1
|
Rossi L, Amoako K, Busack I, Golinelli L, Courtney A, Besseling J, Schafer W, Beets I, Bringmann H. The neuropeptide FLP-11 induces and self-inhibits sleep through the receptor DMSR-1 in Caenorhabiditis elegans. Curr Biol 2025; 35:2183-2194.e10. [PMID: 40273913 DOI: 10.1016/j.cub.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/17/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Sleep is caused by the depolarization of sleep-active neurons, which secrete gamma-aminobutyric acid (GABA) and neuropeptides such as conserved RFamide (c-terminal Arg-Phe-NH2 motif) neuropeptides to dictate when an organism falls asleep and when it wakes up.1,2,3,4,5,6,7,8,9,10 However, the mechanisms by which neurotransmission from sleep-active neurons induces sleep and determines the duration of sleep remain poorly understood. Sleep in Caenorhabditis elegans crucially requires the single sleep-active RIS neuron, which induces sleep via the release of FLP-11 RFamide neuropeptides.8,11 However, how RIS and FLP-11 control sleep is not well understood, as the receptor through which FLP-11 acts has yet to be identified. In this study, we discovered that RIS and FLP-11 control sleep through the Gi/o-protein coupled receptor DroMyoSuppressin receptor related 1 (DMSR-1).12,13 Using cell-specific knockdowns,14 we demonstrate that dmsr-1 induces sleep by acting in cholinergic neurons downstream of RIS activation. Pharmacological intervention indicates that inhibiting cholinergic signaling is necessary for sleep. Consistently, DMSR-1 expression in cholinergic neurons is essential for core sleep functions, including protective gene expression and survival. In contrast, we found that dmsr-1 in RIS mediates negative feedback control during sleep that limits RIS calcium activation and the duration of sleep. Consequently, dmsr-1 in RIS inhibits protective gene expression and survival. Thus, DMSR-1 controls both the initiation and limitation of sleep, effectively coupling sleep induction with a sleep-stop signal. RFamide neuropeptide-GPCR signaling might underlie similar dual mechanisms of sleep control in other species, and self-inhibition of sleep-active neurons might represent a conserved mechanism for limiting the duration of sleep. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lorenzo Rossi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Am Tatzberg 47/49, 01307 Dresden, Germany
| | - Kenneth Amoako
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Am Tatzberg 47/49, 01307 Dresden, Germany
| | - Inka Busack
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Am Tatzberg 47/49, 01307 Dresden, Germany
| | - Luca Golinelli
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Amy Courtney
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Judith Besseling
- Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - William Schafer
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Henrik Bringmann
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Am Tatzberg 47/49, 01307 Dresden, Germany; Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
2
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 PMCID: PMC11979774 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
3
|
Hill AJ, Robinson B, Jones JG, Sternberg PW, Van Buskirk C. Sleep drive is coupled to tissue damage via shedding of Caenorhabditis elegans EGFR ligand SISS-1. Nat Commun 2024; 15:10886. [PMID: 39738055 PMCID: PMC11686035 DOI: 10.1038/s41467-024-55252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
The benefits of sleep extend beyond the nervous system. Peripheral tissues impact sleep regulation, and increased sleep is observed in response to damaging conditions, even those that selectively affect non-neuronal cells. However, the 'sleep need' signal released by stressed tissues is not known. Sleep in the nematode C. elegans is independent of circadian cues and can be triggered rapidly by damaging conditions. This stress-induced sleep is mediated by neurons that require the Epidermal Growth Factor Receptor (EGFR) for their sleep-promoting function, but the only known C. elegans EGFR ligand, LIN-3, is not required for sleep. Here we describe SISS-1 (stress-induced sleepless), an EGF family ligand that is required for stress-induced sleep. We show that SISS-1 overexpression induces sleep in an EGFR-dependent, sleep neuron-dependent manner. We find that SISS-1 undergoes stress-responsive shedding by the ADM-4/ADAM17 metalloprotease, and that the ADM-4 site of action depends on the tissue specificity of the stressor. Our findings support a model in which SISS-1 is released from damaged tissues to activate EGFR in sleep neurons, identifying a molecular link between cellular stress and organismal sleep drive. Our data also point to a mechanism insulating this sleep signal from EGFR-mediated signaling during development.
Collapse
Affiliation(s)
- Andrew J Hill
- Department of Biology, California State University Northridge, Northridge, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Bryan Robinson
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Jesse G Jones
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University Northridge, Northridge, CA, USA.
| |
Collapse
|
4
|
Chen Y, Ouyang J, Tang X, Tong J, Liu H, Liu Z, Gong Y. Black tea extracts enhance stress-induced sleep of Caenorhabditis elegans to resist UV damage. Food Res Int 2024; 196:115025. [PMID: 39614550 DOI: 10.1016/j.foodres.2024.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Black tea is believed to strengthen the ability of the body to defend itself against external stimuli. Here, by examining Caenorhabditis elegans (C. elegans) locomotor behavior over a short period after UV stress, we found that feeding black tea extract (BTE) caused worms to enter a superior stress-induced sleep (SIS) state, which potentially boosting organismal recovery. BTE enhances SIS through KIN-29 mediated epidermal growth factor signaling and modulation of sleep by specific interneurons ALA and RIS. It also inhibits lipid degradation during sleep. These functions were also observed when theaflavins (TFs) were fed. In conclusion, our results describe a new way for BTE-enhanced damage repair in C. elegans after UV stress that relies on enhanced SIS, and confirm the contribution of TFs therein.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Xiangyue Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Jiewen Tong
- College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - He Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhonghua Liu
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China.
| |
Collapse
|
5
|
Gavrilova A, Boström A, Korabel N, Fedotov S, Poulin GB, Allan VJ. The role of kinesin-1 in neuronal dense core vesicle transport, locomotion and lifespan regulation in C. elegans. J Cell Sci 2024; 137:jcs262148. [PMID: 39171448 PMCID: PMC11423817 DOI: 10.1242/jcs.262148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Astrid Boström
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Gino B Poulin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| |
Collapse
|
6
|
Nakai A, Kashiwagi M, Fujiyama T, Iwasaki K, Hirano A, Funato H, Yanagisawa M, Sakurai T, Hayashi Y. Crucial role of TFAP2B in the nervous system for regulating NREM sleep. Mol Brain 2024; 17:13. [PMID: 38413970 PMCID: PMC10900699 DOI: 10.1186/s13041-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
The AP-2 transcription factors are crucial for regulating sleep in both vertebrate and invertebrate animals. In mice, loss of function of the transcription factor AP-2β (TFAP2B) reduces non-rapid eye movement (NREM) sleep. When and where TFAP2B functions, however, is unclear. Here, we used the Cre-loxP system to generate mice in which Tfap2b was specifically deleted in the nervous system during development and mice in which neuronal Tfap2b was specifically deleted postnatally. Both types of mice exhibited reduced NREM sleep, but the nervous system-specific deletion of Tfap2b resulted in more severe sleep phenotypes accompanied by defective light entrainment of the circadian clock and stereotypic jumping behavior. These findings indicate that TFAP2B in postnatal neurons functions at least partly in sleep regulation and imply that TFAP2B also functions either at earlier stages or in additional cell types within the nervous system.
Collapse
Affiliation(s)
- Ayaka Nakai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Arisa Hirano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy, Toho University Graduate School of Medicine, Tokyo, 143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Aviles S, Subramanian S, Nelson MD. New alleles of nlp-2 , nlp-22 , and nlp-23 demonstrate that they are dispensable for stress-induced sleep in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001109. [PMID: 38371321 PMCID: PMC10870154 DOI: 10.17912/micropub.biology.001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Sleep is ancient and genetically conserved across phylogeny. Neuropeptide signaling plays a fundamental role in the regulation of sleep for mammals, fish, and invertebrates like Caenorhabditis elegans . Developmentally timed-sleep and stress-induced sleep of C. elegans are controlled by distinct and overlapping neuropeptide pathways. The RPamide neuropeptides nlp-2 , nlp-22 , and nlp-23 , play antagonistic roles during the regulation of developmentally-timed sleep, however, their role in stress-induced sleep has not been explored. These genes are linked on the X chromosome, which has made genetic analyses challenging. Here we used CRISPR to generate new alleles of nlp-22 and nlp-23 , nlp-22 ; nlp-23 double mutants, and nlp-2 ; nlp-22 ; nlp-23 triple mutants. Confirming previous studies, we find that nlp-22 is required for developmentally-timed sleep, and show that nlp-23 is also required. However, all three genes are dispensable for stress-induced sleep.
