1
|
Gąsiorowski L. Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms. J Mol Evol 2025; 93:124-135. [PMID: 39825915 DOI: 10.1007/s00239-024-10226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/06/2024] [Indexed: 01/20/2025]
Abstract
Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense). Phylogenetic analysis of Fox genes from this expanded set of species provided evidence for multiple independent expansions of Fox gene families within flatworms. Notably, FoxG, a panbilaterian brain-patterning gene, appears to be the least susceptible to duplication, while FoxJ1, a conserved ciliogenesis factor, has undergone extensive expansion in various flatworm lineages. Analysis of the single-cell atlas of S. brevipharyngium, combined with RNA in situ hybridization, elucidated the tissue-specific expression of the selected Fox genes: FoxG is expressed in the brain, three of the Fox genes (FoxN2/3-2, FoxO4 and FoxP1) are expressed in the pharyngeal cells of likely glandular function, while one of the FoxQD paralogs is specifically expressed in the protonephridium. Overall, the evolution of Fox genes in flatworms appears to be characterized by an early contraction of the gene complement, followed by lineage-specific expansions that have enabled the co-option of newly evolved paralogs into novel physiological and developmental functions.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Yuki S, Sasaki S, Yamamoto Y, Murakami F, Sakata K, Araki I. Evolution of the Cdk4/6-Cdkn2 system in invertebrates. Genes Cells 2024; 29:1037-1051. [PMID: 39380239 PMCID: PMC11555623 DOI: 10.1111/gtc.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The cell cycle is driven by cyclin-dependent kinases (Cdks). The decision whether the cell cycle proceeds is made during G1 phase, when Cdk4/6 functions. Cyclin-dependent kinase inhibitor 2 (Cdkn2) is a specific inhibitor of Cdk4/6, and their interaction depends on D84 in Cdkn2 and R24/31 in Cdk4/6. This knowledge is based mainly on studies in mammalian cells. Here, we comprehensively analyzed Cdk4/6 and Cdkn2 in invertebrates and found that Cdk4/6 was present in most of the investigated phyla, but the distribution of Cdkn2 was rather uneven among and within the phyla. The positive charge of R24/R31 in Cdk4/6 was conserved in all analyzed species in phyla with Cdkn2. The presence of Cdkn2 and the conservation of the positive charge were statistically correlated. We also found that Cdkn2 has been tightly linked to Fas associated factor 1 (Faf1) during evolution. We discuss potential interactions between Cdkn2 and Cdk4/6 in evolution and the possible cause of the strong conservation of the microsynteny.
Collapse
Affiliation(s)
- Shiori Yuki
- Graduate School of Arts and Sciences, Iwate UniversityMoriokaJapan
| | - Shunsuke Sasaki
- Faculty of Science and Engineering, Iwate UniversityMoriokaJapan
| | - Yuta Yamamoto
- Faculty of Science and Engineering, Iwate UniversityMoriokaJapan
| | - Fumika Murakami
- Graduate School of Arts and Sciences, Iwate UniversityMoriokaJapan
| | - Kazumi Sakata
- Graduate School of Arts and Sciences, Iwate UniversityMoriokaJapan
- Faculty of Science and Engineering, Iwate UniversityMoriokaJapan
| | - Isato Araki
- Graduate School of Arts and Sciences, Iwate UniversityMoriokaJapan
- Faculty of Science and Engineering, Iwate UniversityMoriokaJapan
| |
Collapse
|
3
|
Slyusarev GS, Skalon EK, Starunov VV. Evolution of Orthonectida body plan. Evol Dev 2024; 26:e12462. [PMID: 37889073 DOI: 10.1111/ede.12462] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/18/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Orthonectida is an enigmatic group of animals with still uncertain phylogenetic position. Orthonectids parasitize various marine invertebrates. Their life cycle comprises a parasitic plasmodium and free-living males and females. Sexual individuals develop inside the plasmodium; after egress from the host they copulate in the external environment, and the larva, which has developed inside the female infects a new host. In a series of studied orthonectid species simplification of free-living sexual individuals can be clearly traced. The number of longitudinal and transverse muscle fibers is gradually reduced. In the nervous system, simplification is even more pronounced. The number of neurons constituting the ganglion is dramatically reduced from 200 in Rhopalura ophiocomae to 4-6 in Intoshia variabili. The peripheral nervous system undergoes gradual simplification as well. The morphological simplification is accompanied with genome reduction. However, not only genes are lost from the genome, it also undergoes compactization ensured by extreme reduction of intergenic distances, short intron sizes, and elimination of repetitive elements. The main trend in orthonectid evolution is simplification and miniaturization of free-living sexual individuals coupled with reduction and compactization of the genome.
