1
|
Calder-Travis J, Charles L, Bogacz R, Yeung N. Bayesian confidence in optimal decisions. Psychol Rev 2024; 131:1114-1160. [PMID: 39023934 PMCID: PMC7617410 DOI: 10.1037/rev0000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The optimal way to make decisions in many circumstances is to track the difference in evidence collected in favor of the options. The drift diffusion model (DDM) implements this approach and provides an excellent account of decisions and response times. However, existing DDM-based models of confidence exhibit certain deficits, and many theories of confidence have used alternative, nonoptimal models of decisions. Motivated by the historical success of the DDM, we ask whether simple extensions to this framework might allow it to better account for confidence. Motivated by the idea that the brain will not duplicate representations of evidence, in all model variants decisions and confidence are based on the same evidence accumulation process. We compare the models to benchmark results, and successfully apply four qualitative tests concerning the relationships between confidence, evidence, and time, in a new preregistered study. Using computationally cheap expressions to model confidence on a trial-by-trial basis, we find that a subset of model variants also provide a very good to excellent account of precise quantitative effects observed in confidence data. Specifically, our results favor the hypothesis that confidence reflects the strength of accumulated evidence penalized by the time taken to reach the decision (Bayesian readout), with the penalty applied not perfectly calibrated to the specific task context. These results suggest there is no need to abandon the DDM or single accumulator models to successfully account for confidence reports. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Joshua Calder-Travis
- Department of Experimental Psychology, University of Oxford
- Institute of Neurophysiology and Pathophysiology, Universitätsklinikum Hamburg-Eppendorf
| | - Lucie Charles
- Institute of Cognitive Neuroscience, University College London
| | - Rafal Bogacz
- Nuffield Department of Clinical Neurosciences, Medical Research Council Brain Network Dynamics Unit, University of Oxford
| | - Nick Yeung
- Department of Experimental Psychology, University of Oxford
| |
Collapse
|
2
|
Wagener L, Nieder A. Conscious Experience of Stimulus Presence and Absence Is Actively Encoded by Neurons in the Crow Brain. J Cogn Neurosci 2024; 36:508-521. [PMID: 38165732 DOI: 10.1162/jocn_a_02101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The emergence of consciousness from brain activity constitutes one of the great riddles in biology. It is commonly assumed that only the conscious perception of the presence of a stimulus elicits neuronal activation to signify a "neural correlate of consciousness," whereas the subjective experience of the absence of a stimulus is associated with a neuronal resting state. Here, we demonstrate that the two subjective states "stimulus present" and "stimulus absent" are represented by two specialized neuron populations in crows, corvid birds. We recorded single-neuron activity from the nidopallium caudolaterale of crows trained to report the presence or absence of images presented near the visual threshold. Because of the task design, neuronal activity tracking the conscious "present" versus "absent" percept was dissociated from that involved in planning a motor response. Distinct neuron populations signaled the subjective percepts of "present" and "absent" by increases in activation. The response selectivity of these two neuron populations was similar in strength and time course. This suggests a balanced code for subjective "presence" versus "absence" experiences, which might be beneficial when both conscious states need to be maintained active in the service of goal-directed behavior.
Collapse
|
3
|
Calder-Travis J, Bogacz R, Yeung N. Expressions for Bayesian confidence of drift diffusion observers in fluctuating stimuli tasks. JOURNAL OF MATHEMATICAL PSYCHOLOGY 2023; 117:102815. [PMID: 38188903 PMCID: PMC7615478 DOI: 10.1016/j.jmp.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We introduce a new approach to modelling decision confidence, with the aim of enabling computationally cheap predictions while taking into account, and thereby exploiting, trial-by-trial variability in stochastically fluctuating stimuli. Using the framework of the drift diffusion model of decision making, along with time-dependent thresholds and the idea of a Bayesian confidence readout, we derive expressions for the probability distribution over confidence reports. In line with current models of confidence, the derivations allow for the accumulation of "pipeline" evidence that has been received but not processed by the time of response, the effect of drift rate variability, and metacognitive noise. The expressions are valid for stimuli that change over the course of a trial with normally-distributed fluctuations in the evidence they provide. A number of approximations are made to arrive at the final expressions, and we test all approximations via simulation. The derived expressions contain only a small number of standard functions, and require evaluating only once per trial, making trial-by-trial modelling of confidence data in stochastically fluctuating stimuli tasks more feasible. We conclude by using the expressions to gain insight into the confidence of optimal observers, and empirically observed patterns.
