1
|
Soler-Tovar D, Escobar LE. Rabies transmitted from vampires to cattle: An overview. PLoS One 2025; 20:e0317214. [PMID: 39804921 PMCID: PMC11730393 DOI: 10.1371/journal.pone.0317214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Rabies is a zoonotic infectious disease of global distribution that impacts human and animal health. In rural Latin America, rabies negatively impacts food security and the economy due to losses in livestock production. The common vampire bat, Desmodus rotundus, is the main reservoir and transmitter of rabies virus (RABV) to domestic animals in Latin America. Desmodus rotundus RABV is known to impact the cattle industry, from small farmers to large corporations. We assessed the main patterns of rabies in cattle attributed to D. rotundus RABV across Latin America. Epidemiological data on rabies from Latin America were collected from the Pan American Health Organization spanning the 1970-2023 period. Analyses revealed an average of 450 outbreaks annually for the countries where D. rotundus is distributed, with at least 6 animals dying in each outbreak. Brazil, Colombia, Peru, and Mexico were the Latin American countries with the highest number of rabies outbreaks during the study period and are the most affected countries in recent years. Findings suggest a re-emergence of bat-borne rabies in the region with more outbreaks reported in recent years, especially during the 2003-2020 period. Rabies outbreaks in cattle in the 2000-2020 period were significantly more frequent than in previous decades, with an increase in cross-species transmission after 2002. The size of outbreaks, however, was smaller in recent years, involving lower cattle mortality. Peru, El Salvador, and Brazil showed a strong association (R = 0.73, p = 0.01) between rabies incidence in D. rotundus (rates per million humans: 1.61, 0.94, and 1.09, respectively) and rabies outbreaks in cattle (rates per million cattle: 465.85, 351.01, and 48.22, respectively). A sustained, standardized, and widespread monitoring of D. rotundus demography and health could serve to inform an early warning system for the early detection of RABV and other bat-borne pathogens in Latin America. Current data can be used to forecast when, where, and in which intensity RABV outbreaks are more likely to occur in subtropical and tropical Latin America. A decrease in the size of outbreaks could suggest that strategies for epidemic management (e.g., education, early diagnosis, vaccination) have been effective. The increase in the number of outbreaks could suggest that the factors facilitating cross-species transmission could be on the rise.
Collapse
Affiliation(s)
- Diego Soler-Tovar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America
- Faculty of Agricultural Sciences, Universidad de La Salle, Bogotá, Colombia
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America
- Faculty of Agricultural Sciences, Universidad de La Salle, Bogotá, Colombia
- Kellogg Center for Philosophy, Politics, and Economics, Virginia Tech, Blacksburg, VA, United States of America
- Global Change Center, Virginia Tech, Blacksburg, VA, United States of America
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
2
|
Forli A, Yartsev MM. Hippocampal representation during collective spatial behaviour in bats. Nature 2023; 621:796-803. [PMID: 37648869 PMCID: PMC10533399 DOI: 10.1038/s41586-023-06478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Social animals live and move through spaces shaped by the presence, motion and sensory cues of multiple other individuals1-6. Neural activity in the hippocampus is known to reflect spatial behaviour7-9 yet its study is lacking in such dynamic group settings, which are ubiquitous in natural environments. Here we studied hippocampal activity in groups of bats engaged in collective spatial behaviour. We find that, under spontaneous conditions, a robust spatial structure emerges at the group level whereby behaviour is anchored to specific locations, movement patterns and individual social preferences. Using wireless electrophysiological recordings from both stationary and flying bats, we find that many hippocampal neurons are tuned to key features of group dynamics. These include the presence or absence of a conspecific, but not typically of an object, at landing sites, shared spatial locations, individual identities and sensory signals that are broadcasted in the group setting. Finally, using wireless calcium imaging, we find that social responses are anatomically distributed and robustly represented at the population level. Combined, our findings reveal that hippocampal activity contains a rich representation of naturally emerging spatial behaviours in animal groups that could in turn support the complex feat of collective behaviour.
Collapse
Affiliation(s)
- Angelo Forli
- Department of Bioengineering, UC Berkeley, Berkeley, CA, USA
| | - Michael M Yartsev
- Department of Bioengineering, UC Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Parthasarathy B, Dumke M, Herberstein ME, Schneider JM. Male cooperation improves their own and kin-group productivity in a group-foraging spider. Sci Rep 2023; 13:366. [PMID: 36611080 PMCID: PMC9825364 DOI: 10.1038/s41598-022-27282-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Cooperation should only evolve if the direct and/or indirect benefits exceed the costs. Hence, cooperators are expected to generate selective benefits for themselves and the kin-group while defectors will impose costs. The subsocial spider, Australomisidia ergandros, shows consistent cooperation and defection tactics while foraging. Cooperative individuals are consistently likely to share prey with other group members whereas defector spiders rarely share the prey they acquired. Here, we assess costs and benefits of cooperation, and the causal determinants behind cooperative and defective phenotypes. We constructed experimental kin-colonies of A. ergandros composed of pure cooperative or defector foragers and show that pure cooperative groups had higher hunting success as they acquired prey more quickly with greater joint participation than pure defector groups. Importantly, defectors suffered higher mortality than cooperators and lost considerable weight. A social network approach using subadult spiders revealed that foraging tactic is sex dependent with males cooperating more frequently than females. Our results provide a rare empirical demonstration of sex-specific male cooperation that confer individual and kin-group benefits.