Collapse
Affiliation(s)
- Sage Aviles
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| | - Sanjita Subramanian
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| | - Matthew D Nelson
- Biology, Saint Joseph's University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
8
|
Koutsoumparis A, Busack I, Chen CK, Hayashi Y, Braeckman BP, Meierhofer D, Bringmann H. Reverse genetic screening during L1 arrest reveals a role of the diacylglycerol kinase 1 gene dgk-1 and sphingolipid metabolism genes in sleep regulation. Genetics 2023; 225:iyad124. [PMID: 37682641 DOI: 10.1093/genetics/iyad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/01/2023] [Indexed: 09/10/2023] Open
Abstract
Sleep is a fundamental state of behavioral quiescence and physiological restoration. Sleep is controlled by environmental conditions, indicating a complex regulation of sleep by multiple processes. Our knowledge of the genes and mechanisms that control sleep during various conditions is, however, still incomplete. In Caenorhabditis elegans, sleep is increased when development is arrested upon starvation. Here, we performed a reverse genetic sleep screen in arrested L1 larvae for genes that are associated with metabolism. We found over 100 genes that are associated with a reduced sleep phenotype. Enrichment analysis revealed sphingolipid metabolism as a key pathway that controls sleep. A strong sleep loss was caused by the loss of function of the diacylglycerol kinase 1 gene, dgk-1, a negative regulator of synaptic transmission. Rescue experiments indicated that dgk-1 is required for sleep in cholinergic and tyraminergic neurons. The Ring Interneuron S (RIS) neuron is crucial for sleep in C. elegans and activates to induce sleep. RIS activation transients were abolished in dgk-1 mutant animals. Calcium transients were partially rescued by a reduction-of-function mutation of unc-13, suggesting that dgk-1 might be required for RIS activation by limiting synaptic vesicle release. dgk-1 mutant animals had impaired L1 arrest survival and dampened expression of the protective heat shock factor gene hsp-12.6. These data suggest that dgk-1 impairment causes broad physiological deficits. Microcalorimetry and metabolomic analyses of larvae with impaired RIS showed that RIS is broadly required for energy conservation and metabolic control, including for the presence of sphingolipids. Our data support the notion that metabolism broadly influences sleep and that sleep is associated with profound metabolic changes. We thus provide novel insights into the interplay of lipids and sleep and provide a rich resource of mutants and metabolic pathways for future sleep studies.
Collapse
Affiliation(s)
- Anastasios Koutsoumparis
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| | - Inka Busack
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Henrik Bringmann
- Chair of Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Am Tatzberg 47/49, Dresden, Saxony 01307, Germany
| |
Collapse
|
9
|
Chen CK, Kawano T, Yanagisawa M, Hayashi Y. Forward genetic screen of Caenorhabditis elegans mutants with impaired sleep reveals a crucial role of neuronal diacylglycerol kinase DGK-1 in regulating sleep. Genetics 2023; 225:iyad140. [PMID: 37682636 DOI: 10.1093/genetics/iyad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 09/10/2023] Open
Abstract
The sleep state is widely observed in animals. The molecular mechanisms underlying sleep regulation, however, remain largely unclear. In the nematode Caenorhabditis elegans, developmentally timed sleep (DTS) and stress-induced sleep (SIS) are 2 types of quiescent behaviors that fulfill the definition of sleep and share conserved sleep-regulating molecules with mammals. To identify novel sleep-regulating molecules, we conducted an unbiased forward genetic screen based on DTS phenotypes. We isolated 2 mutants, rem8 and rem10, that exhibited significantly disrupted DTS and SIS. The causal gene of the abnormal sleep phenotypes in both mutants was mapped to dgk-1, which encodes diacylglycerol kinase. Perhaps due to the diminished SIS, dgk-1 mutant worms exhibited decreased survival following exposure to a noxious stimulus. Pan-neuronal and/or cholinergic expression of dgk-1 partly rescued the dgk-1 mutant defects in DTS, SIS, and post-stress survival. Moreover, we revealed that pkc-1/nPKC participates in sleep regulation and counteracts the effect of dgk-1; the reduced DTS, SIS, and post-stress survival rate were partly suppressed in the pkc-1; dgk-1 double mutant compared with the dgk-1 single mutant. Excessive sleep observed in the pkc-1 mutant was also suppressed in the pkc-1; dgk-1 double mutant, implying that dgk-1 has a complicated mode of action. Our findings indicate that neuronal DGK-1 is essential for normal sleep and that the counterbalance between DGK-1 and PKC-1 is crucial for regulating sleep and mitigating post-stress damage.
Collapse
Affiliation(s)
- Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
10
|
Uram Ł, Wróbel K, Walczak M, Szymaszek Ż, Twardowska M, Wołowiec S. Exploring the Potential of Lapatinib, Fulvestrant, and Paclitaxel Conjugated with Glycidylated PAMAM G4 Dendrimers for Cancer and Parasite Treatment. Molecules 2023; 28:6334. [PMID: 37687164 PMCID: PMC10489794 DOI: 10.3390/molecules28176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Fulvestrant (F), lapatinib (L), and paclitaxel (P) are hydrophobic, anticancer drugs used in the treatment of estrogen receptor (ER) and epidermal growth factor receptor (EGFR)-positive breast cancer. In this study, glycidylated PAMAM G4 dendrimers, substituted with F, L, and/or P and targeting tumor cells, were synthesized and characterized, and their antitumor activity against glioma U-118 MG and non-small cell lung cancer A549 cells was tested comparatively with human non-tumorogenic keratinocytes (HaCaT). All cell lines were ER+ and EGFR+. In addition, the described drugs were tested in the context of antinematode therapy on C. elegans. The results show that the water-soluble conjugates of G4P, G4F, G4L, and G4PFL actively entered the tested cells via endocytosis due to the positive zeta potential (between 13.57-40.29 mV) and the nanoparticle diameter of 99-138 nm. The conjugates of G4P and G4PFL at nanomolar concentrations were the most active, and the least active conjugate was G4F. The tested conjugates inhibited the proliferation of HaCaT and A549 cells; in glioma cells, cytotoxicity was associated mainly with cell damage (mitochondria and membrane transport). The toxicity of the conjugates was proportional to the number of drug residues attached, with the exception of G4L; its action was two- and eight-fold stronger against glioma and keratinocytes, respectively, than the equivalent of lapatinib alone. Unfortunately, non-cancer HaCaT cells were the most sensitive to the tested constructs, which forced a change in the approach to the use of ER and EGFR receptors as a goal in cancer therapy. In vivo studies on C. elegans have shown that all compounds, most notably G4PFL, may be potentially useful in anthelmintic therapy.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Konrad Wróbel
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| | - Małgorzata Walczak
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Żaneta Szymaszek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Magdalena Twardowska
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Stanisław Wołowiec
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| |
Collapse
|
11
|
Le E, McCarthy T, Honer M, Curtin CE, Fingerut J, Nelson MD. The neuropeptide receptor npr-38 regulates avoidance and stress-induced sleep in Caenorhabditis elegans. Curr Biol 2023; 33:3155-3168.e9. [PMID: 37419114 DOI: 10.1016/j.cub.2023.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Although essential and conserved, sleep is not without its challenges that must be overcome; most notably, it renders animals vulnerable to threats in the environment. Infection and injury increase sleep demand, which dampens sensory responsiveness to stimuli, including those responsible for the initial insult. Stress-induced sleep in Caenorhabditis elegans occurs in response to cellular damage following noxious exposures the animals attempted to avoid. Here, we describe a G-protein-coupled receptor (GPCR) encoded by npr-38, which is required for stress-related responses including avoidance, sleep, and arousal. Overexpression of npr-38 shortens the avoidance phase and causes animals to initiate movement quiescence and arouse early. npr-38 functions in the ADL sensory neurons, which express neuropeptides encoded by nlp-50, also required for movement quiescence. npr-38 regulates arousal by acting on the DVA and RIS interneurons. Our work demonstrates that this single GPCR regulates multiple aspects of the stress response by functioning in sensory and sleep interneurons.