Collapse
Affiliation(s)
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, UK
| | - Nick Yeung
- Department of Experimental Psychology, University of Oxford, UK
| |
Collapse
|
4
|
Ruesseler M, Weber LA, Marshall TR, O'Reilly J, Hunt LT. Quantifying decision-making in dynamic, continuously evolving environments. eLife 2023; 12:e82823. [PMID: 37883173 PMCID: PMC10602589 DOI: 10.7554/elife.82823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
During perceptual decision-making tasks, centroparietal electroencephalographic (EEG) potentials report an evidence accumulation-to-bound process that is time locked to trial onset. However, decisions in real-world environments are rarely confined to discrete trials; they instead unfold continuously, with accumulation of time-varying evidence being recency-weighted towards its immediate past. The neural mechanisms supporting recency-weighted continuous decision-making remain unclear. Here, we use a novel continuous task design to study how the centroparietal positivity (CPP) adapts to different environments that place different constraints on evidence accumulation. We show that adaptations in evidence weighting to these different environments are reflected in changes in the CPP. The CPP becomes more sensitive to fluctuations in sensory evidence when large shifts in evidence are less frequent, and the potential is primarily sensitive to fluctuations in decision-relevant (not decision-irrelevant) sensory input. A complementary triphasic component over occipito-parietal cortex encodes the sum of recently accumulated sensory evidence, and its magnitude covaries with parameters describing how different individuals integrate sensory evidence over time. A computational model based on leaky evidence accumulation suggests that these findings can be accounted for by a shift in decision threshold between different environments, which is also reflected in the magnitude of pre-decision EEG activity. Our findings reveal how adaptations in EEG responses reflect flexibility in evidence accumulation to the statistics of dynamic sensory environments.
Collapse
Affiliation(s)
- Maria Ruesseler
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford Centre for Human Brain Activity (OHBA) University Department of Psychiatry Warneford HospitalOxfordUnited Kingdom
| | - Lilian Aline Weber
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford Centre for Human Brain Activity (OHBA) University Department of Psychiatry Warneford HospitalOxfordUnited Kingdom
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
| | - Tom Rhys Marshall
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
- Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - Jill O'Reilly
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
| | - Laurence Tudor Hunt
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford Centre for Human Brain Activity (OHBA) University Department of Psychiatry Warneford HospitalOxfordUnited Kingdom
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
| |
Collapse
|
5
|
Liu BH, Mao LH, Zhou B. Perceptual confidence of visual stimulus features is associated with duration perception. Perception 2022; 51:859-870. [PMID: 36046981 DOI: 10.1177/03010066221123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been shown that the perceived duration of an object in the subsecond range is closely associated with its nontemporal perceptual properties, the mechanism under which remains unclear. Previous studies have revealed a modulatory effect of early visual feature processing on the apparent duration. Here, we further examined the relationship between perceptual confidence and subjective time by asking participants to simultaneously perform temporal and nontemporal perceptual judgments. The results revealed a significant effect on confidence levels. When participants' confidence in judging the coherent motion direction or relative dot numerosity increases, their perceived duration of the stimulus also appears longer. These results are discussed in the context of perceptual evidence accumulation and evaluation for the decision-making of perceptual properties. They suggest a profound contribution of object processing to the computation of subjective time and provide further insights into the mechanism of event timing.
Collapse
Affiliation(s)
- Bing-Hui Liu
- 12465Peking University, Beijing, China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | | | - Bin Zhou
- Institute of Psychology, 12381Chinese Academy of Sciences, Beijing, China.,University of 12381Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Pinto L, Tank DW, Brody CD. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 2022; 11:e70263. [PMID: 35708483 PMCID: PMC9203055 DOI: 10.7554/elife.70263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical areas seem to form a hierarchy of intrinsic timescales, but the relevance of this organization for cognitive behavior remains unknown. In particular, decisions requiring the gradual accrual of sensory evidence over time recruit widespread areas across this hierarchy. Here, we tested the hypothesis that this recruitment is related to the intrinsic integration timescales of these widespread areas. We trained mice to accumulate evidence over seconds while navigating in virtual reality and optogenetically silenced the activity of many cortical areas during different brief trial epochs. We found that the inactivation of all tested areas affected the evidence-accumulation computation. Specifically, we observed distinct changes in the weighting of sensory evidence occurring during and before silencing, such that frontal inactivations led to stronger deficits on long timescales than posterior cortical ones. Inactivation of a subset of frontal areas also led to moderate effects on behavioral processes beyond evidence accumulation. Moreover, large-scale cortical Ca2+ activity during task performance displayed different temporal integration windows. Our findings suggest that the intrinsic timescale hierarchy of distributed cortical areas is an important component of evidence-accumulation mechanisms.
