1
|
Klímová M, Bloem IM, Ling S. How does orientation-tuned normalization spread across the visual field? J Neurophysiol 2025; 133:539-546. [PMID: 39772970 DOI: 10.1152/jn.00224.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Visuocortical responses are regulated by gain control mechanisms, giving rise to fundamental neural and perceptual phenomena such as surround suppression. Suppression strength, determined by the composition and relative properties of stimuli, controls the strength of neural responses in early visual cortex, and in turn, the subjective salience of the visual stimulus. Notably, suppression strength is modulated by feature similarity; for instance, responses to a center-surround stimulus in which the components are collinear to each other are weaker than when they are orthogonal. However, this feature-tuned aspect of normalization, and how it may affect the gain of responses, has been understudied. Here, we examine the contribution of the tuned component of suppression to contrast response modulations across the visual field. To do so, we used functional magnetic resonance imaging (fMRI) to measure contrast response functions (CRFs) in early visual cortex (areas V1-V3) in 10 observers while they viewed full-field center-surround gratings. The center stimulus varied in contrast between 2.67% and 96% and was surrounded by a collinear or orthogonal surround at full contrast. We found substantially stronger suppression of responses when the surround was parallel to the center, manifesting as shifts in the population CRF. The magnitude of the CRF shift was strongly dependent on voxel spatial preference and seen primarily in voxels whose receptive field spatial preference corresponds to the area straddling the center-surround boundary in our display, with little-to-no modulation elsewhere.NEW & NOTEWORTHY Visuocortical responses are underpinned by gain control mechanisms. In surround suppression, it has been shown that suppression strength is affected by the orientation similarity between the center and surround stimuli. In this study, we examine the impact of orientation-tuned suppression on population contrast responses in early visual cortex and its spread across the visual field. Results show stronger suppression in parallel stimulus configurations, with suppression largely isolated to voxels near the center-surround boundary.
Collapse
Affiliation(s)
- Michaela Klímová
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
| | - Ilona M Bloem
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Sam Ling
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Zhao XN, Dong XS, Jiang DQ, Wu S, Tang SM, Yu C. Population coding for figure-ground texture segregation in macaque V1 and V4. Prog Neurobiol 2024; 240:102655. [PMID: 38969016 DOI: 10.1016/j.pneurobio.2024.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/09/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Object recognition often involves the brain segregating objects from their surroundings. Neurophysiological studies of figure-ground texture segregation have yielded inconsistent results, particularly on whether V1 neurons can perform figure-ground texture segregation or just detect texture borders. To address this issue from a population perspective, we utilized two-photon calcium imaging to simultaneously record the responses of large samples of V1 and V4 neurons to figure-ground texture stimuli in awake, fixating macaques. The average response changes indicate that V1 neurons mainly detect texture borders, while V4 neurons are involved in figure-ground segregation. However, population analysis (SVM decoding of PCA-transformed neuronal responses) reveal that V1 neurons not only detect figure-ground borders, but also contribute to figure-ground texture segregation, although requiring substantially more principal components than V4 neurons to reach a 75 % decoding accuracy. Individually, V1/V4 neurons showing larger (negative/positive) figure-ground response differences contribute more to figure-ground segregation. But for V1 neurons, the contribution becomes significant only when many principal components are considered. We conclude that V1 neurons participate in figure-ground segregation primarily by defining the figure borders, and the poorly structured figure-ground information V1 neurons carry could be further utilized by V4 neurons to accomplish figure-ground segregation.