Collapse
Affiliation(s)
- Emily Le
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Teagan McCarthy
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Caroline E Curtin
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jonathan Fingerut
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA.
| |
Collapse
|
12
|
Liu Y, Wang Y, Lin Z, Kang R, Tang D, Liu J. SLC25A22 as a Key Mitochondrial Transporter Against Ferroptosis by Producing Glutathione and Monounsaturated Fatty Acids. Antioxid Redox Signal 2023; 39:166-185. [PMID: 37051693 PMCID: PMC10620438 DOI: 10.1089/ars.2022.0203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Aims: Ferroptosis, a type of oxidative cell death driven by unlimited lipid peroxidation, is emerging as a target for cancer therapy. Although mitochondrial dysfunction may lead to ferroptosis, the underlying molecular mechanisms and metabolic pathways for ferroptosis are incompletely understood. Here, we identify solute carrier family 25 member 22 (SLC25A22), a mitochondrial glutamate transporter, as a driver of ferroptosis resistance in pancreatic ductal adenocarcinoma (PDAC) cells. Results: The downregulation of SLC25A22 expression was associated with increased sensitivity to ferroptosis, but not to apoptosis. Mechanistically, on the one hand, SLC25A22-dependent NAPDH synthesis blocks ferroptotic cell death in PDAC cells through mediating the production of glutathione (GSH), the most important hydrophilic antioxidant. On the other hand, SLC25A22 promotes the expression of stearoyl-CoA desaturase in PDAC cells in an AMP-activated protein kinase-dependent manner, resulting in the production of antiferroptotic monounsaturated fatty acids (MUFAs). The animal study further confirms that SLC25A22 inhibits ferroptosis-mediated tumor suppression. Innovation: SLC25A22 is a novel metabolic repressor of ferroptosis by producing GSH and MUFAs. Conclusion: These findings establish a previously unrecognized metabolic defense pathway to limit ferroptotic cell death in vitro and in vivo. Antioxid. Redox Signal. 39, 166-185.
Collapse
Affiliation(s)
- Yang Liu
- The DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Yuan Wang
- The DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jiao Liu
- The DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Kniazkina M, Dyachuk V. Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation? Int J Mol Sci 2023; 24:ijms24119505. [PMID: 37298454 DOI: 10.3390/ijms24119505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Sleep-wake cycle disorders are an important symptom of many neurological diseases, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Circadian rhythms and sleep-wake cycles play a key role in maintaining the health of organisms. To date, these processes are still poorly understood and, therefore, need more detailed elucidation. The sleep process has been extensively studied in vertebrates, such as mammals and, to a lesser extent, in invertebrates. A complex, multi-step interaction of homeostatic processes and neurotransmitters provides the sleep-wake cycle. Many other regulatory molecules are also involved in the cycle regulation, but their functions remain largely unclear. One of these signaling systems is epidermal growth factor receptor (EGFR), which regulates the activity of neurons in the modulation of the sleep-wake cycle in vertebrates. We have evaluated the possible role of the EGFR signaling pathway in the molecular regulation of sleep. Understanding the molecular mechanisms that underlie sleep-wake regulation will provide critical insight into the fundamental regulatory functions of the brain. New findings of sleep-regulatory pathways may provide new drug targets and approaches for the treatment of sleep-related diseases.
Collapse
Affiliation(s)
- Marina Kniazkina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
14
|
Kawano T, Kashiwagi M, Kanuka M, Chen CK, Yasugaki S, Hatori S, Miyazaki S, Tanaka K, Fujita H, Nakajima T, Yanagisawa M, Nakagawa Y, Hayashi Y. ER proteostasis regulators cell-non-autonomously control sleep. Cell Rep 2023; 42:112267. [PMID: 36924492 DOI: 10.1016/j.celrep.2023.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Sleep is regulated by peripheral tissues under fatigue. The molecular pathways in peripheral cells that trigger systemic sleep-related signals, however, are unclear. Here, a forward genetic screen in C. elegans identifies 3 genes that strongly affect sleep amount: sel-1, sel-11, and mars-1. sel-1 and sel-11 encode endoplasmic reticulum (ER)-associated degradation components, whereas mars-1 encodes methionyl-tRNA synthetase. We find that these machineries function in non-neuronal tissues and that the ER unfolded protein response components inositol-requiring enzyme 1 (IRE1)/XBP1 and protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor-2α (eIF2α)/activating transcription factor-4 (ATF4) participate in non-neuronal sleep regulation, partly by reducing global translation. Neuronal epidermal growth factor receptor (EGFR) signaling is also required. Mouse studies suggest that this mechanism is conserved in mammals. Considering that prolonged wakefulness increases ER proteostasis stress in peripheral tissues, our results suggest that peripheral ER proteostasis factors control sleep homeostasis. Moreover, based on our results, peripheral tissues likely cope with ER stress not only by the well-established cell-autonomous mechanisms but also by promoting the individual's sleep.
Collapse
Affiliation(s)
- Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinnosuke Yasugaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sena Hatori
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Toshiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yoshimi Nakagawa
- Department of Complex Biosystem Research, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
Busack I, Bringmann H. A sleep-active neuron can promote survival while sleep behavior is disturbed. PLoS Genet 2023; 19:e1010665. [PMID: 36917595 PMCID: PMC10038310 DOI: 10.1371/journal.pgen.1010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
Sleep is controlled by neurons that induce behavioral quiescence and physiological restoration. It is not known, however, how sleep neurons link sleep behavior and survival. In Caenorhabditis elegans, the sleep-active RIS neuron induces sleep behavior and is required for survival of starvation and wounding. Sleep-active neurons such as RIS might hypothetically promote survival primarily by causing sleep behavior and associated conservation of energy. Alternatively, RIS might provide a survival benefit that does not depend on behavioral sleep. To probe these hypotheses, we tested how activity of the sleep-active RIS neuron in Caenorhabditis elegans controls sleep behavior and survival during larval starvation. To manipulate the activity of RIS, we expressed constitutively active potassium channel (twk-18gf and egl-23gf) or sodium channel (unc-58gf) mutant alleles in this neuron. Low levels of unc-58gf expression in RIS increased RIS calcium transients and sleep. High levels of unc-58gf expression in RIS elevated baseline calcium activity and inhibited calcium activation transients, thus locking RIS activity at a high but constant level. This manipulation caused a nearly complete loss of sleep behavior but increased survival. Long-term optogenetic activation also caused constantly elevated RIS activity and a small trend towards increased survival. Disturbing sleep by lethal blue-light stimulation also overactivated RIS, which again increased survival. FLP-11 neuropeptides were important for both, induction of sleep behavior and starvation survival, suggesting that FLP-11 might have divergent roles downstream of RIS. These results indicate that promotion of sleep behavior and survival are separable functions of RIS. These two functions may normally be coupled but can be uncoupled during conditions of strong RIS activation or when sleep behavior is impaired. Through this uncoupling, RIS can provide survival benefits under conditions when behavioral sleep is disturbed. Promoting survival in the face of impaired sleep might be a general function of sleep neurons.