Collapse
Affiliation(s)
- Bharat Parthasarathy
- Institute for Cell and Systems Biology of Animals, Universität Hamburg, 20146, Hamburg, Germany.
| | - Marlis Dumke
- Institute for Cell and Systems Biology of Animals, Universität Hamburg, 20146, Hamburg, Germany
| | - Marie E Herberstein
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jutta M Schneider
- Institute for Cell and Systems Biology of Animals, Universität Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
4
|
Harding CD, Yovel Y, Peirson SN, Hackett TD, Vyazovskiy VV. Re-examining extreme sleep duration in bats: implications for sleep phylogeny, ecology, and function. Sleep 2022; 45:zsac064. [PMID: 35279722 PMCID: PMC9366634 DOI: 10.1093/sleep/zsac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Bats, quoted as sleeping for up to 20 h a day, are an often used example of extreme sleep duration amongst mammals. Given that duration has historically been one of the primary metrics featured in comparative studies of sleep, it is important that species specific sleep durations are well founded. Here, we re-examined the evidence for the characterization of bats as extreme sleepers and discuss whether it provides a useful representation of the sleep behavior of Chiroptera. Although there are a wealth of activity data to suggest that the diurnal cycle of bats is dominated by rest, estimates of sleep time generated from electrophysiological analyses suggest considerable interspecific variation, ranging from 83% to a more moderate 61% of the 24 h day spent asleep. Temperature-dependent changes in the duration and electroencephalographic profile of sleep suggest that bats represent a unique model for investigating the relationship between sleep and torpor. Further sources of intra-specific variation in sleep duration, including the impact of artificial laboratory environments and sleep intensity, remain unexplored. Future studies conducted in naturalistic environments, using larger sample sizes and relying on a pre-determined set of defining criteria will undoubtedly provide novel insights into sleep in bats and other species.
Collapse
Affiliation(s)
- Christian D Harding
- Department of Physiology Anatomy and Genetics, Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Stuart N Peirson
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | | | - Vladyslav V Vyazovskiy
- Department of Physiology Anatomy and Genetics, Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| |
Collapse
|
5
|
Rose MC, Styr B, Schmid TA, Elie JE, Yartsev MM. Cortical representation of group social communication in bats. Science 2021; 374:eaba9584. [PMID: 34672724 PMCID: PMC8775406 DOI: 10.1126/science.aba9584] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Social interactions occur in group settings and are mediated by communication signals that are exchanged between individuals, often using vocalizations. The neural representation of group social communication remains largely unexplored. We conducted simultaneous wireless electrophysiological recordings from the frontal cortices of groups of Egyptian fruit bats engaged in both spontaneous and task-induced vocal interactions. We found that the activity of single neurons distinguished between vocalizations produced by self and by others, as well as among specific individuals. Coordinated neural activity among group members exhibited stable bidirectional interbrain correlation patterns specific to spontaneous communicative interactions. Tracking social and spatial arrangements within a group revealed a relationship between social preferences and intra- and interbrain activity patterns. Combined, these findings reveal a dedicated neural repertoire for group social communication within and across the brains of freely communicating groups of bats.
Collapse
Affiliation(s)
- Maimon C. Rose
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Boaz Styr
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Tobias A. Schmid
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Julie E. Elie
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Michael M. Yartsev
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Egert-Berg K, Handel M, Goldshtein A, Eitan O, Borissov I, Yovel Y. Fruit bats adjust their foraging strategies to urban environments to diversify their diet. BMC Biol 2021; 19:123. [PMID: 34134697 PMCID: PMC8210355 DOI: 10.1186/s12915-021-01060-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Urbanization is one of the most influential processes on our globe, putting a great number of species under threat. Some species learn to cope with urbanization, and a few even benefit from it, but we are only starting to understand how they do so. In this study, we GPS tracked Egyptian fruit bats from urban and rural populations to compare their movement and foraging in urban and rural environments. Because fruit trees are distributed differently in these two environments, with a higher diversity in urban environments, we hypothesized that foraging strategies will differ too. Results When foraging in urban environments, bats were much more exploratory than when foraging in rural environments, visiting more sites per hour and switching foraging sites more often on consecutive nights. By doing so, bats foraging in settlements diversified their diet in comparison to rural bats, as was also evident from their choice to often switch fruit species. Interestingly, the location of the roost did not dictate the foraging grounds, and we found that many bats choose to roost in the countryside but nightly commute to and forage in urban environments. Conclusions Bats are unique among small mammals in their ability to move far rapidly. Our study is an excellent example of how animals adjust to environmental changes, and it shows how such mobile mammals might exploit the new urban fragmented environment that is taking over our landscape. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01060-x.
