory bulb, tuning-dependent connectivity implements a whitening transformation that is based on the selective suppression of responses to overrepresented stimulus features. These findings illustrate the potential of dynamical connectomics in zebrafish to analyze the circuit mechanisms underlying higher-order neuronal computations.
Collapse
Affiliation(s)
- Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; .,Faculty of Natural Sciences, University of Basel, 4003 Basel, Switzerland
| | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
26
|
DeMarco E, Tesmer AL, Hech B, Kawakami K, Robles E. Pyramidal Neurons of the Zebrafish Tectum Receive Highly Convergent Input From Torus Longitudinalis. Front Neuroanat 2021; 15:636683. [PMID: 33613200 PMCID: PMC7886788 DOI: 10.3389/fnana.2021.636683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 12/02/2022] Open
Abstract
The torus longitudinalis (TL) is a midbrain structure unique to ray finned fish. Although previously implicated in orienting behaviors elicited by changes in ambient lighting, the role of TL in visual processing is not well-understood. TL is reciprocally connected to tectum and is the only known source of synaptic input to the stratum marginalis (SM) layer of tectal neuropil. Conversely, tectal pyramidal neurons (PyrNs) are the only identified tectal neuron population that forms a dendrite in SM. In this study we describe a zebrafish gal4 transgenic that labels TL neurons that project to SM. We demonstrate that the axonal TL projection to SM in zebrafish is glutamatergic. Consistent with these axons synapsing directly onto PyrNs, SM-targeted dendrites of PyrNs contain punctate enrichments of the glutamatergic post-synaptic marker protein PSD95. Sparse genetic labeling of individual TL axons and PyrN dendrites enabled quantitative morphometric analysis that revealed (1) large, sparsely branched TL axons in SM and (2) small, densely innervated PyrN dendrites in SM. Together this unique combination of morphologies support a wiring diagram in which TL inputs to PyrNs exhibit a high degree of convergence. We propose that this convergence functions to generate large, compound visual receptive fields in PyrNs. This quantitative anatomical data will instruct future functional studies aimed at identifying the precise contribution of TL-PyrN circuitry to visual behavior.
Collapse
Affiliation(s)
- Elisabeth DeMarco
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Alexander L Tesmer
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Bruna Hech
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Koichi Kawakami
- Department of Gene Function, National Institute of Genetics, Mishima, Japan
| | - Estuardo Robles
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
27
|
Fernandes AM, Mearns DS, Donovan JC, Larsch J, Helmbrecht TO, Kölsch Y, Laurell E, Kawakami K, Dal Maschio M, Baier H. Neural circuitry for stimulus selection in the zebrafish visual system. Neuron 2020; 109:805-822.e6. [PMID: 33357384 DOI: 10.1016/j.neuron.2020.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
When navigating the environment, animals need to prioritize responses to the most relevant stimuli. Although a theoretical framework for selective visual attention exists, its circuit implementation has remained obscure. Here we investigated how larval zebrafish select between simultaneously presented visual stimuli. We found that a mix of winner-take-all (WTA) and averaging strategies best simulates behavioral responses. We identified two circuits whose activity patterns predict the relative saliencies of competing visual objects. Stimuli presented to only one eye are selected by WTA computation in the inner retina. Binocularly presented stimuli, on the other hand, are processed by reciprocal, bilateral connections between the nucleus isthmi (NI) and the tectum. This interhemispheric computation leads to WTA or averaging responses. Optogenetic stimulation and laser ablation of NI neurons disrupt stimulus selection and behavioral action selection. Thus, depending on the relative locations of competing stimuli, a combination of retinotectal and isthmotectal circuits enables selective visual attention.