Collapse
Affiliation(s)
- Inka Busack
- BIOTEC, Technical University Dresden, Dresden, Germany
| | | |
Collapse
|
16
|
Planthopper salivary sheath protein LsSP1 contributes to manipulation of rice plant defenses. Nat Commun 2023; 14:737. [PMID: 36759625 PMCID: PMC9911632 DOI: 10.1038/s41467-023-36403-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Salivary elicitors secreted by herbivorous insects can be perceived by host plants to trigger plant immunity. However, how insects secrete other salivary components to subsequently attenuate the elicitor-induced plant immunity remains poorly understood. Here, we study the small brown planthopper, Laodelphax striatellus salivary sheath protein LsSP1. Using Y2H, BiFC and LUC assays, we show that LsSP1 is secreted into host plants and binds to salivary sheath via mucin-like protein (LsMLP). Rice plants pre-infested with dsLsSP1-treated L. striatellus are less attractive to L. striatellus nymphs than those pre-infected with dsGFP-treated controls. Transgenic rice plants with LsSP1 overexpression rescue the insect feeding defects caused by a deficiency of LsSP1 secretion, consistent with the potential role of LsSP1 in manipulating plant defenses. Our results illustrate the importance of salivary sheath proteins in mediating the interactions between plants and herbivorous insects.
Collapse
|
17
|
Fragoso-Luna A, Romero-Bueno R, Eibl M, Ayuso C, Muñoz-Jiménez C, Benes V, Cases I, Askjaer P. Expanded FLP toolbox for spatiotemporal protein degradation and transcriptomic profiling in Caenorhabditis elegans. Genetics 2023; 223:iyac166. [PMID: 36321973 PMCID: PMC9836023 DOI: 10.1093/genetics/iyac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
Abstract
Control of gene expression in specific tissues and/or at certain stages of development allows the study and manipulation of gene function with high precision. Site-specific genome recombination by the flippase (FLP) and cyclization recombination (Cre) enzymes has proved particularly relevant. Joint efforts of many research groups have led to the creation of efficient FLP and Cre drivers to regulate gene expression in a variety of tissues in Caenorhabditis elegans. Here, we extend this toolkit by the addition of FLP lines that drive recombination specifically in distal tip cells, the somatic gonad, coelomocytes, and the epithelial P lineage. In some cases, recombination-mediated gene knockouts do not completely deplete protein levels due to persistence of long-lived proteins. To overcome this, we developed a spatiotemporally regulated degradation system for green fluorescent fusion proteins based on FLP-mediated recombination. Using 2 stable nuclear pore proteins, MEL-28/ELYS and NPP-2/NUP85 as examples, we report the benefit of combining tissue-specific gene knockout and protein degradation to achieve complete protein depletion. We also demonstrate that FLP-mediated recombination can be utilized to identify transcriptomes in a C. elegans tissue of interest. We have adapted RNA polymerase DamID for the FLP toolbox and by focusing on a well-characterized tissue, the hypodermis, we show that the vast majority of genes identified by RNA polymerase DamID are known to be expressed in this tissue. These tools allow combining FLP activity for simultaneous gene inactivation and transcriptomic profiling, thus enabling the inquiry of gene function in various complex biological processes.
Collapse
Affiliation(s)
- Adrián Fragoso-Luna
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Raquel Romero-Bueno
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Michael Eibl
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Cristina Ayuso
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Celia Muñoz-Jiménez
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | | | - Ildefonso Cases
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, 41013 Sevilla, Spain
| |
Collapse
|
18
|
Palermo J, Chesi A, Zimmerman A, Sonti S, Pahl MC, Lasconi C, Brown EB, Pippin JA, Wells AD, Doldur-Balli F, Mazzotti DR, Pack AI, Gehrman PR, Grant SF, Keene AC. Variant-to-gene mapping followed by cross-species genetic screening identifies GPI-anchor biosynthesis as a regulator of sleep. SCIENCE ADVANCES 2023; 9:eabq0844. [PMID: 36608130 PMCID: PMC9821868 DOI: 10.1126/sciadv.abq0844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 05/13/2023]
Abstract
Genome-wide association studies (GWAS) in humans have identified loci robustly associated with several heritable diseases or traits, yet little is known about the functional roles of the underlying causal variants in regulating sleep duration or quality. We applied an ATAC-seq/promoter focused Capture C strategy in human iPSC-derived neural progenitors to carry out a "variant-to-gene" mapping campaign that identified 88 candidate sleep effector genes connected to relevant GWAS signals. To functionally validate the role of the implicated effector genes in sleep regulation, we performed a neuron-specific RNA interference screen in the fruit fly, Drosophila melanogaster, followed by validation in zebrafish. This approach identified a number of genes that regulate sleep including a critical role for glycosylphosphatidylinositol (GPI)-anchor biosynthesis. These results provide the first physical variant-to-gene mapping of human sleep genes followed by a model organism-based prioritization, revealing a conserved role for GPI-anchor biosynthesis in sleep regulation.
Collapse
Affiliation(s)
- Justin Palermo
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Zimmerman
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Shilpa Sonti
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Diego R. Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Allan I. Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Phillip R. Gehrman
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Ouyang J, Peng Y, Gong Y. New Perspectives on Sleep Regulation by Tea: Harmonizing Pathological Sleep and Energy Balance under Stress. Foods 2022; 11:3930. [PMID: 36496738 PMCID: PMC9738644 DOI: 10.3390/foods11233930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/09/2022] Open
Abstract
Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in stressful environments or during illness. Sickness sleep plays an important role in maintaining energy homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich beverage, has multiple health benefits, including lowering stress and regulating energy metabolism and natural sleep. However, the role of tea in regulating sickness sleep has received little attention. The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of energy homeostasis in injured organisms remains to be elucidated. This review examines the current research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.
Collapse
Affiliation(s)
- Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuxuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
20
|
Miyazaki S, Kawano T, Yanagisawa M, Hayashi Y. Intracellular Ca2+ dynamics in the ALA neuron reflect sleep pressure and regulate sleep in Caenorhabditis elegans. iScience 2022; 25:104452. [PMID: 35707721 PMCID: PMC9189131 DOI: 10.1016/j.isci.2022.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/03/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms underlying sleep homeostasis are poorly understood. The nematode Caenorhabditis elegans exhibits 2 types of sleep: lethargus, or developmentally timed, and stress-induced sleep. Lethargus is characterized by alternating cycles of sleep and motion bouts. Sleep bouts are homeostatically regulated, i.e., prolonged active bouts lead to prolonged sleep bouts. Here we reveal that the interneuron ALA is crucial for homeostatic regulation during lethargus. Intracellular Ca2+ in ALA gradually increased during active bouts and rapidly decayed upon transitions to sleep bouts. Longer active bouts were accompanied by higher intracellular Ca2+ peaks. Optogenetic activation of ALA during active bouts caused transitions to sleep bouts. Dysfunction of CEH-17, which is an LIM homeodomain transcription factor selectively expressed in ALA, impaired the characteristic patterns of ALA intracellular Ca2+ and abolished the homeostatic regulation of sleep bouts. These findings indicate that ALA encodes sleep pressure and contributes to sleep homeostasis. ALA gradually increases its activity during motion bouts during lethargus in C. elegans Dysfunction or artificial activation of ALA perturbs the sleep structure ALA plays a crucial role in homeostatic sleep regulation
Collapse
Affiliation(s)
- Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 603-8363, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Corresponding author
| |
Collapse
|
21
|
Koutsoumparis A, Welp LM, Wulf A, Urlaub H, Meierhofer D, Börno S, Timmermann B, Busack I, Bringmann H. Sleep neuron depolarization promotes protective gene expression changes and FOXO activation. Curr Biol 2022; 32:2248-2262.e9. [DOI: 10.1016/j.cub.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/09/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
|
22
|
Bicknell RD, Smith PM, Brougham T, Bevitt JJ. An earliest Triassic age for Tasmaniolimulus and comments on synchrotron tomography of Gondwanan horseshoe crabs. PeerJ 2022; 10:e13326. [PMID: 35480564 PMCID: PMC9037155 DOI: 10.7717/peerj.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/02/2022] [Indexed: 01/13/2023] Open
Abstract
Constraining the timing of morphological innovations within xiphosurid evolution is central for understanding when and how such a long-lived group exploited vacant ecological niches over the majority of the Phanerozoic. To expand the knowledge on the evolution of select xiphosurid forms, we reconsider the four Australian taxa: Austrolimulus fletcheri, Dubbolimulus peetae, Tasmaniolimulus patersoni, and Victalimulus mcqueeni. In revisiting these taxa, we determine that, contrary to previous suggestion, T. patersoni arose after the Permian and the origin of over-developed genal spine structures within Austrolimulidae is exclusive to the Triassic. To increase the availability of morphological data pertaining to these unique forms, we also examined the holotypes of the four xiphosurids using synchrotron radiation X-ray tomography (SRXT). Such non-destructive, in situ imaging of palaeontological specimens can aid in the identification of novel morphological data by obviating the need for potentially extensive preparation of fossils from the surrounding rock matrix. This is particularly important for rare and/or delicate holotypes. Here, SRXT was used to emphasize A. fletcheri and T. patersoni cardiac lobe morphologies and illustrate aspects of the V. mcqueeni thoracetronic doublure, appendage impressions, and moveable spine notches. Unfortunately, the strongly compacted D. peetae precluded the identification of any internal structures, but appendage impressions were observed. The application of computational fluid dynamics to high-resolution 3D reconstructions are proposed to understand the hydrodynamic properties of divergent genal spine morphologies of austrolimulid xiphosurids.