Collapse
Affiliation(s)
- Xing-Nan Zhao
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China; PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xing-Si Dong
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China; PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Dan-Qing Jiang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China; PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Si Wu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China; PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, China; IDG-McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Shi-Ming Tang
- PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, China; IDG-McGovern Institute for Brain Research, Peking University, Beijing, China; School of Life Sciences, Peking University, Beijing, China.
| | - Cong Yu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China; IDG-McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
3
|
Miao HY, Tong F. Convolutional neural network models applied to neuronal responses in macaque V1 reveal limited nonlinear processing. J Vis 2024; 24:1. [PMID: 38829629 PMCID: PMC11156204 DOI: 10.1167/jov.24.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/03/2024] [Indexed: 06/05/2024] Open
Abstract
Computational models of the primary visual cortex (V1) have suggested that V1 neurons behave like Gabor filters followed by simple nonlinearities. However, recent work employing convolutional neural network (CNN) models has suggested that V1 relies on far more nonlinear computations than previously thought. Specifically, unit responses in an intermediate layer of VGG-19 were found to best predict macaque V1 responses to thousands of natural and synthetic images. Here, we evaluated the hypothesis that the poor performance of lower layer units in VGG-19 might be attributable to their small receptive field size rather than to their lack of complexity per se. We compared VGG-19 with AlexNet, which has much larger receptive fields in its lower layers. Whereas the best-performing layer of VGG-19 occurred after seven nonlinear steps, the first convolutional layer of AlexNet best predicted V1 responses. Although the predictive accuracy of VGG-19 was somewhat better than that of standard AlexNet, we found that a modified version of AlexNet could match the performance of VGG-19 after only a few nonlinear computations. Control analyses revealed that decreasing the size of the input images caused the best-performing layer of VGG-19 to shift to a lower layer, consistent with the hypothesis that the relationship between image size and receptive field size can strongly affect model performance. We conducted additional analyses using a Gabor pyramid model to test for nonlinear contributions of normalization and contrast saturation. Overall, our findings suggest that the feedforward responses of V1 neurons can be well explained by assuming only a few nonlinear processing stages.
Collapse
Affiliation(s)
- Hui-Yuan Miao
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Frank Tong
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Malania M, Lin YS, Hörmandinger C, Werner JS, Greenlee MW, Plank T. Training-induced changes in population receptive field properties in visual cortex: Impact of eccentric vision training on population receptive field properties and the crowding effect. J Vis 2024; 24:7. [PMID: 38771584 PMCID: PMC11114612 DOI: 10.1167/jov.24.5.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/15/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to investigate the impact of eccentric-vision training on population receptive field (pRF) estimates to provide insights into brain plasticity processes driven by practice. Fifteen participants underwent functional magnetic resonance imaging (fMRI) measurements before and after behavioral training on a visual crowding task, where the relative orientation of the opening (gap position: up/down, left/right) in a Landolt C optotype had to be discriminated in the presence of flanking ring stimuli. Drifting checkerboard bar stimuli were used for pRF size estimation in multiple regions of interest (ROIs): dorsal-V1 (dV1), dorsal-V2 (dV2), ventral-V1 (vV1), and ventral-V2 (vV2), including the visual cortex region corresponding to the trained retinal location. pRF estimates in V1 and V2 were obtained along eccentricities from 0.5° to 9°. Statistical analyses revealed a significant decrease of the crowding anisotropy index (p = 0.009) after training, indicating improvement on crowding task performance following training. Notably, pRF sizes at and near the trained location decreased significantly (p = 0.005). Dorsal and ventral V2 exhibited significant pRF size reductions, especially at eccentricities where the training stimuli were presented (p < 0.001). In contrast, no significant changes in pRF estimates were found in either vV1 (p = 0.181) or dV1 (p = 0.055) voxels. These findings suggest that practice on a crowding task can lead to a reduction of pRF sizes in trained visual cortex, particularly in V2, highlighting the plasticity and adaptability of the adult visual system induced by prolonged training.