Collapse
Affiliation(s)
- António M Fernandes
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Duncan S Mearns
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Joseph C Donovan
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Johannes Larsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Thomas O Helmbrecht
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Yvonne Kölsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Eva Laurell
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Marco Dal Maschio
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| |
Collapse
|
28
|
Loring MD, Thomson EE, Naumann EA. Whole-brain interactions underlying zebrafish behavior. Curr Opin Neurobiol 2020; 65:88-99. [PMID: 33221591 PMCID: PMC10697041 DOI: 10.1016/j.conb.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Detailed quantification of neural dynamics across the entire brain will be the key to genuinely understanding perception and behavior. With the recent developments in microscopy and biosensor engineering, the zebrafish has made a grand entrance in neuroscience as its small size and optical transparency enable imaging access to its entire brain at cellular and even subcellular resolution. However, until recently many neurobiological insights were largely correlational or provided little mechanistic insight into the brain-wide population dynamics generated by diverse types of neurons. Now with increasingly sophisticated behavioral, imaging, and causal intervention paradigms, zebrafish are revealing how entire vertebrate brains function. Here we review recent research that fulfills promises made by the early wave of technical advances. These studies reveal new features of brain-wide neural processing and the importance of integrative investigation and computational modelling. Moreover, we outline the future tools necessary for solving broader brain-scale circuit problems.
Collapse
Affiliation(s)
- Matthew D Loring
- Duke School of Medicine, Department of Neurobiology, Durham, NC 27710, United States
| | - Eric E Thomson
- Duke School of Medicine, Department of Neurobiology, Durham, NC 27710, United States
| | - Eva A Naumann
- Duke School of Medicine, Department of Neurobiology, Durham, NC 27710, United States.
| |
Collapse
|
29
|
Toscano-Márquez B, Oboti L, Harvey-Girard E, Maler L, Krahe R. Distribution of the cholinergic nuclei in the brain of the weakly electric fish, Apteronotus leptorhynchus: Implications for sensory processing. J Comp Neurol 2020; 529:1810-1829. [PMID: 33089503 DOI: 10.1002/cne.25058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Acetylcholine acts as a neurotransmitter/neuromodulator of many central nervous system processes such as learning and memory, attention, motor control, and sensory processing. The present study describes the spatial distribution of cholinergic neurons throughout the brain of the weakly electric fish, Apteronotus leptorhynchus, using in situ hybridization of choline acetyltransferase mRNA. Distinct groups of cholinergic cells were observed in the telencephalon, diencephalon, mesencephalon, and hindbrain. These included cholinergic cell groups typically identified in other vertebrate brains, for example, motor neurons. Using both in vitro and ex vivo neuronal tracing methods, we identified two new cholinergic connections leading to novel hypotheses on their functional significance. Projections to the nucleus praeeminentialis (nP) arise from isthmic nuclei, possibly including the nucleus lateralis valvulae (nLV) and the isthmic nucleus (nI). The nP is a central component of all electrosensory feedback pathways to the electrosensory lateral line lobe (ELL). We have previously shown that some neurons in nP, TS, and tectum express muscarinic receptors. We hypothesize that, based on nLV/nI cell responses in other teleosts and isthmic connectivity in A. leptorhynchus, the isthmic connections to nP, TS, and tectum modulate responses to electrosensory and/or visual motion and, in particular, to looming/receding stimuli. In addition, we found that the octavolateral efferent (OE) nucleus is the likely source of cholinergic fibers innervating the ELL. In other teleosts, OE inhibits octavolateral hair cells during locomotion. In gymnotiform fish, OE may also act on the first central processing stage and, we hypothesize, implement corollary discharge modulation of electrosensory processing during locomotion.
Collapse
Affiliation(s)
| | - Livio Oboti
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| | - Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, Quebec.,Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| |
Collapse
|
30
|
Oldfield CS, Grossrubatscher I, Chávez M, Hoagland A, Huth AR, Carroll EC, Prendergast A, Qu T, Gallant JL, Wyart C, Isacoff EY. Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. eLife 2020; 9:e56619. [PMID: 32985972 PMCID: PMC7561350 DOI: 10.7554/elife.56619] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/26/2020] [Indexed: 01/16/2023] Open
Abstract
Experience influences behavior, but little is known about how experience is encoded in the brain, and how changes in neural activity are implemented at a network level to improve performance. Here we investigate how differences in experience impact brain circuitry and behavior in larval zebrafish prey capture. We find that experience of live prey compared to inert food increases capture success by boosting capture initiation. In response to live prey, animals with and without prior experience of live prey show activity in visual areas (pretectum and optic tectum) and motor areas (cerebellum and hindbrain), with similar visual area retinotopic maps of prey position. However, prey-experienced animals more readily initiate capture in response to visual area activity and have greater visually-evoked activity in two forebrain areas: the telencephalon and habenula. Consequently, disruption of habenular neurons reduces capture performance in prey-experienced fish. Together, our results suggest that experience of prey strengthens prey-associated visual drive to the forebrain, and that this lowers the threshold for prey-associated visual activity to trigger activity in motor areas, thereby improving capture performance.