Collapse
Affiliation(s)
| | - Patrick M. Smith
- Australian Museum Research Institute, Sydney, Australia
- Macquarie University, Sydney, Australia
| | | | - Joseph J. Bevitt
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| |
Collapse
|
23
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
24
|
Tanaka 田中涼介 R, Clark DA. Identifying Inputs to Visual Projection Neurons in Drosophila Lobula by Analyzing Connectomic Data. eNeuro 2022; 9:ENEURO.0053-22.2022. [PMID: 35410869 PMCID: PMC9034759 DOI: 10.1523/eneuro.0053-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Electron microscopy (EM)-based connectomes provide important insights into how visual circuitry of fruit fly Drosophila computes various visual features, guiding and complementing behavioral and physiological studies. However, connectomic analyses of the lobula, a neuropil putatively dedicated to detecting object-like features, remains underdeveloped, largely because of incomplete data on the inputs to the brain region. Here, we attempted to map the columnar inputs into the Drosophila lobula neuropil by performing connectivity-based and morphology-based clustering on a densely reconstructed connectome dataset. While the dataset mostly lacked visual neuropils other than lobula, which would normally help identify inputs to lobula, our clustering analysis successfully extracted clusters of cells with homogeneous connectivity and morphology, likely representing genuine cell types. We were able to draw a correspondence between the resulting clusters and previously identified cell types, revealing previously undocumented connectivity between lobula input and output neurons. While future, more complete connectomic reconstructions are necessary to verify the results presented here, they can serve as a useful basis for formulating hypotheses on mechanisms of visual feature detection in lobula.
Collapse
Affiliation(s)
- Ryosuke Tanaka 田中涼介
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
- Department of Neuroscience, Yale University, New Haven, CT 06511
| |
Collapse
|
25
|
Martin C, Jahn H, Klein M, Hammel JU, Stevenson PA, Homberg U, Mayer G. The velvet worm brain unveils homologies and evolutionary novelties across panarthropods. BMC Biol 2022; 20:26. [PMID: 35073910 PMCID: PMC9136957 DOI: 10.1186/s12915-021-01196-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of the brain and its major neuropils in Panarthropoda (comprising Arthropoda, Tardigrada and Onychophora) remains enigmatic. As one of the closest relatives of arthropods, onychophorans are regarded as indispensable for a broad understanding of the evolution of panarthropod organ systems, including the brain, whose anatomical and functional organisation is often used to gain insights into evolutionary relations. However, while numerous recent studies have clarified the organisation of many arthropod nervous systems, a detailed investigation of the onychophoran brain with current state-of-the-art approaches is lacking, and further inconsistencies in nomenclature and interpretation hamper its understanding. To clarify the origins and homology of cerebral structures across panarthropods, we analysed the brain architecture in the onychophoran Euperipatoides rowelli by combining X-ray micro-computed tomography, histology, immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. RESULTS Here, we use this detailed information to generate a consistent glossary for neuroanatomical studies of Onychophora. In addition, we report novel cerebral structures, provide novel details on previously known brain areas, and characterise further structures and neuropils in order to improve the reproducibility of neuroanatomical observations. Our findings support homology of mushroom bodies and central bodies in onychophorans and arthropods. Their antennal nerve cords and olfactory lobes most likely evolved independently. In contrast to previous reports, we found no evidence for second-order visual neuropils, or a frontal ganglion in the velvet worm brain. CONCLUSION We imaged the velvet worm nervous system at an unprecedented level of detail and compiled a comprehensive glossary of known and previously uncharacterised neuroanatomical structures to provide an in-depth characterisation of the onychophoran brain architecture. We expect that our data will improve the reproducibility and comparability of future neuroanatomical studies.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| | - Henry Jahn
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Mercedes Klein
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Paul A Stevenson
- Physiology of Animals and Behaviour, Institute of Biology, University of Leipzig, 04103, Leipzig, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| |
Collapse
|
26
|
Spiri S, Berger S, Mereu L, DeMello A, Hajnal A. Reciprocal EGFR signaling in the anchor cell ensures precise inter-organ connection during Caenorhabditis elegans vulval morphogenesis. Development 2022; 149:dev199900. [PMID: 34982813 PMCID: PMC8783044 DOI: 10.1242/dev.199900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023]
Abstract
During Caenorhabditis elegans vulval development, the uterine anchor cell (AC) first secretes an epidermal growth factor (EGF) to specify the vulval cell fates and then invades the underlying vulval epithelium. By doing so, the AC establishes direct contact with the invaginating primary vulF cells and attaches the developing uterus to the vulva. The signals involved and the exact sequence of events joining these two organs are not fully understood. Using a conditional let-23 EGF receptor (EGFR) allele along with novel microfluidic short- and long-term imaging methods, we discovered a specific function of the EGFR in the AC during vulval lumen morphogenesis. Tissue-specific inactivation of let-23 in the AC resulted in imprecise alignment of the AC with the primary vulval cells, delayed AC invasion and disorganized adherens junctions at the contact site forming between the AC and the dorsal vulF toroid. We propose that EGFR signaling, activated by a reciprocal EGF cue from the primary vulval cells, positions the AC at the vulval midline, guides it during invasion and assembles a cytoskeletal scaffold organizing the adherens junctions that connect the developing uterus to the dorsal vulF toroid. Thus, EGFR signaling in the AC ensures the precise alignment of the two developing organs.
Collapse
Affiliation(s)
- Silvan Spiri
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Simon Berger
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institute for Chemical- and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Louisa Mereu
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Andrew DeMello
- Institute for Chemical- and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
27
|
Yang A, Qi X, Wang QM, Wang H, Wang Y, Li L, Liu W, Qiao Y. The branch-thorn occurrence of Lycium ruthenicum is associated with leaf DNA hypermethylation in response to soil water content. Mol Biol Rep 2021; 49:1925-1934. [PMID: 34860320 DOI: 10.1007/s11033-021-07004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lycium ruthenicum is an eco-economic shrub which can exist in two forms, thorny and thornless under varying soil moisture conditions. The aim of this study was to determine if the two forms of L. ruthenicum were influenced by soil water content (SWC) and to test the three-way link among SWC, occurrence of branch-thorn and DNA methylation modification. METHODS AND RESULTS Here, pot experiment was carried out to reveal the influence of SWC on the occurrence of branch-thorn and then paraffin sections, scanning electron microscope and methylation-sensitive amplification polymorphism(MSAP) analysis were used to determine the three-way link among SWC, branch-thorn occurrence and DNA methylation. The results showed that (a) soil drought promoted the development of thorn primordium into branch-thorn and (b) branch-thorn covered axillary bud to protect it against drought and other stresses; (c) the branch-thorn occurrence response to drought was correlated with hypermethylation of CCGG sites and (d) thorny and thornless plants of a clone were distinguished successfully based on the MSAP profiles of their leaves. CONCLUSIONS Branch-thorns of the L. ruthenicum clone, which occurred in response to drought, covered axillary buds to protect them against drought and other stresses; thorn primordium of the clone did not develop into branch-thorn under the adequate soil moisture condition. The occurrence and absence of the branch-thorns were correlated with the hyper- and hypo-methylation, respectively. We proposed that the branch-thorn plasticity might be an adjustment strategy for the environment, which seems to support the theory of "Use in, waste out".