Collapse
Affiliation(s)
- Maka Malania
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Yih-Shiuan Lin
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - John S Werner
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Mark W Greenlee
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Tina Plank
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Cazemier JL, Haak R, Tran TKL, Hsu ATY, Husic M, Peri BD, Kirchberger L, Self MW, Roelfsema P, Heimel JA. Involvement of superior colliculus in complex figure detection of mice. eLife 2024; 13:e83708. [PMID: 38270590 PMCID: PMC10810606 DOI: 10.7554/elife.83708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Object detection is an essential function of the visual system. Although the visual cortex plays an important role in object detection, the superior colliculus can support detection when the visual cortex is ablated or silenced. Moreover, it has been shown that superficial layers of mouse SC (sSC) encode visual features of complex objects, and that this code is not inherited from the primary visual cortex. This suggests that mouse sSC may provide a significant contribution to complex object vision. Here, we use optogenetics to show that mouse sSC is involved in figure detection based on differences in figure contrast, orientation, and phase. Additionally, our neural recordings show that in mouse sSC, image elements that belong to a figure elicit stronger activity than those same elements when they are part of the background. The discriminability of this neural code is higher for correct trials than for incorrect trials. Our results provide new insight into the behavioral relevance of the visual processing that takes place in sSC.
Collapse
Affiliation(s)
- J Leonie Cazemier
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Robin Haak
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - TK Loan Tran
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Ann TY Hsu
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Medina Husic
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Brandon D Peri
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Lisa Kirchberger
- Department of Vision and Cognition, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Matthew W Self
- Department of Vision and Cognition, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Pieter Roelfsema
- Department of Vision and Cognition, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
- Department of Integrative Neurophysiology, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical CentreAmsterdamNetherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la VisionParisFrance
| | - J Alexander Heimel
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| |
Collapse
|
6
|
Heij J, Raimondo L, Siero JCW, Dumoulin SO, van der Zwaag W, Knapen T. A selection and targeting framework of cortical locations for line-scanning fMRI. Hum Brain Mapp 2023; 44:5471-5484. [PMID: 37608563 PMCID: PMC10543358 DOI: 10.1002/hbm.26459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Depth-resolved functional magnetic resonance imaging (fMRI) is an emerging field growing in popularity given the potential of separating signals from different computational processes in cerebral cortex. Conventional acquisition schemes suffer from low spatial and temporal resolutions. Line-scanning methods allow depth-resolved fMRI by sacrificing spatial coverage to sample blood oxygenated level-dependent (BOLD) responses at ultra-high temporal and spatial resolution. For neuroscience applications, it is critical to be able to place the line accurately to (1) sample the right neural population and (2) target that neural population with tailored stimuli or tasks. To this end, we devised a multi-session framework where a target cortical location is selected based on anatomical and functional properties. The line is then positioned according to this information in a separate second session, and we tailor the experiment to focus on the target location. Anatomically, the precision of the line placement was confirmed by projecting a nominal representation of the acquired line back onto the surface. Functional estimates of neural selectivities in the line, as quantified by a visual population-receptive field model, resembled the target selectivities well for most subjects. This functional precision was quantified in detail by estimating the distance between the visual field location of the targeted vertex and the location in visual cortex (V1) that most closely resembled the line-scanning estimates; this distance was on average ~5.5 mm. Given the dimensions of the line, differences in acquisition, session, and stimulus design, this validates that line-scanning can be used to probe local neural sensitivities across sessions. In summary, we present an accurate framework for line-scanning MRI; we believe such a framework is required to harness the full potential of line-scanning and maximize its utility. Furthermore, this approach bridges canonical fMRI experiments with electrophysiological experiments, which in turn allows novel avenues for studying human physiology non-invasively.
