1
|
Kato T, Skorobogata O, Rocheleau CE. Centralspindlin is partially required for C. elegans anchor cell specification, vulval induction and morphogenesis. Dev Biol 2025; 524:199-209. [PMID: 40379077 DOI: 10.1016/j.ydbio.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
Caenorhabditis elegans vulval development is a relatively simple model of organ development whereby a signal from the overlying gonad induces three epithelial cells to undergo three rounds of cell division to generate 22 cells that make up the vulva. Specification of the vulval cell fates requires coordination between cell division and cell signaling via LIN-12/Notch and LET-23/EGFR pathways in the somatic gonad and the underlying epithelium. Here we characterize the role of the centralspindlin complex in vulval development. Centralspindlin, a heterotetramer of ZEN-4/KIF23 and CYK-4/RacGAP1, is essential for completion of cytokinesis during early embryonic cell divisions. We found that centralspindlin is required for completion of cytokinesis in the developing somatic gonad and hence specification of the LIN-3/EGF-secreting anchor cell (AC) critical for LET-23/EGFR-mediated vulval induction. However, the requirements for centralspindlin for cytokinesis during postembryonic development are incomplete as the AC is frequently specified, though often binucleate. The presence of the binucleate AC correlates with vulval induction demonstrating that LET-23/EGFR signaling is largely functional. Centralspindlin is also partially required for cytokinesis of the vulval cells where it is required for vulval morphogenesis rather than induction. We also found that the GAP domain of CYK-4/RacGAP1 required for contractile ring assembly during embryonic division is not essential for development of the somatic gonad and the vulva. Thus, there appears to be different requirements for centralspindlin during postembryonic development of the somatic gonad and vulva as compared to early embryogenesis.
Collapse
Affiliation(s)
- Tatsuya Kato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Olga Skorobogata
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christian E Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Hruby AJ, Garcia G, Thorwald MA, Finch CE, Johnson J, Higuchi-Sanabria R. Beyond genes and environment: mapping biological stochasticity in aging. GeroScience 2025:10.1007/s11357-025-01673-y. [PMID: 40301228 DOI: 10.1007/s11357-025-01673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Aging is characterized by extensive variability in the onset of morbidity and mortality, even in genetically identical populations with carefully controlled environments. This points to the important role stochasticity plays in shaping the divergent aging process between individual organisms. Here, we survey how stochastic factors at the level of molecules, cells, tissues, and organisms manifest in and impact the aging process, with a focus on the nematode Caenorhabditis elegans. Findings of stochasticity in C. elegans give additional insights for aspects of aging in the more complex settings of mammals with parallels drawn between organisms when appropriate. The emerging understanding of the stochastic contributors to longevity will enhance research strategies and medical interventions for personalized medicine.
Collapse
Affiliation(s)
- Adam J Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado-Anschutz Medical Campus, Denver, CO, USA
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
3
|
Fakieh RA, Reiner DJ. RAP-2 and CNH-MAP4 Kinase MIG-15 confer resistance in bystander epithelium to cell-fate transformation by excess Ras or Notch activity. Proc Natl Acad Sci U S A 2025; 122:e2414321121. [PMID: 39739816 PMCID: PMC11725784 DOI: 10.1073/pnas.2414321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 01/02/2025] Open
Abstract
Induction of cell fates by growth factors impacts many facets of developmental biology and disease. LIN-3/EGF induces the equipotent vulval precursor cells (VPCs) in Caenorhabditis elegans to assume the 3˚-3˚-2˚-1˚-2˚-3˚ pattern of cell fates. 1˚ and 2˚ cells become specialized epithelia and undergo stereotyped series of cell divisions to form the vulva. Conversely, 3˚ cells are relatively quiescent and nonspecialized; they divide once and fuse with the surrounding epithelium. 3˚ cells have thus been characterized as passive, uninduced, or ground state. Based on our previous studies, we hypothesized that a 3˚-promoting program would confer resistance to cell fate-transformation by inappropriately activated 1˚ and 2˚ fate-promoting LET-60/Ras and LIN-12/Notch, respectively. Deficient MIG-15/CNH-MAP4 Kinase meets the expectations of genetic interactions for a 3˚-promoting protein. Moreover, endogenous MIG-15 is required for expression of a fluorescent biomarker of 3˚ cell fate, is expressed in VPCs, and functions cell autonomously in VPCs. The Ras family small GTPase RAP-2, orthologs of which activate orthologs of MIG-15 in other systems, emulates these functions of MIG-15. However, gain of RAP-2 function has no effect on patterning, suggesting its activity is constitutive in VPCs. The 3˚ biomarker is expressed independently of the AC, raising questions about the cellular origin of 3˚-promoting activity. Activated LET-60/Ras and LIN-12/Notch repress expression of the 3˚ biomarker, suggesting that the 3˚-promoting program is both antagonized by as well as antagonizes 1˚- and 2˚- promoting programs. This study provides insight into developmental properties of cells historically considered to be nonresponding to growth factor signals.