Collapse
Affiliation(s)
- George S Slyusarev
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, St-Petersburg, Russia
| | - Elizaveta K Skalon
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, St-Petersburg, Russia
| | - Victor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, St-Petersburg, Russia
- Zoological Institute RAS, St-Petersburg, Russia
| |
Collapse
|
4
|
Skalon EK, Starunov VV, Slyusarev GS. RNA-seq analysis of parasitism by Intoshia linei (Orthonectida) reveals protein effectors of defence, communication, feeding and growth. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:398-405. [PMID: 38369898 DOI: 10.1002/jez.b.23247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Orthonectida is a group of multicellular endoparasites of a wide range of marine invertebrates. Their parasitic stage is a multinuclear shapeless plasmodium infiltrating host tissues. The development of the following worm-like sexual generation takes place within the cytoplasm of the plasmodium. The existence of the plasmodial stage and the development of a sexual stage within the plasmodium are unique features to Bilateria. However, the molecular mechanisms that maintain this peculiar organism, and hence enable parasitism in orthonectids, are unknown. Here, we present the first-ever RNA-seq analysis of the plasmodium, aimed at the identification and characterization of the plasmodium-specific protein-coding genes and corresponding hypothetical proteins that distinguish the parasitic plasmodium stage from the sexual stage of the orthonectid Intoshia linei Giard, 1877, parasite of nemertean Lineus ruber Müller, 1774. We discovered 119 plasmodium-specific proteins, 82 of which have inferred functions based on known domains. Thirty-five of the detected proteins are orphans, at least part of which may reflect the unique evolutionary adaptations of orthonectids to parasitism. Some of the identified proteins are known effector molecules of other endoparasites suggesting convergence. Our data indicate that the plasmodium-specific proteins might be involved in the plasmodium defense against the host, host-parasite communication, feeding and nutrient uptake, growth within the host, and support of the sexual stage development. These molecular processes in orthonectids have not been described before, and the particular protein effectors remained unknown until now.
Collapse
Affiliation(s)
- Elizaveta K Skalon
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg University, St. Petersburg, Russia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Viktor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg University, St. Petersburg, Russia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - George S Slyusarev
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg University, St. Petersburg, Russia
| |
Collapse
|
5
|
Liao IJY, Lu TM, Chen ME, Luo YJ. Spiralian genomics and the evolution of animal genome architecture. Brief Funct Genomics 2023; 22:498-508. [PMID: 37507111 DOI: 10.1093/bfgp/elad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Recent developments in sequencing technologies have greatly improved our knowledge of phylogenetic relationships and genomic architectures throughout the tree of life. Spiralia, a diverse clade within Protostomia, is essential for understanding the evolutionary history of parasitism, gene conversion, nervous systems and animal body plans. In this review, we focus on the current hypotheses of spiralian phylogeny and investigate the impact of long-read sequencing on the quality of genome assemblies. We examine chromosome-level assemblies to highlight key genomic features that have driven spiralian evolution, including karyotype, synteny and the Hox gene organization. In addition, we show how chromosome rearrangement has influenced spiralian genomic structures. Although spiralian genomes have undergone substantial changes, they exhibit both conserved and lineage-specific features. We recommend increasing sequencing efforts and expanding functional genomics research to deepen insights into spiralian biology.