Collapse
Affiliation(s)
- Ailin Yang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xinyu Qi
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Qin-Mei Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Hao Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yucheng Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Lujia Li
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wen Liu
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yang Qiao
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| |
Collapse
|
28
|
Yan Y, Wu K, Chen J, Liu H, Huang Y, Zhang Y, Xiong J, Quan W, Wu X, Liang Y, He K, Jia Z, Wang D, Liu D, Wei H, Chen J. Rapid Acquisition of High-Quality SARS-CoV-2 Genome via Amplicon-Oxford Nanopore Sequencing. Virol Sin 2021; 36:901-912. [PMID: 33851337 PMCID: PMC8043101 DOI: 10.1007/s12250-021-00378-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Genome sequencing has shown strong capabilities in the initial stages of the COVID-19 pandemic such as pathogen identification and virus preliminary tracing. While the rapid acquisition of SARS-CoV-2 genome from clinical specimens is limited by their low nucleic acid load and the complexity of the nucleic acid background. To address this issue, we modified and evaluated an approach by utilizing SARS-CoV-2-specific amplicon amplification and Oxford Nanopore PromethION platform. This workflow started with the throat swab of the COVID-19 patient, combined reverse transcript PCR, and multi-amplification in one-step to shorten the experiment time, then can quickly and steadily obtain high-quality SARS-CoV-2 genome within 24 h. A comprehensive evaluation of the method was conducted in 42 samples: the sequencing quality of the method was correlated well with the viral load of the samples; high-quality SARS-CoV-2 genome could be obtained stably in the samples with Ct value up to 39.14; data yielding for different Ct values were assessed and the recommended sequencing time was 8 h for samples with Ct value of less than 20; variation analysis indicated that the method can detect the existing and emerging genomic mutations as well; Illumina sequencing verified that ultra-deep sequencing can greatly improve the single read error rate of Nanopore sequencing, making it as low as 0.4/10,000 bp. In summary, high-quality SARS-CoV-2 genome can be acquired by utilizing the amplicon amplification and it is an effective method in accelerating the acquisition of genetic resources and tracking the genome diversity of SARS-CoV-2.
Collapse
Affiliation(s)
- Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 101409, China
| | - Ke Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 101409, China
| | - Jun Chen
- Wuhan Pulmonary Hospital, Wuhan Tuberculosis Prevention and Treatment Institute, Wuhan, 430030, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yi Huang
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yong Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jin Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | - Xin Wu
- GrandOmics Biosciences, Beijing, 102200, China
| | - Yu Liang
- GrandOmics Diagnostics, Wuhan, 430000, China
| | - Kunlun He
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100039, China
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhilong Jia
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100039, China
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, 100039, China
| | - Depeng Wang
- GrandOmics Biosciences, Beijing, 102200, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 101409, China.
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
29
|
Chávez-Pérez C, Jafari N, Keenan BT, Raizen DM, Rohacek AM. Motivated displacement assay distinguishes ALA neuron mutants from RIS neuron mutants during recovery from heat stress in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000468. [PMID: 34557657 PMCID: PMC8453304 DOI: 10.17912/micropub.biology.000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 11/06/2022]
Abstract
The interneurons ALA and RIS both regulate stress induced sleep in C. elegans but their roles in awake animal movement has been reported to differ. We describe the development of a motivated mobility-based assay that distinguishes between animals mutant for ALA function and those mutant for RIS function.
Collapse
Affiliation(s)
- Carlos Chávez-Pérez
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania
| | - Niusha Jafari
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Brendan T Keenan
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania,
Correspondence to: David M Raizen ()
| | - Alex M Rohacek
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
30
|
Transcranial magnetic stimulation entrains alpha oscillatory activity in occipital cortex. Sci Rep 2021; 11:18562. [PMID: 34535692 PMCID: PMC8448857 DOI: 10.1038/s41598-021-96849-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
Parieto-occipital alpha rhythms (8-12 Hz) underlie cortical excitability and influence visual performance. Whether the synchrony of intrinsic alpha rhythms in the occipital cortex can be entrained by transcranial magnetic stimulation (TMS) is an open question. We applied 4-pulse, 10-Hz rhythmic TMS to entrain intrinsic alpha oscillators targeting right V1/V2, and tested four predictions with concurrent electroencephalogram (EEG): (1) progressive enhancement of entrainment across time windows, (2) output frequency specificity, (3) dependence on the intrinsic oscillation phase, and (4) input frequency specificity to individual alpha frequency (IAF) in the neural signatures. Two control conditions with an equal number of pulses and duration were arrhythmic-active and rhythmic-sham stimulation. The results confirmed the first three predictions. Rhythmic TMS bursts significantly entrained local neural activity. Near the stimulation site, evoked oscillation amplitude and inter-trial phase coherence (ITPC) were increased for 2 and 3 cycles, respectively, after the last TMS pulse. Critically, ITPC following entrainment positively correlated with IAF rather than with the degree of similarity between IAF and the input frequency (10 Hz). Thus, we entrained alpha-band activity in occipital cortex for ~ 3 cycles (~ 300 ms), and IAF predicts the strength of entrained occipital alpha phase synchrony indexed by ITPC.
Collapse
|
31
|
Xu Y, Zhang L, Liu Y, Topalidou I, Hassinan C, Ailion M, Zhao Z, Wang T, Chen Z, Bai J. Dopamine receptor DOP-1 engages a sleep pathway to modulate swimming in C. elegans. iScience 2021; 24:102247. [PMID: 33796839 PMCID: PMC7995527 DOI: 10.1016/j.isci.2021.102247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Animals require robust yet flexible programs to support locomotion. Here we report a pathway that connects the D1-like dopamine receptor DOP-1 with a sleep mechanism to modulate swimming in C. elegans. We show that DOP-1 plays a negative role in sustaining swimming behavior. By contrast, a pathway through the D2-like dopamine receptor DOP-3 negatively regulates the initiation of swimming, but its impact fades quickly over a few minutes. We find that DOP-1 and the GPCR kinase (G-protein-coupled receptor kinase-2) function in the sleep interneuron RIS, where DOP-1 modulates the secretion of a sleep neuropeptide FLP-11. We further show that DOP-1 and FLP-11 act in the same pathway to modulate swimming. Together, these results delineate a functional connection between a dopamine receptor and a sleep program to regulate swimming in C. elegans. The temporal transition between DOP-3 and DOP-1 pathways highlights the dynamic nature of neuromodulation for rhythmic movements that persist over time.
Collapse
Affiliation(s)
- Ye Xu
- Department of Clinical Medicine, Nanjing Medical University, Nanjing 211166, P. R. China.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.,Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Lin Zhang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Yan Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, WA 98195
| | - Cera Hassinan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019
| | - Michael Ailion
- Department of Biochemistry, University of Washington, WA 98195
| | - Zhenqiang Zhao
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Zhibin Chen
- Department of Clinical Medicine, Nanjing Medical University, Nanjing 211166, P. R. China.,Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019.,Department of Biochemistry, University of Washington, WA 98195
| |
Collapse
|
32
|
Sinner MP, Masurat F, Ewbank JJ, Pujol N, Bringmann H. Innate Immunity Promotes Sleep through Epidermal Antimicrobial Peptides. Curr Biol 2021; 31:564-577.e12. [PMID: 33259791 DOI: 10.1016/j.cub.2020.10.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
Wounding and infection trigger a protective innate immune response that includes the production of antimicrobial peptides in the affected tissue as well as increased sleep. Little is known, however, how peripheral wounds or innate immunity signal to the nervous system to increase sleep. We found that, during C. elegans larval molting, an epidermal tolloid/bone morphogenic protein (BMP)-1-like protein called NAS-38 promotes sleep. NAS-38 is negatively regulated by its thrombospondin domain and acts through its astacin protease domain to activate p38 mitogen-activated protein (MAP)/PMK-1 kinase and transforming growth factor β (TGF-β)-SMAD/SMA-3-dependent innate immune pathways in the epidermis that cause STAT/STA-2 and SLC6 (solute carrier)/SNF-12-dependent expression of antimicrobial peptide (AMP) genes. We show that more than a dozen epidermal AMPs act as somnogens, signaling across tissues to promote sleep through the sleep-active RIS neuron. In the adult, epidermal injury activates innate immunity and turns up AMP production to trigger sleep, a process that requires epidermal growth factor receptor (EGFR) signaling that is known to promote sleep following cellular stress. We show for one AMP, neuropeptide-like protein (NLP)-29, that it acts through the neuropeptide receptor NPR-12 in locomotion-controlling neurons that are presynaptic to RIS and that depolarize this neuron to induce sleep. Sleep in turn increases the chance of surviving injury. Thus, we found a novel mechanism by which peripheral wounds signal to the nervous system to increase protective sleep. Such a cross-tissue somnogen-signaling function of AMPs might also boost sleep in other animals, including humans.