Collapse
Affiliation(s)
- Razan A. Fakieh
- Department of Translational Medical Sciences, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX77030
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam34212, Kingdom of Saudi Arabia
| | - David J. Reiner
- Department of Translational Medical Sciences, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX77030
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX77030
| |
Collapse
|
4
|
Singh N, Zhang P, Li KJ, Gordon KL. The Rac pathway prevents cell fragmentation in a nonprotrusively migrating leader cell during C. elegans gonad organogenesis. Curr Biol 2024; 34:2387-2402.e5. [PMID: 38776905 PMCID: PMC12013728 DOI: 10.1016/j.cub.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2 ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.
Collapse
Affiliation(s)
- Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pu Zhang
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Jian Li
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Kenny-Ganzert IW, Sherwood DR. The C. elegans anchor cell: A model to elucidate mechanisms underlying invasion through basement membrane. Semin Cell Dev Biol 2024; 154:23-34. [PMID: 37422376 PMCID: PMC10592375 DOI: 10.1016/j.semcdb.2023.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Cell invasion through basement membrane barriers is crucial during many developmental processes and in immune surveillance. Dysregulation of invasion also drives the pathology of numerous human diseases, such as metastasis and inflammatory disorders. Cell invasion involves dynamic interactions between the invading cell, basement membrane, and neighboring tissues. Owing to this complexity, cell invasion is challenging to study in vivo, which has hampered the understanding of mechanisms controlling invasion. Caenorhabditis elegans anchor cell invasion is a powerful in vivo model where subcellular imaging of cell-basement membrane interactions can be combined with genetic, genomic, and single-cell molecular perturbation studies. In this review, we outline insights gained by studying anchor cell invasion, which span transcriptional networks, translational regulation, secretory apparatus expansion, dynamic and adaptable protrusions that breach and clear basement membrane, and a complex, localized metabolic network that fuels invasion. Together, investigation of anchor cell invasion is building a comprehensive understanding of the mechanisms that underlie invasion, which we expect will ultimately facilitate better therapeutic strategies to control cell invasive activity in human disease.
Collapse
Affiliation(s)
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Singh N, Jian Li K, Lynn Gordon K. Getting there in one piece: The Rac pathway prevents cell fragmentation in a nonprotrusively migrating leader cell during organogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569642. [PMID: 38106045 PMCID: PMC10723291 DOI: 10.1101/2023.12.01.569642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2/DSL ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long-term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.