Collapse
Affiliation(s)
- Jurjen Heij
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Experimental and Applied PsychologyVU UniversityAmsterdamNetherlands
| | - Luisa Raimondo
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Experimental and Applied PsychologyVU UniversityAmsterdamNetherlands
| | - Jeroen C. W. Siero
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Serge O. Dumoulin
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Experimental and Applied PsychologyVU UniversityAmsterdamNetherlands
- Department of Experimental PsychologyUtrecht UniversityUtrechtNetherlands
| | - Wietske van der Zwaag
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Tomas Knapen
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Experimental and Applied PsychologyVU UniversityAmsterdamNetherlands
| |
Collapse
|
7
|
Zhang B, Hu S, Zhang T, Hai M, Wang Y, Li Y, Wang Y. Different patterns of foreground and background processing contribute to texture segregation in humans: an electrophysiological study. PeerJ 2023; 11:e16139. [PMID: 37810782 PMCID: PMC10552746 DOI: 10.7717/peerj.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Background Figure-ground segregation is a necessary process for accurate visual recognition. Previous neurophysiological and human brain imaging studies have suggested that foreground-background segregation relies on both enhanced foreground representation and suppressed background representation. However, in humans, it is not known when and how foreground and background processing play a role in texture segregation. Methods To answer this question, it is crucial to extract and dissociate the neural signals elicited by the foreground and background of a figure texture with high temporal resolution. Here, we combined an electroencephalogram (EEG) recording and a temporal response function (TRF) approach to specifically track the neural responses to the foreground and background of a figure texture from the overall EEG recordings in the luminance-tracking TRF. A uniform texture was included as a neutral condition. The texture segregation visual evoked potential (tsVEP) was calculated by subtracting the uniform TRF from the foreground and background TRFs, respectively, to index the specific segregation activity. Results We found that the foreground and background of a figure texture were processed differently during texture segregation. In the posterior region of the brain, we found a negative component for the foreground tsVEP in the early stage of foreground-background segregation, and two negative components for the background tsVEP in the early and late stages. In the anterior region, we found a positive component for the foreground tsVEP in the late stage, and two positive components for the background tsVEP in the early and late stages of texture processing. Discussion In this study we investigated the temporal profile of foreground and background processing during texture segregation in human participants at a high time resolution. The results demonstrated that the foreground and background jointly contribute to figure-ground segregation in both the early and late phases of texture processing. Our findings provide novel evidence for the neural correlates of foreground-background modulation during figure-ground segregation in humans.
Collapse
Affiliation(s)
- Baoqiang Zhang
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi’an, China
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi’an, China
| | - Saisai Hu
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi’an, China
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi’an, China
| | - Tingkang Zhang
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi’an, China
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi’an, China
| | - Min Hai
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi’an, China
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi’an, China
| | - Yongchun Wang
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi’an, China
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi’an, China
| | - Ya Li
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi’an, China
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi’an, China
| | - Yonghui Wang
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi’an, China
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi’an, China
| |
Collapse
|
8
|
Peterson MA, Campbell ES. Backward masking implicates cortico-cortical recurrent processes in convex figure context effects and cortico-thalamic recurrent processes in resolving figure-ground ambiguity. Front Psychol 2023; 14:1243405. [PMID: 37809293 PMCID: PMC10552270 DOI: 10.3389/fpsyg.2023.1243405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Previous experiments purportedly showed that image-based factors like convexity were sufficient for figure assignment. Recently, however, we found that the probability of perceiving a figure on the convex side of a central border was only slightly higher than chance for two-region displays and increased with the number of display regions; this increase was observed only when the concave regions were homogeneously colored. These convex figure context effects (CEs) revealed that figure assignment in these classic displays entails more than a response to local convexity. A Bayesian observer replicated the convex figure CEs using both a convexity object prior and a new, homogeneous background prior and made the novel prediction that the classic displays in which both the convex and concave regions were homogeneous were ambiguous during perceptual organization. Methods Here, we report three experiments investigating the proposed ambiguity and examining how the convex figure CEs unfold over time with an emphasis on whether they entail recurrent processing. Displays were shown for 100 ms followed by pattern masks after ISIs of 0, 50, or 100 ms. The masking conditions were designed to add noise to recurrent processing and therefore to delay the outcome of processes in which they play a role. In Exp. 1, participants viewed two- and eight-region displays with homogeneous convex regions (homo-convex displays; the putatively ambiguous displays). In Exp. 2, participants viewed putatively unambiguous hetero-convex displays. In Exp. 3, displays and masks were presented to different eyes, thereby delaying mask interference in the thalamus for up to 100 ms. Results and discussion The results of Exps. 1 and 2 are consistent with the interpretation that recurrent processing is involved in generating the convex figure CEs and resolving the ambiguity of homo-convex displays. The results of Exp. 3 suggested that corticofugal recurrent processing is involved in resolving the ambiguity of homo-convex displays and that cortico-cortical recurrent processes play a role in generating convex figure CEs and these two types of recurrent processes operate in parallel. Our results add to evidence that perceptual organization evolves dynamically and reveal that stimuli that seem unambiguous can be ambiguous during perceptual organization.