Collapse
Affiliation(s)
- Claire S Oldfield
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Irene Grossrubatscher
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | | | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Alex R Huth
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Andrew Prendergast
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Tony Qu
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Jack L Gallant
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Claire Wyart
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
- Bioscience Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
31
|
Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nat Biotechnol 2020; 39:74-83. [PMID: 32778840 DOI: 10.1038/s41587-020-0628-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
A detailed understanding of the function of neural networks and how they are supported by a dynamic vascular system requires fast three-dimensional imaging in thick tissues. Here we present confocal light field microscopy, a method that enables fast volumetric imaging in the brain at depths of hundreds of micrometers. It uses a generalized confocal detection scheme that selectively collects fluorescent signals from the in-focus volume and provides optical sectioning capability to improve imaging resolution and sensitivity in thick tissues. We demonstrate recording of whole-brain calcium transients in freely swimming zebrafish larvae and observe behaviorally correlated activities in single neurons during prey capture. Furthermore, in the mouse brain, we detect neural activities at depths of up to 370 μm and track blood cells at 70 Hz over a volume of diameter 800 μm × thickness 150 μm and depth of up to 600 μm.
Collapse
|
32
|
Lagogiannis K, Diana G, Meyer MP. Learning steers the ontogeny of an efficient hunting sequence in zebrafish larvae. eLife 2020; 9:55119. [PMID: 32773042 PMCID: PMC7561354 DOI: 10.7554/elife.55119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Goal-directed behaviors may be poorly coordinated in young animals but, with age and experience, behavior progressively adapts to efficiently exploit the animal’s ecological niche. How experience impinges on the developing neural circuits of behavior is an open question. We have conducted a detailed study of the effects of experience on the ontogeny of hunting behavior in larval zebrafish. We report that larvae with prior experience of live prey consume considerably more prey than naive larvae. This is mainly due to increased capture success and a modest increase in hunt rate. We demonstrate that the initial turn to prey and the final capture manoeuvre of the hunting sequence were jointly modified by experience and that modification of these components predicted capture success. Our findings establish an ethologically relevant paradigm in zebrafish for studying how the brain is shaped by experience to drive the ontogeny of efficient behavior.
Collapse
Affiliation(s)
- Konstantinos Lagogiannis
- Centre for Developmental Neurobiology, MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Giovanni Diana
- Centre for Developmental Neurobiology, MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Martin P Meyer
- Centre for Developmental Neurobiology, MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
33
|
Abstract
Escape is one of the most studied animal behaviors, and there is a rich normative theory that links threat properties to evasive actions and their timing. The behavioral principles of escape are evolutionarily conserved and rely on elementary computational steps such as classifying sensory stimuli and executing appropriate movements. These are common building blocks of general adaptive behaviors. Here we consider the computational challenges required for escape behaviors to be implemented, discuss possible algorithmic solutions, and review some of the underlying neural circuits and mechanisms. We outline shared neural principles that can be implemented by evolutionarily ancient neural systems to generate escape behavior, to which cortical encephalization has been added to allow for increased sophistication and flexibility in responding to threat.
Collapse
Affiliation(s)
- Tiago Branco
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London W1T 4JG, United Kingdom
| | - Peter Redgrave
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, United Kingdom
| |
Collapse
|
34
|
Abstract
Research over the last 20 years has firmly established the existence of sleep states across the animal kingdom. Work in non-mammalian animal models such as nematodes, fruit flies, and zebrafish has now uncovered many evolutionarily conserved aspects of sleep physiology and regulation, including shared circuit architecture, homeostatic and circadian control elements, and principles linking sleep physiology to function. Non-mammalian sleep research is now shedding light on fundamental aspects of the genetic and neuronal circuit regulation of sleep, with direct implications for the understanding of how sleep is regulated in mammals.