Collapse
Affiliation(s)
- Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Karen Jian Li
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
8
|
Medwig-Kinney TN, Kinney BA, Martinez MAQ, Yee C, Sirota SS, Mullarkey AA, Somineni N, Hippler J, Zhang W, Shen K, Hammell C, Pani AM, Matus DQ. Dynamic compartmentalization of the pro-invasive transcription factor NHR-67 reveals a role for Groucho in regulating a proliferative-invasive cellular switch in C. elegans. eLife 2023; 12:RP84355. [PMID: 38038410 PMCID: PMC10691804 DOI: 10.7554/elife.84355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
A growing body of evidence suggests that cell division and basement membrane invasion are mutually exclusive cellular behaviors. How cells switch between proliferative and invasive states is not well understood. Here, we investigated this dichotomy in vivo by examining two cell types in the developing Caenorhabditis elegans somatic gonad that derive from equipotent progenitors, but exhibit distinct cell behaviors: the post-mitotic, invasive anchor cell and the neighboring proliferative, non-invasive ventral uterine (VU) cells. We show that the fates of these cells post-specification are more plastic than previously appreciated and that levels of NHR-67 are important for discriminating between invasive and proliferative behavior. Transcription of NHR-67 is downregulated following post-translational degradation of its direct upstream regulator, HLH-2 (E/Daughterless) in VU cells. In the nuclei of VU cells, residual NHR-67 protein is compartmentalized into discrete punctae that are dynamic over the cell cycle and exhibit liquid-like properties. By screening for proteins that colocalize with NHR-67 punctae, we identified new regulators of uterine cell fate maintenance: homologs of the transcriptional co-repressor Groucho (UNC-37 and LSY-22), as well as the TCF/LEF homolog POP-1. We propose a model in which the association of NHR-67 with the Groucho/TCF complex suppresses the default invasive state in non-invasive cells, which complements transcriptional regulation to add robustness to the proliferative-invasive cellular switch in vivo.
Collapse
Affiliation(s)
- Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Brian A Kinney
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Michael AQ Martinez
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford UniversityStanfordUnited States
| | - Sydney S Sirota
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Angelina A Mullarkey
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Neha Somineni
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Justin Hippler
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
- Science and Technology Research Program, Smithtown High School EastSt. JamesUnited States
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Ariel M Pani
- Departments of Biology and Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
9
|
Ramu A, Cohen BA. Transcription factor fluctuations underlie cell-to-cell variability in a signaling pathway response. Genetics 2023; 224:iyad094. [PMID: 37226217 PMCID: PMC10691749 DOI: 10.1093/genetics/iyad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Stochastic differences among clonal cells can initiate cell fate decisions in development or cause cell-to-cell differences in the responses to drugs or extracellular ligands. One hypothesis is that some of this phenotypic variability is caused by stochastic fluctuations in the activities of transcription factors (TFs). We tested this hypothesis in NIH3T3-CG cells using the response to Hedgehog signaling as a model cellular response. Here, we present evidence for the existence of distinct fast- and slow-responding substates in NIH3T3-CG cells. These two substates have distinct expression profiles, and fluctuations in the Prrx1 TF underlie some of the differences in expression and responsiveness between fast and slow cells. Our results show that fluctuations in TFs can contribute to cell-to-cell differences in Hedgehog signaling.
Collapse
Affiliation(s)
- Avinash Ramu
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Barak A Cohen
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO 63110, USA
| |
Collapse
|
10
|
Kenny-Ganzert I, Chi Q, Sherwood D. Differential production rates of cytosolic and transmembrane GFP reporters in C. elegans L3 larval uterine cells. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000813. [PMID: 37033704 PMCID: PMC10074172 DOI: 10.17912/micropub.biology.000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Transgene driven protein expression is an important tool for investigating developmental mechanisms in C. elegans . Here, we have assessed protein production rates and levels in L3 larval uterine cells (UCs). Using ubiquitous promoter driven cytosolic and transmembrane tethered GFP, fluorescence recovery after photobleaching, and quantitative fluorescence analysis, we reveal that cytosolic GFP is produced at an ~two-fold higher rate than transmembrane tethered GFP and accumulates at ~five-fold higher levels in UCs. We also provide evidence that cytosolic GFP in the anchor cell, a specialized UC that mediates uterine-vulval connection, is more rapidly degraded through an autophagy-independent mechanism.