Collapse
Affiliation(s)
- Mary A. Peterson
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Cognitive Science Program, University of Arizona, Tucson, AZ, United States
| | - Elizabeth Salvagio Campbell
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Cognitive Science Program, University of Arizona, Tucson, AZ, United States
- College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Jia K, Goebel R, Kourtzi Z. Ultra-High Field Imaging of Human Visual Cognition. Annu Rev Vis Sci 2023; 9:479-500. [PMID: 37137282 DOI: 10.1146/annurev-vision-111022-123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.
Collapse
Affiliation(s)
- Ke Jia
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
10
|
Daumail L, Carlson BM, Mitchell BA, Cox MA, Westerberg JA, Johnson C, Martin PR, Tong F, Maier A, Dougherty K. Rapid adaptation of primate LGN neurons to drifting grating stimulation. J Neurophysiol 2023; 129:1447-1467. [PMID: 37162181 PMCID: PMC10259864 DOI: 10.1152/jn.00058.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023] Open
Abstract
The visual system needs to dynamically adapt to changing environments. Much is known about the adaptive effects of constant stimulation over prolonged periods. However, there are open questions regarding adaptation to stimuli that are changing over time, interrupted, or repeated. Feature-specific adaptation to repeating stimuli has been shown to occur as early as primary visual cortex (V1), but there is also evidence for more generalized, fatigue-like adaptation that might occur at an earlier stage of processing. Here, we show adaptation in the lateral geniculate nucleus (LGN) of awake, fixating monkeys following brief (1 s) exposure to repeated cycles of a 4-Hz drifting grating. We examined the relative change of each neuron's response across successive (repeated) grating cycles. We found that neurons from all cell classes (parvocellular, magnocellular, and koniocellular) showed significant adaptation. However, only magnocellular neurons showed adaptation when responses were averaged to a population response. In contrast to firing rates, response variability was largely unaffected. Finally, adaptation was comparable between monocular and binocular stimulation, suggesting that rapid LGN adaptation is monocular in nature.NEW & NOTEWORTHY Neural adaptation can be defined as reduction of spiking responses following repeated or prolonged stimulation. Adaptation helps adjust neural responsiveness to avoid saturation and has been suggested to improve perceptual selectivity, information transmission, and predictive coding. Here, we report rapid adaptation to repeated cycles of gratings drifting over the receptive field of neurons at the earliest site of postretinal processing, the lateral geniculate nucleus of the thalamus.
Collapse
Affiliation(s)
- Loïc Daumail
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Brock M Carlson
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Blake A Mitchell
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Michele A Cox
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States
| | - Jacob A Westerberg
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Cortez Johnson
- Kaiser Permanente Bernard J. Tyson School of Medicine in Pasadena, Pasadena, California, United States
| | - Paul R Martin
- Save Sight Institute and Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Frank Tong
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Alexander Maier
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Kacie Dougherty
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States
| |
Collapse
|
11
|
Mo C, Lu J, Shi C, Fang F. Neural representations of competing stimuli along the dorsal and ventral visual pathways during binocular rivalry. Cereb Cortex 2023; 33:2734-2747. [PMID: 35689650 DOI: 10.1093/cercor/bhac238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/14/2022] Open
Abstract
Binocular rivalry arises when two discrepant stimuli are simultaneously presented to different eyes, during which observers consciously experience vivid perceptual alternations without physical changes in visual inputs. Neural dynamics tracking such perceptual alternations have been identified at both early and late visual areas, leading to the fundamental debate concerning the primary neural substrate underlying binocular rivalry. One promising hypothesis that might reconcile these seemingly paradoxical findings is a gradual shift from interocular competition between monocular neurons to pattern competition among binocular neurons. Here, we examined this hypothesis by investigating how neural representations of rivalrous stimuli evolved along the visual pathway. We found that representations of the dominant and the suppressed stimuli initially co-existed in V1, which were enhanced and attenuated respectively in extrastriate visual areas. Notably, neural activity in V4 was dictated by the representation of the dominant stimulus, while the representation of the suppressed stimulus was only partially inhibited in dorsal areas V3A and MT+. Our findings revealed a progressive transition from the co-existing representations of the rivalrous inputs to the dictatorial representation of the dominant stimulus in the ventral pathway, and advocated different cortical evolutionary patterns of visual representations between the dorsal and the ventral pathways.