Collapse
|
6
|
Abalde S, Tellgren-Roth C, Heintz J, Vinnere Pettersson O, Jondelius U. The draft genome of the microscopic Nemertoderma westbladi sheds light on the evolution of Acoelomorpha genomes. Front Genet 2023; 14:1244493. [PMID: 37829276 PMCID: PMC10565955 DOI: 10.3389/fgene.2023.1244493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Background: Xenacoelomorpha is a marine clade of microscopic worms that is an important model system for understanding the evolution of key bilaterian novelties, such as the excretory system. Nevertheless, Xenacoelomorpha genomics has been restricted to a few species that either can be cultured in the lab or are centimetres long. Thus far, no genomes are available for Nemertodermatida, one of the group's main clades and whose origin has been dated more than 400 million years ago. Methods: DNA was extracted from a single specimen and sequenced with HiFi following the PacBio Ultra-Low DNA Input protocol. After genome assembly, decontamination, and annotation, the genome quality was benchmarked using two acoel genomes and one Illumina genome as reference. The gene content of three cnidarians, three acoelomorphs, four deuterostomes, and eight protostomes was clustered in orthogroups to make inferences of gene content evolution. Finally, we focused on the genes related to the ultrafiltration excretory system to compare patterns of presence/absence and gene architecture among these clades. Results: We present the first nemertodermatid genome sequenced from a single specimen of Nemertoderma westbladi. Although genome contiguity remains challenging (N50: 60 kb), it is very complete (BUSCO: 80.2%, Metazoa; 88.6%, Eukaryota) and the quality of the annotation allows fine-detail analyses of genome evolution. Acoelomorph genomes seem to be relatively conserved in terms of the percentage of repeats, number of genes, number of exons per gene and intron size. In addition, a high fraction of genes present in both protostomes and deuterostomes are absent in Acoelomorpha. Interestingly, we show that all genes related to the excretory system are present in Xenacoelomorpha except Osr, a key element in the development of these organs and whose acquisition seems to be interconnected with the origin of the specialised excretory system. Conclusion: Overall, these analyses highlight the potential of the Ultra-Low Input DNA protocol and HiFi to generate high-quality genomes from single animals, even for relatively large genomes, making it a feasible option for sequencing challenging taxa, which will be an exciting resource for comparative genomics analyses.
Collapse
Affiliation(s)
- Samuel Abalde
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Christian Tellgren-Roth
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Julia Heintz
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Ulf Jondelius
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Cunha TJ, de Medeiros BAS, Lord A, Sørensen MV, Giribet G. Rampant loss of universal metazoan genes revealed by a chromosome-level genome assembly of the parasitic Nematomorpha. Curr Biol 2023; 33:3514-3521.e4. [PMID: 37467752 DOI: 10.1016/j.cub.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Parasites may manipulate host behavior to increase the odds of transmission or to reach the proper environment to complete their life cycle.1,2 Members of the phylum Nematomorpha (known as horsehair worms, hairworms, or Gordian worms) are large endoparasites that affect the behavior of their arthropod hosts. In terrestrial hosts, they cause erratic movements toward bodies of water,3,4,5,6 where the adult worm emerges from the host to find mates for reproduction. We present a chromosome-level genome assembly for the freshwater Acutogordius australiensis and a draft assembly for one of the few known marine species, Nectonema munidae. The assemblies span 201 Mbp and 213 Mbp in length (N50: 38 Mbp and 716 Kbp), respectively, and reveal four chromosomes in Acutogordius, which are largely rearranged compared to the inferred ancestral condition in animals. Both nematomorph genomes have a relatively low number of genes (11,114 and 8,717, respectively) and lack a high proportion (∼30%) of universal single-copy metazoan orthologs (BUSCO genes7). We demonstrate that missing genes are not an artifact of the assembly process, with the majority of missing orthologs being shared by the two independent assemblies. Missing BUSCOs are enriched for Gene Ontology (GO) terms associated with the organization of cilia and cell projections in other animals. We show that most cilium-related genes conserved across eukaryotes have been lost in Nematomorpha, providing a molecular basis for the suspected absence of ciliary structures in these animals.