Collapse
Affiliation(s)
| | - Qiuyi Chi
- Department of Biology, Duke University
| | | |
Collapse
|
11
|
O'Keeffe C, Greenwald I. EGFR signal transduction is downregulated in C. elegans vulval precursor cells during dauer diapause. Development 2022; 149:dev201094. [PMID: 36227589 PMCID: PMC9793418 DOI: 10.1242/dev.201094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Caenorhabditis elegans larvae display developmental plasticity in response to environmental conditions: in adverse conditions, second-stage larvae enter a reversible, long-lived dauer stage instead of proceeding to reproductive adulthood. Dauer entry interrupts vulval induction and is associated with a reprogramming-like event that preserves the multipotency of vulval precursor cells (VPCs), allowing vulval development to reinitiate if conditions improve. Vulval induction requires the LIN-3/EGF-like signal from the gonad, which activates EGFR-Ras-ERK signal transduction in the nearest VPC, P6.p. Here, using a biosensor and live imaging we show that EGFR-Ras-ERK activity is downregulated in P6.p in dauers. We investigated this process using gene mutations or transgenes to manipulate different steps of the pathway, and by analyzing LET-23/EGFR subcellular localization during dauer life history. We found that the response to EGF is attenuated at or upstream of Ras activation, and discuss potential membrane-associated mechanisms that could achieve this. We also describe other findings pertaining to the maintenance of VPC competence and quiescence in dauer larvae. Our analysis indicates that VPCs have L2-like and unique dauer stage features rather than features of L3 VPCs in continuous development.
Collapse
Affiliation(s)
- Catherine O'Keeffe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
12
|
Pani AM, Gibney TV, Medwig-Kinney TN, Matus DQ, Goldstein B. A new toolkit to visualize and perturb endogenous LIN-12/Notch signaling in C. elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000603. [PMID: 35966394 PMCID: PMC9372766 DOI: 10.17912/micropub.biology.000603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/05/2022]
Abstract
Notch signaling mediates cell-cell interactions during development and homeostasis. Methods for visualizing and manipulating Notch activity in vivo are essential to elucidate how the Notch pathway functions. Here, we provide new tools for use in C. elegans to visualize and perturb Notch signaling in vivo using endogenously tagged alleles of the Notch receptor lin-12 . Tagging the endogenous LIN-12 intracellular domain with the fluorescent protein mNeonGreen (mNG) allowed for visualization of both its membrane-localized state and translocation of the Notch intracellular domain into the nucleus upon ligand activation. LIN-12::mNG localized to the nucleus in cells where and when Notch signaling is known to be active and provided a real-time readout of Notch activity in vivo that complements existing biosensors and transcriptional reporters. We also report an allele of endogenous lin-12 that we tagged with both mNG and an auxin-inducible degron, to facilitate conditional LIN-12 protein degradation. This toolkit provides novel reagents for the C. elegans research community to investigate mechanisms of Notch signaling and its functions in vivo .
Collapse
Affiliation(s)
- Ariel M Pani
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Theresa V Gibney
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - David Q Matus
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, USA
- D.Q.M. is a paid consultant of Arcadia Science
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Medwig-Kinney TN, Sirota SS, Gibney TV, Pani AM, Matus DQ. An in vivo toolkit to visualize endogenous LAG-2/Delta and LIN-12/Notch signaling in C. elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000602. [PMID: 35966395 PMCID: PMC9372767 DOI: 10.17912/micropub.biology.000602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/05/2022]
Abstract
Notch/Delta signaling regulates numerous cell-cell interactions that occur during development, homeostasis, and in disease states. In many cases, the Notch/Delta pathway mediates lateral inhibition between cells to specify alternative fates. Here, we provide new tools for use in C. elegans to investigate feedback between the Notch receptor LIN-12 and the ligand LAG-2 (Delta) in vivo . We report new, endogenously tagged strains to visualize LAG-2 protein and lag-2 transcription, which we combined with endogenously tagged LIN-12 to visualize Notch and Delta dynamics over the course of a stochastic Notch-mediated cell fate decision. To validate these tools in a functional context, we demonstrated that our endogenous lag-2 transcriptional reporter was expressed in ectopic anchor and primary vulval precursor cells after auxin-mediated depletion of LIN-12. This toolkit provides new reagents for the C. elegans research community to further investigate Notch/Delta signaling mechanisms and functions for this pathway in vivo .