Collapse
Affiliation(s)
- Declan G. Lyons
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| |
Collapse
|
35
|
Mysore SP, Kothari NB. Mechanisms of competitive selection: A canonical neural circuit framework. eLife 2020; 9:e51473. [PMID: 32431293 PMCID: PMC7239658 DOI: 10.7554/elife.51473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/02/2020] [Indexed: 01/25/2023] Open
Abstract
Competitive selection, the transformation of multiple competing sensory inputs and internal states into a unitary choice, is a fundamental component of animal behavior. Selection behaviors have been studied under several intersecting umbrellas including decision-making, action selection, perceptual categorization, and attentional selection. Neural correlates of these behaviors and computational models have been investigated extensively. However, specific, identifiable neural circuit mechanisms underlying the implementation of selection remain elusive. Here, we employ a first principles approach to map competitive selection explicitly onto neural circuit elements. We decompose selection into six computational primitives, identify demands that their execution places on neural circuit design, and propose a canonical neural circuit framework. The resulting framework has several links to neural literature, indicating its biological feasibility, and has several common elements with prominent computational models, suggesting its generality. We propose that this framework can help catalyze experimental discovery of the neural circuit underpinnings of competitive selection.
Collapse
Affiliation(s)
- Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ninad B Kothari
- Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
36
|
Folgueira M, Riva-Mendoza S, Ferreño-Galmán N, Castro A, Bianco IH, Anadón R, Yáñez J. Anatomy and Connectivity of the Torus Longitudinalis of the Adult Zebrafish. Front Neural Circuits 2020; 14:8. [PMID: 32231522 PMCID: PMC7082427 DOI: 10.3389/fncir.2020.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
This study describes the cytoarchitecture of the torus longitudinalis (TL) in adult zebrafish by using light and electron microscopy, as well as its main connections as revealed by DiI tract tracing. In addition, by using high resolution confocal imaging followed by digital tracing, we describe the morphology of tectal pyramidal cells (type I cells) that are GFP positive in the transgenic line Tg(1.4dlx5a-dlx6a:GFP)ot1. The TL consists of numerous small and medium-sized neurons located in a longitudinal eminence attached to the medial optic tectum. A small proportion of these neurons are GABAergic. The neuropil shows three types of synaptic terminals and numerous dendrites. Tracing experiments revealed that the main efference of the TL is formed of parallel-like fibers that course within the marginal layer of the optic tectum. A toral projection to the thalamic nucleus rostrolateralis is also observed. Afferents to the TL come from visual and cerebellum-related nuclei in the pretectum, namely the central, intercalated and the paracommissural pretectal nuclei, as well as from the subvalvular nucleus in the isthmus. Additional afferents to the TL may come from the cerebellum but their origins could not be confirmed. The tectal afferent projection to the TL originates from cells similar to the type X cells described in other cyprinids. Tectal pyramidal neurons show round or piriform cell bodies, with spiny apical dendritic trees in the marginal layer. This anatomical study provides a basis for future functional and developmental studies focused on this cerebellum-like circuit in zebrafish.