Collapse
Affiliation(s)
- Lucas Pinto
- Department of Neuroscience, Northwestern UniversityChicagoUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - David W Tank
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
7
|
Abstract
We live in a world that changes on many timescales. To learn and make decisions appropriately, the human brain has evolved to integrate various types of information, such as sensory evidence and reward feedback, on multiple timescales. This is reflected in cortical hierarchies of timescales consisting of heterogeneous neuronal activities and expression of genes related to neurotransmitters critical for learning. We review the recent findings on how timescales of sensory and reward integration are affected by the temporal properties of sensory and reward signals in the environment. Despite existing evidence linking behavioral and neuronal timescales, future studies must examine how neural computations at multiple timescales are adjusted and combined to influence behavior flexibly.
Collapse
Affiliation(s)
- Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Moore Hall, 3 Maynard St, Hanover, NH 03755
| | - John D. Murray
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511
| | - Hyojung Seo
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511
| | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, Department of Neuroscience, Department of Psychological Sciences, Kavli Neuroscience Discovery Institute, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| |
Collapse
|
8
|
Booras A, Stevenson T, McCormack CN, Rhoads ME, Hanks TD. Change point detection with multiple alternatives reveals parallel evaluation of the same stream of evidence along distinct timescales. Sci Rep 2021; 11:13098. [PMID: 34162943 PMCID: PMC8222317 DOI: 10.1038/s41598-021-92470-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
In order to behave appropriately in a rapidly changing world, individuals must be able to detect when changes occur in that environment. However, at any given moment, there are a multitude of potential changes of behavioral significance that could occur. Here we investigate how knowledge about the space of possible changes affects human change point detection. We used a stochastic auditory change point detection task that allowed model-free and model-based characterization of the decision process people employ. We found that subjects can simultaneously apply distinct timescales of evidence evaluation to the same stream of evidence when there are multiple types of changes possible. Informative cues that specified the nature of the change led to improved accuracy for change point detection through mechanisms involving both the timescales of evidence evaluation and adjustments of decision bounds. These results establish three important capacities of information processing for decision making that any proposed neural mechanism of evidence evaluation must be able to support: the ability to simultaneously employ multiple timescales of evidence evaluation, the ability to rapidly adjust those timescales, and the ability to modify the amount of information required to make a decision in the context of flexible timescales.
Collapse
Affiliation(s)
- Alexa Booras
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA
| | - Tanner Stevenson
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA
| | - Connor N. McCormack
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA
| | - Marie E. Rhoads
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Neuroscience, University of California Los Angeles, Los Angeles, CA USA
| | - Timothy D. Hanks
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Neurology, University of California Davis, Sacramento, CA USA
| |
Collapse
|
9
|
Talluri BC, Urai AE, Bronfman ZZ, Brezis N, Tsetsos K, Usher M, Donner TH. Choices change the temporal weighting of decision evidence. J Neurophysiol 2021; 125:1468-1481. [PMID: 33689508 PMCID: PMC8285578 DOI: 10.1152/jn.00462.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
Many decisions result from the accumulation of decision-relevant information (evidence) over time. Even when maximizing decision accuracy requires weighting all the evidence equally, decision-makers often give stronger weight to evidence occurring early or late in the evidence stream. Here, we show changes in such temporal biases within participants as a function of intermittent judgments about parts of the evidence stream. Human participants performed a decision task that required a continuous estimation of the mean evidence at the end of the stream. The evidence was either perceptual (noisy random dot motion) or symbolic (variable sequences of numbers). Participants also reported a categorical judgment of the preceding evidence half-way through the stream in one condition or executed an evidence-independent motor response in another condition. The relative impact of early versus late evidence on the final estimation flipped between these two conditions. In particular, participants' sensitivity to late evidence after the intermittent judgment, but not the simple motor response, was decreased. Both the intermittent response as well as the final estimation reports were accompanied by nonluminance-mediated increases of pupil diameter. These pupil dilations were bigger during intermittent judgments than simple motor responses and bigger during estimation when the late evidence was consistent than inconsistent with the initial judgment. In sum, decisions activate pupil-linked arousal systems and alter the temporal weighting of decision evidence. Our results are consistent with the idea that categorical choices in the face of uncertainty induce a change in the state of the neural circuits underlying decision-making.NEW & NOTEWORTHY The psychology and neuroscience of decision-making have extensively studied the accumulation of decision-relevant information toward a categorical choice. Much fewer studies have assessed the impact of a choice on the processing of subsequent information. Here, we show that intermittent choices during a protracted stream of input reduce the sensitivity to subsequent decision information and transiently boost arousal. Choices might trigger a state change in the neural machinery for decision-making.