Collapse
Affiliation(s)
| | - Sydney S Sirota
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, USA
- current address, Touro College of Osteopathic Medicine, Middletown, NY, USA
| | - Theresa V Gibney
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ariel M Pani
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David Q Matus
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, USA
- D.Q.M. is a paid consultant of Arcadia Science
| |
Collapse
|
14
|
Shaffer JM, Greenwald I. SALSA, a genetically encoded biosensor for spatiotemporal quantification of Notch signal transduction in vivo. Dev Cell 2022; 57:930-944.e6. [PMID: 35413239 PMCID: PMC9473748 DOI: 10.1016/j.devcel.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022]
Abstract
Notch-mediated lateral specification is a fundamental mechanism to resolve stochastic cell fate choices by amplifying initial differences between equivalent cells. To study how stochastic events impact Notch activity, we developed a biosensor, SALSA (sensor able to detect lateral signaling activity), consisting of an amplifying "switch"-Notch tagged with TEV protease-and a "reporter"-GFP fused to a nuclearly localized red fluorescent protein, separated by a TEVp cut site. When ligand activates Notch, TEVp enters the nucleus and releases GFP from its nuclear tether, allowing Notch activation to be quantified based on the changes in GFP subcellular localization. We show that SALSA accurately reports Notch activity in different signaling paradigms in Caenorhabditis elegans and use time-lapse imaging to test hypotheses about how stochastic elements ensure a reproducible and robust outcome in a canonical lin-12/Notch-mediated lateral signaling paradigm. SALSA should be generalizable to other experimental systems and be adaptable to increase options for bespoke "SynNotch" applications.
Collapse
Affiliation(s)
- Justin M Shaffer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
15
|
Benavidez JM, Kim JH, Greenwald I. Influences of HLH-2 stability on anchor cell fate specification during Caenorhabditis elegans gonadogenesis. G3 GENES|GENOMES|GENETICS 2022; 12:6520806. [PMID: 35134193 PMCID: PMC8982380 DOI: 10.1093/g3journal/jkac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
The Caenorhabditis elegans E protein ortholog HLH-2 is required for the specification and function of the anchor cell, a unique, terminally differentiated somatic gonad cell that organizes uterine and vulval development. Initially, 4 cells—2 α cells and their sisters, the β cells—have the potential to be the sole anchor cell. The β cells rapidly lose anchor cell potential and invariably become ventral uterine precursor cells, while the 2 α cells interact via LIN-12/Notch to resolve which will be the anchor cell and which will become another ventral uterine precursor cell. HLH-2 protein stability is dynamically regulated in cells with anchor cell potential; initially present in all 4 cells, HLH-2 is degraded in presumptive ventral uterine precursor cells while remaining stable in the anchor cell. Here, we demonstrate that stability of HLH-2 protein is regulated by the activity of lin-12/Notch in both α and β cells. Our analysis provides evidence that activation of LIN-12 promotes degradation of HLH-2 as part of a negative feedback loop during the anchor cell/ventral uterine precursor cell decision by the α cells, and that absence of lin-12 activity in β cells increases HLH-2 stability and may account for their propensity to adopt the anchor cell fate in a lin-12 null background. We also performed an RNA interference screen of 232 ubiquitin-related genes and identified 7 genes that contribute to HLH-2 degradation in ventral uterine precursor cells; however, stabilizing HLH-2 by depleting ubiquitin ligases in a lin-12(+) background does not result in supernumerary anchor cells, suggesting that LIN-12 activation does not oppose hlh-2 activity solely by causing HLH-2 protein degradation. Finally, we provide evidence for lin-12-independent transcriptional regulation of hlh-2 in β cells that correlates with known differences in POP-1/TCF levels and anchor cell potential between α and β cells. Together, our results indicate that hlh-2 activity is regulated at multiple levels to restrict the anchor cell fate to a single cell.