Collapse
Affiliation(s)
- Tauana J Cunha
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA.
| | - Bruno A S de Medeiros
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Martin V Sørensen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Miroliubov AA, Lianguzova AD, Krupenko DY, Kremnev GA, Enshina IC. Cancer spares no one: first record of neoplasm in parasitic barnacles (Arthropoda: Rhizocephala). J Invertebr Pathol 2023; 198:107913. [PMID: 36940868 DOI: 10.1016/j.jip.2023.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Cancer-like neoplasms are extremely rarely present in arthropods, particularly in crustaceans. Thus, it is assumed that these animals have some efficient cancer-preventing mechanisms. However, several cases of cancer-like neoplasms are described in crustaceans, though only for the Decapoda. We identified a tumor in the parasitic barnacle Peltogaster paguri (Cirripedia: Rhizocephala), and described its histological structure. A spherical cell mass, consisting mostly of roundish cells with big translucent nuclei, prominent nucleoli, and sparse chromatin, and of cells with condensed chromosomes, was found in the main trunk of the P. paguri rootlet system. Numerous mitoses were observed in this area. Such tissue organization is utterly uncharacteristic of the Rhizocephala. Based on acquired histological data, we assume that this tumor is a cancer-like neoplasm. This is the first report of a tumor identified in the rhizocephalans, as well as in non-decapod crustaceans as a whole.
Collapse
Affiliation(s)
- Aleksei A Miroliubov
- Laboratory of Parasitic Worms, Zoological Institute, Russian Academy of Science, Universitetskaya Embankment, 1, St Petersburg, Russia.
| | - Anastasia D Lianguzova
- Laboratory of Parasitic Worms, Zoological Institute, Russian Academy of Science, Universitetskaya Embankment, 1, St Petersburg, Russia; Department of Invertebrate Zoology, St-Petersburg State University, Universitetskaya Embankment, 7/9, St Petersburg, Russia.
| | - Darya Y Krupenko
- Department of Invertebrate Zoology, St-Petersburg State University, Universitetskaya Embankment, 7/9, St Petersburg, Russia.
| | - Georgii A Kremnev
- Department of Invertebrate Zoology, St-Petersburg State University, Universitetskaya Embankment, 7/9, St Petersburg, Russia.
| | - Irina C Enshina
- Department of Invertebrate Zoology, St-Petersburg State University, Universitetskaya Embankment, 7/9, St Petersburg, Russia.
| |
Collapse
|
9
|
Graham AM, Barreto FS. Myxozoans (Cnidaria) do not Retain Key Oxygen-Sensing and Homeostasis Toolkit Genes. Genome Biol Evol 2023; 15:6989568. [PMID: 36648250 PMCID: PMC9887271 DOI: 10.1093/gbe/evad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
For aerobic organisms, both the hypoxia-inducible factor pathway and the mitochondrial genomes are key players in regulating oxygen homeostasis. Recent work has suggested that these mechanisms are not as highly conserved as previously thought, prompting more surveys across animal taxonomic levels, which would permit testing of hypotheses about the ecological conditions facilitating evolutionary loss of such genes. The Phylum Cnidaria is known to harbor wide variation in mitochondrial chromosome morphology, including an extreme example, in the Myxozoa, of mitochondrial genome loss. Because myxozoans are obligate endoparasites, frequently encountering hypoxic environments, we hypothesize that variation in environmental oxygen availability could be a key determinant in the evolution of metabolic gene networks associated with oxygen-sensing, hypoxia-response, and energy production. Here, we surveyed genomes and transcriptomes across 46 cnidarian species for the presence of HIF pathway members, as well as for an assortment of hypoxia, mitochondrial, and stress-response toolkit genes. We find that presence of the HIF pathway, as well as number of genes associated with mitochondria, hypoxia, and stress response, do not vary in parallel to mitochondrial genome morphology. More interestingly, we uncover evidence that myxozoans have lost the canonical HIF pathway repression machinery, potentially altering HIF pathway functionality to work under the specific conditions of their parasitic lifestyles. In addition, relative to other cnidarians, myxozoans show loss of large proportions of genes associated with the mitochondrion and involved in response to hypoxia and general stress. Our results provide additional evidence that the HIF regulatory machinery is evolutionarily labile and that variations in the canonical system have evolved in many animal groups.