Collapse
Affiliation(s)
- Mónica Folgueira
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, Spain
| | - Selva Riva-Mendoza
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain
| | | | - Antonio Castro
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, Spain
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, Spain
| |
Collapse
|
37
|
Johnson RE, Linderman S, Panier T, Wee CL, Song E, Herrera KJ, Miller A, Engert F. Probabilistic Models of Larval Zebrafish Behavior Reveal Structure on Many Scales. Curr Biol 2020; 30:70-82.e4. [PMID: 31866367 PMCID: PMC6958995 DOI: 10.1016/j.cub.2019.11.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/11/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Nervous systems have evolved to combine environmental information with internal state to select and generate adaptive behavioral sequences. To better understand these computations and their implementation in neural circuits, natural behavior must be carefully measured and quantified. Here, we collect high spatial resolution video of single zebrafish larvae swimming in a naturalistic environment and develop models of their action selection across exploration and hunting. Zebrafish larvae swim in punctuated bouts separated by longer periods of rest called interbout intervals. We take advantage of this structure by categorizing bouts into discrete types and representing their behavior as labeled sequences of bout types emitted over time. We then construct probabilistic models-specifically, marked renewal processes-to evaluate how bout types and interbout intervals are selected by the fish as a function of its internal hunger state, behavioral history, and the locations and properties of nearby prey. Finally, we evaluate the models by their predictive likelihood and their ability to generate realistic trajectories of virtual fish swimming through simulated environments. Our simulations capture multiple timescales of structure in larval zebrafish behavior and expose many ways in which hunger state influences their action selection to promote food seeking during hunger and safety during satiety.
Collapse
Affiliation(s)
- Robert Evan Johnson
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard University, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Scott Linderman
- Department of Statistics, Stanford University, 390 Serra Mall, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Thomas Panier
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, 4 Place Jussieu, 75005 Paris, France
| | - Caroline Lei Wee
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard University, 220 Longwood Avenue, Boston, MA 02115, USA; Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, 138673 Singapore, Singapore
| | - Erin Song
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Kristian Joseph Herrera
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Andrew Miller
- Data Science Institute, Columbia University, 550 W 120th Street, New York City, NY 10027, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Privat M, Sumbre G. Naturalistic Behavior: The Zebrafish Larva Strikes Back. Curr Biol 2020; 30:R27-R29. [DOI: 10.1016/j.cub.2019.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Deconstructing Hunting Behavior Reveals a Tightly Coupled Stimulus-Response Loop. Curr Biol 2020; 30:54-69.e9. [DOI: 10.1016/j.cub.2019.11.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/30/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
|
40
|
An interhemispheric neural circuit allowing binocular integration in the optic tectum. Nat Commun 2019; 10:5471. [PMID: 31784529 PMCID: PMC6884480 DOI: 10.1038/s41467-019-13484-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Binocular stereopsis requires the convergence of visual information from corresponding points in visual space seen by two different lines of sight. This may be achieved by superposition of retinal input from each eye onto the same downstream neurons via ipsi- and contralaterally projecting optic nerve fibers. Zebrafish larvae can perceive binocular cues during prey hunting but have exclusively contralateral retinotectal projections. Here we report brain activity in the tectal neuropil ipsilateral to the visually stimulated eye, despite the absence of ipsilateral retinotectal projections. This activity colocalizes with arbors of commissural neurons, termed intertectal neurons (ITNs), that connect the tectal hemispheres. ITNs are GABAergic, establish tectal synapses bilaterally and respond to small moving stimuli. ITN-ablation impairs capture swim initiation when prey is positioned in the binocular strike zone. We propose an intertectal circuit that controls execution of the prey-capture motor program following binocular localization of prey, without requiring ipsilateral retinotectal projections. Zebrafish larvae can binocularly detect prey objects in order to strike but lack ipsilateral retinotectal fibers for binocular superposition of visual information. Here the authors describe commissural intertectal neurons and show that they are required for the initiation of capture strikes.
Collapse
|
41
|
Bolton AD, Haesemeyer M, Jordi J, Schaechtle U, Saad FA, Mansinghka VK, Tenenbaum JB, Engert F. Elements of a stochastic 3D prediction engine in larval zebrafish prey capture. eLife 2019; 8:e51975. [PMID: 31769753 PMCID: PMC6930116 DOI: 10.7554/elife.51975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
The computational principles underlying predictive capabilities in animals are poorly understood. Here, we wondered whether predictive models mediating prey capture could be reduced to a simple set of sensorimotor rules performed by a primitive organism. For this task, we chose the larval zebrafish, a tractable vertebrate that pursues and captures swimming microbes. Using a novel naturalistic 3D setup, we show that the zebrafish combines position and velocity perception to construct a future positional estimate of its prey, indicating an ability to project trajectories forward in time. Importantly, the stochasticity in the fish's sensorimotor transformations provides a considerable advantage over equivalent noise-free strategies. This surprising result coalesces with recent findings that illustrate the benefits of biological stochasticity to adaptive behavior. In sum, our study reveals that zebrafish are equipped with a recursive prey capture algorithm, built up from simple stochastic rules, that embodies an implicit predictive model of the world.