Collapse
Affiliation(s)
- Justin M Benavidez
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jee Hun Kim
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
16
|
A DNA replication-independent function of pre-replication complex genes during cell invasion in C. elegans. PLoS Biol 2022; 20:e3001317. [PMID: 35192608 PMCID: PMC8863262 DOI: 10.1371/journal.pbio.3001317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
Cell invasion is an initiating event during tumor cell metastasis and an essential process during development. A screen of C. elegans orthologs of genes overexpressed in invasive human melanoma cells has identified several components of the conserved DNA pre-replication complex (pre-RC) as positive regulators of anchor cell (AC) invasion. The pre-RC genes function cell-autonomously in the G1-arrested AC to promote invasion, independently of their role in licensing DNA replication origins in proliferating cells. While the helicase activity of the pre-RC is necessary for AC invasion, the downstream acting DNA replication initiation factors are not required. The pre-RC promotes the invasive fate by regulating the expression of extracellular matrix genes and components of the PI3K signaling pathway. Increasing PI3K pathway activity partially suppressed the AC invasion defects caused by pre-RC depletion, suggesting that the PI3K pathway is one critical pre-RC target. We propose that the pre-RC, or a part of it, acts in the postmitotic AC as a transcriptional regulator that facilitates the switch to an invasive phenotype.
Collapse
|
17
|
Littleford HE, Kiontke K, Fitch DHA, Greenwald I. hlh-12, a gene that is necessary and sufficient to promote migration of gonadal regulatory cells in Caenorhabditis elegans, evolved within the Caenorhabditis clade. Genetics 2021; 219:iyab127. [PMID: 34740245 PMCID: PMC8570790 DOI: 10.1093/genetics/iyab127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 11/12/2022] Open
Abstract
Specialized cells of the somatic gonad primordium of nematodes play important roles in the final form and function of the mature gonad. Caenorhabditis elegans hermaphrodites are somatic females that have a two-armed, U-shaped gonad that connects to the vulva at the midbody. The outgrowth of each gonad arm from the somatic gonad primordium is led by two female distal tip cells (fDTCs), while the anchor cell (AC) remains stationary and central to coordinate uterine and vulval development. The bHLH protein HLH-2 and its dimerization partners LIN-32 and HLH-12 had previously been shown to be required for fDTC specification. Here, we show that ectopic expression of both HLH-12 and LIN-32 in cells with AC potential transiently transforms them into fDTC-like cells. Furthermore, hlh-12 was known to be required for the fDTCs to sustain gonad arm outgrowth. Here, we show that ectopic expression of HLH-12 in the normally stationary AC causes displacement from its normal position and that displacement likely results from activation of the leader program of fDTCs because it requires genes necessary for gonad arm outgrowth. Thus, HLH-12 is both necessary and sufficient to promote gonadal regulatory cell migration. As differences in female gonadal morphology of different nematode species reflect differences in the fate or migratory properties of the fDTCs or of the AC, we hypothesized that evolutionary changes in the expression of hlh-12 may underlie the evolution of such morphological diversity. However, we were unable to identify an hlh-12 ortholog outside of Caenorhabditis. Instead, by performing a comprehensive phylogenetic analysis of all Class II bHLH proteins in multiple nematode species, we found that hlh-12 evolved within the Caenorhabditis clade, possibly by duplicative transposition of hlh-10. Our analysis suggests that control of gene regulatory hierarchies for gonadogenesis can be remarkably plastic during evolution without adverse phenotypic consequence.