Collapse
Affiliation(s)
- Marina P Sinner
- BIOTEC, Technical University Dresden, Dresden, Germany; University of Marburg, Marburg, Germany; Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Jonathan J Ewbank
- Aix Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Nathalie Pujol
- Aix Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Henrik Bringmann
- BIOTEC, Technical University Dresden, Dresden, Germany; University of Marburg, Marburg, Germany; Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
33
|
Lee DA, Oikonomou G, Cammidge T, Andreev A, Hong Y, Hurley H, Prober DA. Neuropeptide VF neurons promote sleep via the serotonergic raphe. eLife 2020; 9:54491. [PMID: 33337320 PMCID: PMC7748413 DOI: 10.7554/elife.54491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Although several sleep-regulating neuronal populations have been identified, little is known about how they interact with each other to control sleep/wake states. We previously identified neuropeptide VF (NPVF) and the hypothalamic neurons that produce it as a sleep-promoting system (Lee et al., 2017). Here we show using zebrafish that npvf-expressing neurons control sleep via the serotonergic raphe nuclei (RN), a hindbrain structure that is critical for sleep in both diurnal zebrafish and nocturnal mice. Using genetic labeling and calcium imaging, we show that npvf-expressing neurons innervate and can activate serotonergic RN neurons. We also demonstrate that chemogenetic or optogenetic stimulation of npvf-expressing neurons induces sleep in a manner that requires NPVF and serotonin in the RN. Finally, we provide genetic evidence that NPVF acts upstream of serotonin in the RN to maintain normal sleep levels. These findings reveal a novel hypothalamic-hindbrain neuronal circuit for sleep/wake control.
Collapse
Affiliation(s)
- Daniel A Lee
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Grigorios Oikonomou
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Tasha Cammidge
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Andrey Andreev
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Young Hong
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - Hannah Hurley
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| | - David A Prober
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| |
Collapse
|
34
|
Acclimatization of photosynthetic apparatus and antioxidant metabolism to excess soil cadmium in Buddleja spp. Sci Rep 2020; 10:21439. [PMID: 33293685 PMCID: PMC7722743 DOI: 10.1038/s41598-020-78593-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
Heavy metal (HM) pollutants can cause serious phytotoxicity or oxidative stress in plants. Buddleja L., commonly known as “butterfly bushes”, are frequently found growing on HM-contaminated land. However, to date, few studies have focused on the physiological and biochemical responses of Buddleja species to HM stress. In this study, potted seedlings of B. asiatica Lour. and B. macrostachya Wall. ex Benth. were subjected to various cadmium (Cd) concentrations (0, 25, 50, 100, and 200 mg kg−1) for 90 days. Both studied Buddleja species showed restricted Cd translocation capacity. Exposure to Cd, non-significant differences (p > 0.05) were observed, including quantum yield of photosystem II (PSII), effective quantum yield of PSII, photochemical quenching and non-photochemical quenching in both species between all studied Cd concentrations. Moreover, levels of cellular reactive oxygen species (ROS) significantly declined (p < 0.05) with low malondialdehyde concentrations. In B. asiatica, high superoxide dismutase and significantly enhanced (p < 0.05) peroxidase (POD) activity contributed greatly to the detoxification of excess ROS, while markedly enhanced POD activity was observed in B. macrostachya. Additionally, B. macrostachya showed higher membership function values than did B. asiatica. These results suggested that both Buddleja species exhibited high Cd resistance and acclimatization.
Collapse
|
35
|
Differential impact of endogenous and exogenous attention on activity in human visual cortex. Sci Rep 2020; 10:21274. [PMID: 33277552 PMCID: PMC7718281 DOI: 10.1038/s41598-020-78172-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023] Open
Abstract
How do endogenous (voluntary) and exogenous (involuntary) attention modulate activity in visual cortex? Using ROI-based fMRI analysis, we measured fMRI activity for valid and invalid trials (target at cued/un-cued location, respectively), pre- or post-cueing endogenous or exogenous attention, while participants performed the same orientation discrimination task. We found stronger modulation in contralateral than ipsilateral visual regions, and higher activity in valid- than invalid-trials. For endogenous attention, modulation of stimulus-evoked activity due to a pre-cue increased along the visual hierarchy, but was constant due to a post-cue. For exogenous attention, modulation of stimulus-evoked activity due to a pre-cue was constant along the visual hierarchy, but was not modulated due to a post-cue. These findings reveal that endogenous and exogenous attention distinctly modulate activity in visuo-occipital areas during orienting and reorienting; endogenous attention facilitates both the encoding and the readout of visual information whereas exogenous attention only facilitates the encoding of information.
Collapse
|
36
|
Nakai A, Fujiyama T, Nagata N, Kashiwagi M, Ikkyu A, Takagi M, Tatsuzawa C, Tanaka K, Kakizaki M, Kanuka M, Kawano T, Mizuno S, Sugiyama F, Takahashi S, Funato H, Sakurai T, Yanagisawa M, Hayashi Y. Sleep Architecture in Mice Is Shaped by the Transcription Factor AP-2β. Genetics 2020; 216:753-764. [PMID: 32878901 PMCID: PMC7648583 DOI: 10.1534/genetics.120.303435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanism regulating sleep largely remains to be elucidated. In humans, families that carry mutations in TFAP2B, which encodes the transcription factor AP-2β, self-reported sleep abnormalities such as short-sleep and parasomnia. Notably, AP-2 transcription factors play essential roles in sleep regulation in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster Thus, AP-2 transcription factors might have a conserved role in sleep regulation across the animal phyla. However, direct evidence supporting the involvement of TFAP2B in mammalian sleep was lacking. In this study, by using the CRISPR/Cas9 technology, we generated two Tfap2b mutant mouse strains, Tfap2bK144 and Tfap2bK145 , each harboring a single-nucleotide mutation within the introns of Tfap2b mimicking the mutations in two human kindreds that self-reported sleep abnormalities. The effects of these mutations were compared with those of a Tfap2b knockout allele (Tfap2b-). The protein expression level of TFAP2B in the embryonic brain was reduced to about half in Tfap2b+/- mice and was further reduced in Tfap2b-/- mice. By contrast, the protein expression level was normal in Tfap2bK145/+ mice but was reduced in Tfap2bK145/K145 mice to a similar extent as Tfap2b-/- mice. Tfap2bK144/+ and Tfap2bK144/K144 showed normal protein expression levels. Tfap2b+/- female mice showed increased wakefulness time and decreased nonrapid eye movement sleep (NREMS) time. By contrast, Tfap2bK145/+ female mice showed an apparently normal amount of sleep but instead exhibited fragmented NREMS, whereas Tfap2bK144/+ male mice showed reduced NREMS time specifically in the dark phase. Finally, in the adult brain, Tfap2b-LacZ expression was detected in the superior colliculus, locus coeruleus, cerebellum, and the nucleus of solitary tract. These findings provide direct evidence that TFAP2B influences NREMS amounts in mice and also show that different mutations in Tfap2b can lead to diverse effects on sleep architecture.