Collapse
Affiliation(s)
- Katya Egert-Berg
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Michal Handel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Aya Goldshtein
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ofri Eitan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ivailo Borissov
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yossi Yovel
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel. .,School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel. .,Wissenschaftskolleg zu Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Be early or be tolerated: vervet monkey, Chlorocebus pygerythrus, foraging strategies in a dispersed resource. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Moreno KR, Weinberg M, Harten L, Salinas Ramos VB, Herrera M LG, Czirják GÁ, Yovel Y. Sick bats stay home alone: fruit bats practice social distancing when faced with an immunological challenge. Ann N Y Acad Sci 2021; 1505:178-190. [PMID: 33876431 PMCID: PMC9290741 DOI: 10.1111/nyas.14600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Along with its many advantages, social roosting imposes a major risk of pathogen transmission. How social animals reduce this risk is poorly documented. We used lipopolysaccharide challenge to imitate bacterial infection in both a captive and a free‐living colony of an extremely social, long‐lived mammal—the Egyptian fruit bat. We monitored behavioral and physiological responses using an arsenal of methods, including onboard GPS to track foraging, acceleration sensors to monitor movement, infrared video to record social behavior, and blood samples to measure immune markers. Sick‐like (immune‐challenged) bats exhibited an increased immune response, as well as classic illness symptoms, including fever, weight loss, anorexia, and lethargy. Notably, the bats also exhibited behaviors that would reduce pathogen transfer. They perched alone and appeared to voluntarily isolate themselves from the group by leaving the social cluster, which is extremely atypical for this species. The sick‐like individuals in the open colony ceased foraging outdoors for at least two nights, thus reducing transmission to neighboring colonies. Together, these sickness behaviors demonstrate a strong, integrative immune response that promotes recovery of infected individuals while reducing pathogen transmission inside and outside the roost, including spillover events to other species, such as humans.
Collapse
Affiliation(s)
- Kelsey R Moreno
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Maya Weinberg
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Lee Harten
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Valeria B Salinas Ramos
- Department of Agriculture, University of Naples Federico II, Naples, Italy.,Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Yossi Yovel
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
|
10
|
Alfaro L, Cabrera R. Effect of group size on producer-scrounger strategies of Wistar rats. Behav Processes 2020; 182:104280. [PMID: 33188845 DOI: 10.1016/j.beproc.2020.104280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/29/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
In a collective foraging situation, we assessed the distribution of search responses of Wistar rats relative to the size of the group. For both, small and large groups, the number of production opportunities per capita was equal. Foraging strategies were classified as either production (opening gates with food) or scrounging (following conspecifics). Small groups showed a higher proportion of producers than large groups and required less time to deplete the food. The proportion of producing and scrounging responses yields to equilibrium between their payoffs. Producing and scrounging were highly correlated with different prior responses. Also, the relative frequency of producing and scrounging associated activities correlated with the time spent consuming food procured by each activity. It is possible that a simple outcome-strategy feedback mechanism mediates the choice of prior activities and procurement responses.
Collapse
Affiliation(s)
- Luis Alfaro
- Universidad De Guadalajara (Cuvalles), Mexico
| | - Rosalva Cabrera
- Universidad Nacional Autónoma de México (Fes Iztacala), Mexico.
| |
Collapse
|
11
|
Decision making in foraging bats. Curr Opin Neurobiol 2020; 60:169-175. [PMID: 31927435 DOI: 10.1016/j.conb.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022]
Abstract
Foraging is a complex and cognitively demanding behavior. Although it is often regarded as a mundane task, foraging requires the continuous weighting and integration of many sources of information with varying levels of credence. Bats are extremely diverse in their ecology and behavior, and thus demonstrate a wide variety of foraging strategies. In this review, we examine the different factors influencing the decision process of bats during foraging. Technological developments of recent years will soon enable real-time tracking of environmental conditions, of the position and quality of food items, the location of conspecifics, and the bat's movement history. Monitoring these variables alongside the continuous movement of the bat will facilitate the testing of different decision-making theories such as the use of reinforcement learning in wild free ranging bats and other animals.
Collapse
|