Collapse
Affiliation(s)
- Hana E Littleford
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Karin Kiontke
- Department of Biology, Center for Developmental Genetics, New York University, New York, NY 10003, USA
| | - David H A Fitch
- Department of Biology, Center for Developmental Genetics, New York University, New York, NY 10003, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
18
|
Medwig-Kinney TN, Palmisano NJ, Matus DQ. Deletion of a putative HDA-1 binding site in the hlh-2 promoter eliminates expression in C. elegans dorsal uterine cells. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000449. [PMID: 34514358 PMCID: PMC8414078 DOI: 10.17912/micropub.biology.000449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
The helix-loop-helix transcription factor hlh-2 (E/Daughterless) has been shown to play an important role in regulating cell fate patterning, cell cycle, and basement membrane invasion in the context of the development of the C. elegans somatic gonad. Here, using CRISPR/Cas9 genome engineering, we generated a new hlh-2 allele (hlh-2(Δ-1303-702)) in the endogenous, GFP-tagged hlh-2 locus. This allele represents a deletion of a 601 bp region in the hlh-2 promoter that contains a putative binding site of the histone deacetylase hda-1 (HDAC) according to publicly available ChIP-sequencing data. Strikingly, we find that HLH-2 expression is virtually absent in the dorsal uterine cells of hlh-2(Δ-1303-702) animals compared to wild type controls. Levels of HLH-2 in the anchor cell and ventral uterine cells are only modestly reduced in the mutant; however, this does not seem to be functionally significant based on the lack of relevant phenotypes and expression levels of a downstream gene, NHR-67 (TLX/Tailless/NR2E1), in these cells. Taken together, these results support growing evidence that HDACs can potentially positively regulate transcription and provide a new reagent for studying hlh-2 regulation.
Collapse
Affiliation(s)
| | | | - David Q Matus
- Stony Brook University,
Correspondence to: David Q Matus ()
| |
Collapse
|
19
|
Lattmann E, Deng T, Hajnal A. To Divide or Invade: A Look Behind the Scenes of the Proliferation-Invasion Interplay in the Caenorhabditis elegans Anchor Cell. Front Cell Dev Biol 2021; 8:616051. [PMID: 33490081 PMCID: PMC7815685 DOI: 10.3389/fcell.2020.616051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cell invasion is defined by the capability of cells to migrate across compartment boundaries established by basement membranes (BMs). The development of complex organs involves regulated cell growth and regrouping of different cell types, which are enabled by controlled cell proliferation and cell invasion. Moreover, when a malignant tumor takes control over the body, cancer cells evolve to become invasive, allowing them to spread to distant sites and form metastases. At the core of the switch between proliferation and invasion are changes in cellular morphology driven by remodeling of the cytoskeleton. Proliferative cells utilize their actomyosin network to assemble a contractile ring during cytokinesis, while invasive cells form actin-rich protrusions, called invadopodia that allow them to breach the BMs. Studies of developmental cell invasion as well as of malignant tumors revealed that cell invasion and proliferation are two mutually exclusive states. In particular, anchor cell (AC) invasion during Caenorhabditis elegans larval development is an excellent model to study the transition from cell proliferation to cell invasion under physiological conditions. This mini-review discusses recent insights from the C. elegans AC invasion model into how G1 cell-cycle arrest is coordinated with the activation of the signaling networks required for BM breaching. Many regulators of the proliferation-invasion network are conserved between C. elegans and mammals. Therefore, the worm may provide important clues to better understand cell invasion and metastasis formation in humans.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ting Deng
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program, University and ETH Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Luo KL, Underwood RS, Greenwald I. Positive autoregulation of lag-1 in response to LIN-12 activation in cell fate decisions during C. elegans reproductive system development. Development 2020; 147:dev.193482. [PMID: 32839181 DOI: 10.1242/dev.193482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
During animal development, ligand binding releases the intracellular domain of LIN-12/Notch by proteolytic cleavage to translocate to the nucleus, where it associates with the DNA-binding protein LAG-1/CSL to activate target gene transcription. We investigated the spatiotemporal regulation of LAG-1/CSL expression in Caenorhabditis elegans and observed that an increase in endogenous LAG-1 levels correlates with LIN-12/Notch activation in different cell contexts during reproductive system development. We show that this increase is via transcriptional upregulation by creating a synthetic endogenous operon, and identified an enhancer region that contains multiple LAG-1 binding sites (LBSs) embedded in a more extensively conserved high occupancy target (HOT) region. We show that these LBSs are necessary for upregulation in response to LIN-12/Notch activity, indicating that lag-1 engages in direct positive autoregulation. Deletion of the HOT region from endogenous lag-1 reduced LAG-1 levels and abrogated positive autoregulation, but did not cause hallmark cell fate transformations associated with loss of lin-12/Notch or lag-1 activity. Instead, later somatic reproductive system defects suggest that proper transcriptional regulation of lag-1 confers robustness to somatic reproductive system development.