Collapse
Affiliation(s)
- Ce Mo
- Department of Psychology, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Junshi Lu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100087, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100087, China
| | - Chao Shi
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100087, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100087, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100087, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100087, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100087, China
| |
Collapse
|
12
|
Shah S, Mancarella M, Hembrook-Short JR, Mock VL, Briggs F. Attention differentially modulates multiunit activity in the lateral geniculate nucleus and V1 of macaque monkeys. J Comp Neurol 2022; 530:1064-1080. [PMID: 33950555 PMCID: PMC8568737 DOI: 10.1002/cne.25168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
Attention promotes the selection of behaviorally relevant sensory signals from the barrage of sensory information available. Visual attention modulates the gain of neuronal activity in all visual brain areas examined, although magnitudes of gain modulations vary across areas. For example, attention gain magnitudes in the dorsal lateral geniculate nucleus (LGN) and primary visual cortex (V1) vary tremendously across fMRI measurements in humans and electrophysiological recordings in behaving monkeys. We sought to determine whether these discrepancies are due simply to differences in species or measurement, or more nuanced properties unique to each visual brain area. We also explored whether robust and consistent attention effects, comparable to those measured in humans with fMRI, are observable in the LGN or V1 of monkeys. We measured attentional modulation of multiunit activity in the LGN and V1 of macaque monkeys engaged in a contrast change detection task requiring shifts in covert visual spatial attention. Rigorous analyses of LGN and V1 multiunit activity revealed robust and consistent attentional facilitation throughout V1, with magnitudes comparable to those observed with fMRI. Interestingly, attentional modulation in the LGN was consistently negligible. These findings demonstrate that discrepancies in attention effects are not simply due to species or measurement differences. We also examined whether attention effects correlated with the feature selectivity of recorded multiunits. Distinct relationships suggest that attentional modulation of multiunit activity depends upon the unique structure and function of visual brain areas.
Collapse
Affiliation(s)
- Shraddha Shah
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Marc Mancarella
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
| | | | - Vanessa L. Mock
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester NY 14642 USA
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester NY 14627 USA
- Center for Visual Science, University of Rochester, Rochester NY 14627 USA
| |
Collapse
|
13
|
Spacek MA, Crombie D, Bauer Y, Born G, Liu X, Katzner S, Busse L. Robust effects of corticothalamic feedback and behavioral state on movie responses in mouse dLGN. eLife 2022; 11:e70469. [PMID: 35315775 PMCID: PMC9020820 DOI: 10.7554/elife.70469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons in the dorsolateral geniculate nucleus (dLGN) of the thalamus receive a substantial proportion of modulatory inputs from corticothalamic (CT) feedback and brain stem nuclei. Hypothesizing that these modulatory influences might be differentially engaged depending on the visual stimulus and behavioral state, we performed in vivo extracellular recordings from mouse dLGN while optogenetically suppressing CT feedback and monitoring behavioral state by locomotion and pupil dilation. For naturalistic movie clips, we found CT feedback to consistently increase dLGN response gain and promote tonic firing. In contrast, for gratings, CT feedback effects on firing rates were mixed. For both stimulus types, the neural signatures of CT feedback closely resembled those of behavioral state, yet effects of behavioral state on responses to movies persisted even when CT feedback was suppressed. We conclude that CT feedback modulates visual information on its way to cortex in a stimulus-dependent manner, but largely independently of behavioral state.