Collapse
Affiliation(s)
- Bharath Chandra Talluri
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne E Urai
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Noam Brezis
- School of Psychology, Tel-Aviv University, Tel-Aviv, Israel
| | - Konstantinos Tsetsos
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Usher
- School of Psychology, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Tobias H Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Cavanagh SE, Hunt LT, Kennerley SW. A Diversity of Intrinsic Timescales Underlie Neural Computations. Front Neural Circuits 2020; 14:615626. [PMID: 33408616 PMCID: PMC7779632 DOI: 10.3389/fncir.2020.615626] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 12/05/2022] Open
Abstract
Neural processing occurs across a range of temporal scales. To facilitate this, the brain uses fast-changing representations reflecting momentary sensory input alongside more temporally extended representations, which integrate across both short and long temporal windows. The temporal flexibility of these representations allows animals to behave adaptively. Short temporal windows facilitate adaptive responding in dynamic environments, while longer temporal windows promote the gradual integration of information across time. In the cognitive and motor domains, the brain sets overarching goals to be achieved within a long temporal window, which must be broken down into sequences of actions and precise movement control processed across much shorter temporal windows. Previous human neuroimaging studies and large-scale artificial network models have ascribed different processing timescales to different cortical regions, linking this to each region's position in an anatomical hierarchy determined by patterns of inter-regional connectivity. However, even within cortical regions, there is variability in responses when studied with single-neuron electrophysiology. Here, we review a series of recent electrophysiology experiments that demonstrate the heterogeneity of temporal receptive fields at the level of single neurons within a cortical region. This heterogeneity appears functionally relevant for the computations that neurons perform during decision-making and working memory. We consider anatomical and biophysical mechanisms that may give rise to a heterogeneity of timescales, including recurrent connectivity, cortical layer distribution, and neurotransmitter receptor expression. Finally, we reflect on the computational relevance of each brain region possessing a heterogeneity of neuronal timescales. We argue that this architecture is of particular importance for sensory, motor, and cognitive computations.
Collapse
Affiliation(s)
- Sean E. Cavanagh
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
| | - Laurence T. Hunt
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- Max Planck-UCL Centre for Computational Psychiatry and Aging, University College London, London, United Kingdom
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Steven W. Kennerley
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
| |
Collapse
|
11
|
Gao R, van den Brink RL, Pfeffer T, Voytek B. Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture. eLife 2020; 9:e61277. [PMID: 33226336 PMCID: PMC7755395 DOI: 10.7554/elife.61277] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex and are relevant for cognition in both short and long terms, bridging microcircuit physiology with macroscale dynamics and behavior.
Collapse
Affiliation(s)
- Richard Gao
- Department of Cognitive Science, University of California, San DiegoLa JollaUnited States
| | - Ruud L van den Brink
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Thomas Pfeffer
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
| | - Bradley Voytek
- Department of Cognitive Science, University of California, San DiegoLa JollaUnited States
- Halıcıoğlu Data Science Institute, University of California, San DiegoLa JollaUnited States
- Neurosciences Graduate Program, University of California, San DiegoLa JollaUnited States
- Kavli Institute for Brain and Mind, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
12
|
Harun R, Jun E, Park HH, Ganupuru P, Goldring AB, Hanks TD. Timescales of Evidence Evaluation for Decision Making and Associated Confidence Judgments Are Adapted to Task Demands. Front Neurosci 2020; 14:826. [PMID: 32903672 PMCID: PMC7438826 DOI: 10.3389/fnins.2020.00826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/15/2020] [Indexed: 01/29/2023] Open
Abstract
Decision making often involves choosing actions based on relevant evidence. This can benefit from focussing evidence evaluation on the timescale of greatest relevance based on the situation. Here, we use an auditory change detection task to determine how people adjust their timescale of evidence evaluation depending on task demands for detecting changes in their environment and assessing their internal confidence in those decisions. We confirm previous results that people adopt shorter timescales of evidence evaluation for detecting changes in contexts with shorter signal durations, while bolstering those results with model-free analyses not previously used and extending the results to the auditory domain. We also extend these results to show that in contexts with shorter signal durations, people also adopt correspondingly shorter timescales of evidence evaluation for assessing confidence in their decision about detecting a change. These results provide important insights into adaptability and flexible control of evidence evaluation for decision making.
Collapse
Affiliation(s)
- Rashed Harun
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Elizabeth Jun
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Heui Hye Park
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Preetham Ganupuru
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Adam B Goldring
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Timothy D Hanks
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Levi AJ, Huk AC. Interpreting temporal dynamics during sensory decision-making. CURRENT OPINION IN PHYSIOLOGY 2020; 16:27-32. [DOI: 10.1016/j.cophys.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|