Collapse
Affiliation(s)
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
10
|
Smith G, Manzano-Marín A, Reyes-Prieto M, Antunes CSR, Ashworth V, Goselle ON, Jan AAA, Moya A, Latorre A, Perotti MA, Braig HR. Human follicular mites: Ectoparasites becoming symbionts. Mol Biol Evol 2022; 39:msac125. [PMID: 35724423 PMCID: PMC9218549 DOI: 10.1093/molbev/msac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Most humans carry mites in the hair follicles of their skin for their entire lives. Follicular mites are the only metazoans tha continuously live on humans. We propose that Demodex folliculorum (Acari) represents a transitional stage from a host-injuring obligate parasite to an obligate symbiont. Here, we describe the profound impact of this transition on the genome and physiology of the mite. Genome sequencing revealed that the permanent host association of D. folliculorum led to an extensive genome reduction through relaxed selection and genetic drift, resulting in the smallest number of protein-coding genes yet identified among panarthropods. Confocal microscopy revealed that this gene loss coincided with an extreme reduction in the number of cells. Single uninucleate muscle cells are sufficient to operate each of the three segments that form each walking leg. While it has been assumed that the reduction of the cell number in parasites starts early in development, we identified a greater total number of cells in the last developmental stage (nymph) than in the terminal adult stage, suggesting that reduction starts at the adult or ultimate stage of development. This is the first evolutionary step in an arthropod species adopting a reductive, parasitic or endosymbiotic lifestyle. Somatic nuclei show underreplication at the diploid stage. Novel eye structures or photoreceptors as well as a unique human host melatonin-guided day/night rhythm are proposed for the first time. The loss of DNA repair genes coupled with extreme endogamy might have set this mite species on an evolutionary dead-end trajectory.
Collapse
Affiliation(s)
- Gilbert Smith
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna, Vienna, Austria
| | - Mariana Reyes-Prieto
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
| | | | - Victoria Ashworth
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Obed Nanjul Goselle
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | | | - Andrés Moya
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Amparo Latorre
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - M Alejandra Perotti
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Henk R Braig
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
- Institute and Museum of Natural Sciences, National University of San Juan, San Juan, Argentina
| |
Collapse
|
11
|
Stoldt M, Macit MN, Collin E, Foitzik S. Molecular (co)evolution of hymenopteran social parasites and their hosts. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100889. [PMID: 35181562 DOI: 10.1016/j.cois.2022.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Social parasitism describes a fascinating way of life in which species exploit the altruistic behaviour of closely related, social species. Social parasites have repeatedly evolved in the social Hymenoptera, including ants, bees, and wasps. The common ancestry and shared (social) environment with their hosts facilitates the study of molecular adaptations to the parasitic lifestyle. Moreover, when social parasites are widespread and virulent, they exert strong selection pressure on their hosts, leading to the evolution of defense mechanisms and triggering a coevolutionary arms race. Recent advances in sequencing technology now make it possible to study the molecular basis of this coevolutionary process. In addition to describing the latest developments, we highlight open research questions that could be tackled with genomic, transcriptomic, or epigenetic data.