Collapse
Affiliation(s)
- Katherine Leisan Luo
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ryan S Underwood
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
21
|
The Caenorhabditis elegans homolog of the Evi1 proto-oncogene, egl-43, coordinates G1 cell cycle arrest with pro-invasive gene expression during anchor cell invasion. PLoS Genet 2020; 16:e1008470. [PMID: 32203506 PMCID: PMC7117773 DOI: 10.1371/journal.pgen.1008470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/02/2020] [Accepted: 02/27/2020] [Indexed: 11/30/2022] Open
Abstract
Cell invasion allows cells to migrate across compartment boundaries formed by basement membranes. Aberrant cell invasion is a first step during the formation of metastases by malignant cancer cells. Anchor cell (AC) invasion in C. elegans is an excellent in vivo model to study the regulation of cell invasion during development. Here, we have examined the function of egl-43, the homolog of the human Evi1 proto-oncogene (also called MECOM), in the invading AC. egl-43 plays a dual role in this process, firstly by imposing a G1 cell cycle arrest to prevent AC proliferation, and secondly, by activating pro-invasive gene expression. We have identified the AP-1 transcription factor fos-1 and the Notch homolog lin-12 as critical egl-43 targets. A positive feedback loop between fos-1 and egl-43 induces pro-invasive gene expression in the AC, while repression of lin-12 Notch expression by egl-43 ensures the G1 cell cycle arrest necessary for invasion. Reducing lin-12 levels in egl-43 depleted animals restored the G1 arrest, while hyperactivation of lin-12 signaling in the differentiated AC was sufficient to induce proliferation. Taken together, our data have identified egl-43 Evi1 as an important factor coordinating cell invasion with cell cycle arrest. Cells invasion is a fundamental biological process that allows cells to cross compartment boundaries and migrate to new locations. Aberrant cell invasion is a first step during the formation of metastases by malignant cancer cells. We have investigated how a specialized cell in the Nematode C. elegans, the so-called anchor cell, can invade into the adjacent epithelium during normal development. Our work has identified an oncogenic transcription factor that controls the expression of specific target genes necessary for cell invasion, and at the same time inhibits the proliferation of the invading anchor cell. These findings shed light on the mechanisms, by which cells decide whether to proliferate or invade.
Collapse
|
22
|
Medwig-Kinney TN, Smith JJ, Palmisano NJ, Tank S, Zhang W, Matus DQ. A developmental gene regulatory network for C. elegans anchor cell invasion. Development 2020; 147:dev185850. [PMID: 31806663 PMCID: PMC6983719 DOI: 10.1242/dev.185850] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023]
Abstract
Cellular invasion is a key part of development, immunity and disease. Using an in vivo model of Caenorhabditis elegans anchor cell invasion, we characterize the gene regulatory network that promotes cell invasion. The anchor cell is initially specified in a stochastic cell fate decision mediated by Notch signaling. Previous research has identified four conserved transcription factors, fos-1 (Fos), egl-43 (EVI1/MEL), hlh-2 (E/Daughterless) and nhr-67 (NR2E1/TLX), that mediate anchor cell specification and/or invasive behavior. Connections between these transcription factors and the underlying cell biology that they regulate are poorly understood. Here, using genome editing and RNA interference, we examine transcription factor interactions before and after anchor cell specification. Initially, these transcription factors function independently of one another to regulate LIN-12 (Notch) activity. Following anchor cell specification, egl-43, hlh-2 and nhr-67 function largely parallel to fos-1 in a type I coherent feed-forward loop with positive feedback to promote invasion. Together, these results demonstrate that the same transcription factors can function in cell fate specification and differentiated cell behavior, and that a gene regulatory network can be rapidly assembled to reinforce a post-mitotic, pro-invasive state.
Collapse
Affiliation(s)
- Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Jayson J Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sujata Tank
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Science and Technology Research Program, Smithtown High School East, St. James, NY 11780-1833, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|