Collapse
Affiliation(s)
- Martin A Spacek
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
| | - Davide Crombie
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU MunichMunichGermany
| | - Yannik Bauer
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU MunichMunichGermany
| | - Gregory Born
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU MunichMunichGermany
| | - Xinyu Liu
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU MunichMunichGermany
| | - Steffen Katzner
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
| | - Laura Busse
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Bernstein Centre for Computational NeuroscienceMunichGermany
| |
Collapse
|
14
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
15
|
Klink PC, Chen X, Vanduffel V, Roelfsema P. Population receptive fields in non-human primates from whole-brain fMRI and large-scale neurophysiology in visual cortex. eLife 2021; 10:67304. [PMID: 34730515 PMCID: PMC8641953 DOI: 10.7554/elife.67304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023] Open
Abstract
Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.
Collapse
Affiliation(s)
| | - Xing Chen
- Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | - Pieter Roelfsema
- Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
16
|
Abstract
Initial evaluation structures (IESs) currently proposed as the earliest detectors of affective stimuli (e.g., amygdala, orbitofrontal cortex, or insula) are high-order structures (a) whose response latency cannot account for the first visual cortex emotion-related response (~80 ms), and (b) lack the necessary infrastructure to locally analyze the visual features that define emotional stimuli. Several thalamic structures accomplish both criteria. The lateral geniculate nucleus (LGN), a first-order thalamic nucleus that actively processes visual information, with the complement of the thalamic reticular nucleus (TRN) are proposed as core IESs. This LGN–TRN tandem could be supported by the pulvinar, a second-order thalamic structure, and by other extrathalamic nuclei. The visual thalamus, scarcely explored in affective neurosciences, seems crucial in early emotional evaluation.
Collapse
Affiliation(s)
- Luis Carretié
- Facultad de Psicología, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
17
|
Zooming-in on higher-level vision: High-resolution fMRI for understanding visual perception and awareness. Prog Neurobiol 2021; 207:101998. [PMID: 33497652 DOI: 10.1016/j.pneurobio.2021.101998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 11/11/2020] [Accepted: 01/16/2021] [Indexed: 12/24/2022]
Abstract
One of the central questions in visual neuroscience is how the sparse retinal signals leaving our eyes are transformed into a rich subjective visual experience of the world. Invasive physiology studies, which offers the highest spatial resolution, have revealed many facts about the processing of simple visual features like contrast, color, and orientation, focusing on the early visual areas. At the same time, standard human fMRI studies with comparably coarser spatial resolution have revealed more complex, functionally specialized, and category-selective responses in higher visual areas. Although the visual system is the best understood among the sensory modalities, these two areas of research remain largely segregated. High-resolution fMRI opens up a possibility for linking them. On the one hand, it allows studying how the higher-level visual functions affect the fine-scale activity in early visual areas. On the other hand, it allows discovering the fine-scale functional organization of higher visual areas and exploring their functional connectivity with visual areas lower in the hierarchy. In this review, I will discuss examples of successful work undertaken in these directions using high-resolution fMRI and discuss where this method could be applied in the future to advance our understanding of the complexity of higher-level visual processing.
Collapse
|
18
|
A source for awareness-dependent figure-ground segregation in human prefrontal cortex. Proc Natl Acad Sci U S A 2020; 117:30836-30847. [PMID: 33199608 DOI: 10.1073/pnas.1922832117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Figure-ground modulation, i.e., the enhancement of neuronal responses evoked by the figure relative to the background, has three complementary components: edge modulation (boundary detection), center modulation (region filling), and background modulation (background suppression). However, the neuronal mechanisms mediating these three modulations and how they depend on awareness remain unclear. For each modulation, we compared both the cueing effect produced in a Posner paradigm and fMRI blood oxygen-level dependent (BOLD) signal in primary visual cortex (V1) evoked by visible relative to invisible orientation-defined figures. We found that edge modulation was independent of awareness, whereas both center and background modulations were strongly modulated by awareness, with greater modulations in the visible than the invisible condition. Effective-connectivity analysis further showed that the awareness-dependent region-filling and background-suppression processes in V1 were not derived through intracortical interactions within V1, but rather by feedback from the frontal eye field (FEF) and dorsolateral prefrontal cortex (DLPFC), respectively. These results indicate a source for an awareness-dependent figure-ground segregation in human prefrontal cortex.