Collapse
Affiliation(s)
- Andrew D Bolton
- Center for Brain ScienceHarvard UniversityCambridgeUnited States
| | | | - Josua Jordi
- Center for Brain ScienceHarvard UniversityCambridgeUnited States
| | - Ulrich Schaechtle
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Feras A Saad
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Vikash K Mansinghka
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Joshua B Tenenbaum
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Florian Engert
- Center for Brain ScienceHarvard UniversityCambridgeUnited States
| |
Collapse
|
42
|
DeMarco E, Xu N, Baier H, Robles E. Neuron types in the zebrafish optic tectum labeled by an id2b transgene. J Comp Neurol 2019; 528:1173-1188. [PMID: 31725916 DOI: 10.1002/cne.24815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 01/30/2023]
Abstract
The larval zebrafish optic tectum has emerged as a prominent model for understanding how neural circuits control visually guided behaviors. Further advances in this area will require tools to monitor and manipulate tectal neurons with cell type specificity. Here, we characterize the morphology and neurotransmitter phenotype of tectal neurons labeled by an id2b:gal4 transgene. Whole-brain imaging of stable transgenic id2b:gal4 larvae revealed labeling in a subset of neurons in optic tectum, cerebellum, and hindbrain. Genetic mosaic labeling of single neurons within the id2b:gal4 expression pattern enabled us to characterize three tectal neuron types with distinct morphologies and connectivities. The first is a neuron type previously identified in the optic tectum of other teleost fish: the tectal pyramidal neuron (PyrN). PyrNs are local interneurons that form two stratified dendritic arbors and one stratified axonal arbor in the tectal neuropil. The second tectal neuron type labeled by the id2b:gal4 transgene is a projection neuron that forms a stratified dendritic arbor in the tectal neuropil and an axon that exits tectum to form a topographic projection to torus longitudinalis (TL). A third neuron type labeled is a projection neuron with a nonstratified dendritic arbor and a descending axonal projection to tegmentum. These findings establish the id2b:gal4 transgenic as a useful tool for future studies aimed at elucidating the functional role of tectum, TL, and tegmentum in visually guided behaviors.
Collapse
Affiliation(s)
- Elisabeth DeMarco
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Nina Xu
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Herwig Baier
- Max Planck Institute for Neurobiology, Martinsried, Germany
| | - Estuardo Robles
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| |
Collapse
|
43
|
Antinucci P, Folgueira M, Bianco IH. Pretectal neurons control hunting behaviour. eLife 2019; 8:e48114. [PMID: 31591961 PMCID: PMC6783268 DOI: 10.7554/elife.48114] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/30/2019] [Indexed: 01/25/2023] Open
Abstract
For many species, hunting is an innate behaviour that is crucial for survival, yet the circuits that control predatory action sequences are poorly understood. We used larval zebrafish to identify a population of pretectal neurons that control hunting. By combining calcium imaging with a virtual hunting assay, we identified a discrete pretectal region that is selectively active when animals initiate hunting. Targeted genetic labelling allowed us to examine the function and morphology of individual cells and identify two classes of pretectal neuron that project to ipsilateral optic tectum or the contralateral tegmentum. Optogenetic stimulation of single neurons of either class was able to induce sustained hunting sequences, in the absence of prey. Furthermore, laser ablation of these neurons impaired prey-catching and prevented induction of hunting by optogenetic stimulation of the anterior-ventral tectum. We propose that this specific population of pretectal neurons functions as a command system to induce predatory behaviour.
Collapse
Affiliation(s)
- Paride Antinucci
- Department of Neuroscience, Physiology & PharmacologyUCLLondonUnited Kingdom
| | - Mónica Folgueira
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain
- Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & PharmacologyUCLLondonUnited Kingdom
| |
Collapse
|