Collapse
Affiliation(s)
- Ayaka Nakai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- PhD Program in Neuroscience, Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 305-8575, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Nanae Nagata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Aya Ikkyu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Marina Takagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- Faculty of Medicine, University of Tsukuba, 305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- R&D Center for Frontiers of MIRAI in Policy and Technology, University of Tsukuba, 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 606-8507, Japan
| |
Collapse
|
37
|
Tan Y, Bukys A, Molnár A, Hudson A. Rapid, high efficiency virus-mediated mutant complementation and gene silencing in Antirrhinum. PLANT METHODS 2020; 16:145. [PMID: 33117430 PMCID: PMC7590601 DOI: 10.1186/s13007-020-00683-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/07/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Antirrhinum (snapdragon) species are models for genetic and evolutionary research but recalcitrant to genetic transformation, limiting use of transgenic methods for functional genomics. Transient gene expression from viral vectors and virus-induced gene silencing (VIGS) offer transformation-free alternatives. Here we investigate the utility of Tobacco rattle virus (TRV) for homologous gene expression in Antirrhinum and VIGS in Antirrhinum and its relative Misopates. RESULTS A. majus proved highly susceptible to systemic TRV infection. TRV carrying part of the Phytoene Desaturase (PDS) gene triggered efficient PDS silencing, visible as tissue bleaching, providing a reporter for the extent and location of VIGS. VIGS was initiated most frequently in young seedlings, persisted into inflorescences and flowers and was not significantly affected by the orientation of the homologous sequence within the TRV genome. Its utility was further demonstrated by reducing expression of two developmental regulators that act either in the protoderm of young leaf primordia or in developing flowers. The effects of co-silencing PDS and the trichome-suppressing Hairy (H) gene from the same TRV genome showed that tissue bleaching provides a useful marker for VIGS of a second target gene acting in a different cell layer. The ability of TRV-encoded H protein to complement the h mutant phenotype was also tested. TRV carrying the native H coding sequence with PDS to report infection failed to complement h mutations and triggered VIGS of H in wild-type plants. However, a sequence with 43% synonymous substitutions encoding H protein, was able to complement the h mutant phenotype when expressed without a PDS VIGS reporter. CONCLUSIONS We demonstrate an effective method for VIGS in the model genus Antirrhinum and its relative Misopates that works in vegetative and reproductive tissues. We also show that TRV can be used for complementation of a loss-of-function mutation in Antirrhinum. These methods make rapid tests of gene function possible in these species, which are difficult to transform genetically, and opens up the possibility of using additional cell biological and biochemical techniques that depend on transgene expression.
Collapse
Affiliation(s)
- Ying Tan
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
- College of Life Sciences, Hunan Normal University, 136 Lushan Road, Changsha, 410006 China
| | - Alfredas Bukys
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Attila Molnár
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Andrew Hudson
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF UK
| |
Collapse
|
38
|
Honer M, Buscemi K, Barrett N, Riazati N, Orlando G, Nelson MD. Orcokinin neuropeptides regulate sleep in Caenorhabditis elegans. J Neurogenet 2020; 34:440-452. [PMID: 33044108 DOI: 10.1080/01677063.2020.1830084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Orcokinin neuropeptides are conserved among ecdysozoans, but their functions are incompletely understood. Here, we report a role for orcokinin neuropeptides in the regulation of sleep in the nematode Caenorhabditis elegans. The C. elegans orcokinin peptides, which are encoded by the nlp-14 and nlp-15 genes, are necessary and sufficient for quiescent behaviors during developmentally timed sleep (DTS) as well as during stress-induced sleep (SIS). The five orcokinin neuropeptides encoded by nlp-14 have distinct but overlapping functions in the regulation of movement and defecation quiescence during SIS. We suggest that orcokinins may regulate behavioral components of sleep-like states in nematodes and other ecdysozoans.
Collapse
Affiliation(s)
- Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Kristen Buscemi
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Natalie Barrett
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Niknaz Riazati
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Gerald Orlando
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| |
Collapse
|
39
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
40
|
Abstract
I review the history of sleep research in Caenorhabditis elegans, briefly introduce the four articles in this issue focused on worm sleep and propose future directions our field might take.
Collapse
Affiliation(s)
- David Raizen
- Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Abstract
Research over the last 20 years has firmly established the existence of sleep states across the animal kingdom. Work in non-mammalian animal models such as nematodes, fruit flies, and zebrafish has now uncovered many evolutionarily conserved aspects of sleep physiology and regulation, including shared circuit architecture, homeostatic and circadian control elements, and principles linking sleep physiology to function. Non-mammalian sleep research is now shedding light on fundamental aspects of the genetic and neuronal circuit regulation of sleep, with direct implications for the understanding of how sleep is regulated in mammals.
Collapse
Affiliation(s)
- Declan G. Lyons
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| |
Collapse
|
42
|
De Jesús-Olmo LA, Rodríguez N, Francia M, Alemán-Rios J, Pacheco-Agosto CJ, Ortega-Torres J, Nieves R, Fuenzalida-Uribe N, Ghezzi A, Agosto JL. Pumilio Regulates Sleep Homeostasis in Response to Chronic Sleep Deprivation in Drosophila melanogaster. Front Neurosci 2020; 14:319. [PMID: 32362810 PMCID: PMC7182066 DOI: 10.3389/fnins.2020.00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Recent studies have identified the Drosophila brain circuits involved in the sleep/wake switch and have pointed to the modulation of neuronal excitability as one of the underlying mechanisms triggering sleep need. In this study we aimed to explore the link between the homeostatic regulation of neuronal excitability and sleep behavior in the circadian circuit. For this purpose, we selected Pumilio (Pum), whose main function is to repress protein translation and has been linked to modulation of neuronal excitability during chronic patterns of altered neuronal activity. Here we explore the effects of Pum on sleep homeostasis in Drosophila melanogaster, which shares most of the major features of mammalian sleep homeostasis. Our evidence indicates that Pum is necessary for sleep rebound and that its effect is more pronounced during chronic sleep deprivation (84 h) than acute deprivation (12 h). Knockdown of pum, results in a reduction of sleep rebound during acute sleep deprivation and the complete abolishment of sleep rebound during chronic sleep deprivation. Based on these findings, we propose that Pum is a critical regulator of sleep homeostasis through neural adaptations triggered during sleep deprivation.
Collapse
Affiliation(s)
| | - Norma Rodríguez
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Marcelo Francia
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | | | | | | | - Richard Nieves
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | | | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - José L Agosto
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| |
Collapse
|
43
|
Grubbs JJ, Lopes LE, van der Linden AM, Raizen DM. A salt-induced kinase is required for the metabolic regulation of sleep. PLoS Biol 2020; 18:e3000220. [PMID: 32315298 PMCID: PMC7173979 DOI: 10.1371/journal.pbio.3000220] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Many lines of evidence point to links between sleep regulation and energy homeostasis, but mechanisms underlying these connections are unknown. During Caenorhabditis elegans sleep, energetic stores are allocated to nonneural tasks with a resultant drop in the overall fat stores and energy charge. Mutants lacking KIN-29, the C. elegans homolog of a mammalian Salt-Inducible Kinase (SIK) that signals sleep pressure, have low ATP levels despite high-fat stores, indicating a defective response to cellular energy deficits. Liberating energy stores corrects adiposity and sleep defects of kin-29 mutants. kin-29 sleep and energy homeostasis roles map to a set of sensory neurons that act upstream of fat regulation as well as of central sleep-controlling neurons, suggesting hierarchical somatic/neural interactions regulating sleep and energy homeostasis. Genetic interaction between kin-29 and the histone deacetylase hda-4 coupled with subcellular localization studies indicate that KIN-29 acts in the nucleus to regulate sleep. We propose that KIN-29/SIK acts in nuclei of sensory neuroendocrine cells to transduce low cellular energy charge into the mobilization of energy stores, which in turn promotes sleep.
Collapse
Affiliation(s)
- Jeremy J. Grubbs
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lindsey E. Lopes
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - David M. Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|