Collapse
|
19
|
Abstract
The physiological response properties of neurons in the visual system are inherited mainly from feedforward inputs. Interestingly, feedback inputs often outnumber feedforward inputs. Although they are numerous, feedback connections are weaker, slower, and considered to be modulatory, in contrast to fast, high-efficacy feedforward connections. Accordingly, the functional role of feedback in visual processing has remained a fundamental mystery in vision science. At the core of this mystery are questions about whether feedback circuits regulate spatial receptive field properties versus temporal responses among target neurons, or whether feedback serves a more global role in arousal or attention. These proposed functions are not mutually exclusive, and there is compelling evidence to support multiple functional roles for feedback. In this review, the role of feedback in vision will be explored mainly from the perspective of corticothalamic feedback. Further generalized principles of feedback applicable to corticocortical connections will also be considered.
Collapse
Affiliation(s)
- Farran Briggs
- Departments of Neuroscience and Brain and Cognitive Sciences, Del Monte Institute for Neuroscience, and Center for Visual Science, University of Rochester, Rochester, New York 14642, USA;
| |
Collapse
|
20
|
Resolving the Spatial Profile of Figure Enhancement in Human V1 through Population Receptive Field Modeling. J Neurosci 2020; 40:3292-3303. [PMID: 32139585 DOI: 10.1523/jneurosci.2377-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/21/2022] Open
Abstract
The detection and segmentation of meaningful figures from their background is one of the primary functions of vision. While work in nonhuman primates has implicated early visual mechanisms in this figure-ground modulation, neuroimaging in humans has instead largely ascribed the processing of figures and objects to higher stages of the visual hierarchy. Here, we used high-field fMRI at 7 Tesla to measure BOLD responses to task-irrelevant orientation-defined figures in human early visual cortex (N = 6, four females). We used a novel population receptive field mapping-based approach to resolve the spatial profiles of two constituent mechanisms of figure-ground modulation: a local boundary response, and a further enhancement spanning the full extent of the figure region that is driven by global differences in features. Reconstructing the distinct spatial profiles of these effects reveals that figure enhancement modulates responses in human early visual cortex in a manner consistent with a mechanism of automatic, contextually driven feedback from higher visual areas.SIGNIFICANCE STATEMENT A core function of the visual system is to parse complex 2D input into meaningful figures. We do so constantly and seamlessly, both by processing information about visible edges and by analyzing large-scale differences between figure and background. While influential neurophysiology work has characterized an intriguing mechanism that enhances V1 responses to perceptual figures, we have a poor understanding of how the early visual system contributes to figure-ground processing in humans. Here, we use advanced computational analysis methods and high-field human fMRI data to resolve the distinct spatial profiles of local edge and global figure enhancement in the early visual system (V1 and LGN); the latter is distinct and consistent with a mechanism of automatic, stimulus-driven feedback from higher-level visual areas.
Collapse
|
21
|
Harrison WJ. Segmenting processes in the human lateral geniculate nucleus. Cortex 2019; 121:485-487. [PMID: 31500859 DOI: 10.1016/j.cortex.2019.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 11/20/2022]
Affiliation(s)
- William J Harrison
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
22
|
Abstract
The lateral geniculate nucleus of the thalamus (LGN) is a relay nucleus between the retina and the visual cortex. A new brain imaging study shows that LGN activity is modulated by figure-ground organization, even when the figure and ground are presented to different eyes: a hallmark of a cortical feedback effect.
Collapse
Affiliation(s)
- Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; Psychiatry department, Academic Medical Center, Postbus 22660, 1100 DD Amsterdam, The Netherlands.
| |
Collapse
|