Collapse
Affiliation(s)
- Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Maide Nesibe Macit
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erwann Collin
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. A myxozoan genome reveals mosaic evolution in a parasitic cnidarian. BMC Biol 2022; 20:51. [PMID: 35177085 PMCID: PMC8855578 DOI: 10.1186/s12915-022-01249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Parasite evolution has been conceptualized as a process of genetic loss and simplification. Contrary to this model, there is evidence of expansion and conservation of gene families related to essential functions of parasitism in some parasite genomes, reminiscent of widespread mosaic evolution-where subregions of a genome have different rates of evolutionary change. We found evidence of mosaic genome evolution in the cnidarian Myxobolus honghuensis, a myxozoan parasite of fish, with extremely simple morphology. RESULTS We compared M. honghuensis with other myxozoans and free-living cnidarians, and determined that it has a relatively larger myxozoan genome (206 Mb), which is less reduced and less compact due to gene retention, large introns, transposon insertion, but not polyploidy. Relative to other metazoans, the M. honghuensis genome is depleted of neural genes and has only the simplest animal immune components. Conversely, it has relatively more genes involved in stress resistance, tissue invasion, energy metabolism, and cellular processes compared to other myxozoans and free-living cnidarians. We postulate that the expansion of these gene families is the result of evolutionary adaptations to endoparasitism. M. honghuensis retains genes found in free-living Cnidaria, including a reduced nervous system, myogenic components, ANTP class Homeobox genes, and components of the Wnt and Hedgehog pathways. CONCLUSIONS Our analyses suggest that the M. honghuensis genome evolved as a mosaic of conservative, divergent, depleted, and enhanced genes and pathways. These findings illustrate that myxozoans are not as genetically simple as previously regarded, and the evolution of some myxozoans is driven by both genomic streamlining and expansion.
Collapse
Affiliation(s)
- Qingxiang Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Bin Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Yanhua Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
13
|
Abstract
In less than 25 y, the field of animal genome science has transformed from a discipline seeking its first glimpses into genome sequences across the Tree of Life to a global enterprise with ambitions to sequence genomes for all of Earth's eukaryotic diversity [H. A. Lewin et al., Proc. Natl. Acad. Sci. U.S.A. 115, 4325-4333 (2018)]. As the field rapidly moves forward, it is important to take stock of the progress that has been made to best inform the discipline's future. In this Perspective, we provide a contemporary, quantitative overview of animal genome sequencing. We identified the best available genome assemblies in GenBank, the world's most extensive genetic database, for 3,278 unique animal species across 24 phyla. We assessed taxonomic representation, assembly quality, and annotation status for major clades. We show that while tremendous taxonomic progress has occurred, stark disparities in genomic representation exist, highlighted by a systemic overrepresentation of vertebrates and underrepresentation of arthropods. In terms of assembly quality, long-read sequencing has dramatically improved contiguity, whereas gene annotations are available for just 34.3% of taxa. Furthermore, we show that animal genome science has diversified in recent years with an ever-expanding pool of researchers participating. However, the field still appears to be dominated by institutions in the Global North, which have been listed as the submitting institution for 77% of all assemblies. We conclude by offering recommendations for improving genomic resource availability and research value while also broadening global representation.
Collapse
|
14
|
Slyusarev GS, Bondarenko NI, Skalon EK, Rappoport AK, Radchenko D, Starunov VV. The structure of the muscular and nervous systems of the orthonectid Rhopalura litoralis (Orthonectida) or what parasitism can do to an annelid. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Moroz LL. Multiple Origins of Neurons From Secretory Cells. Front Cell Dev Biol 2021; 9:669087. [PMID: 34307354 PMCID: PMC8293673 DOI: 10.3389/fcell.2021.669087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
16
|
Zajac N, Zoller S, Seppälä K, Moi D, Dessimoz C, Jokela J, Hartikainen H, Glover N. Gene Duplication and Gain in the Trematode Atriophallophorus winterbourni Contributes to Adaptation to Parasitism. Genome Biol Evol 2021; 13:evab010. [PMID: 33484570 PMCID: PMC7936022 DOI: 10.1093/gbe/evab010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2021] [Indexed: 01/10/2023] Open
Abstract
Gene duplications and novel genes have been shown to play a major role in helminth adaptation to a parasitic lifestyle because they provide the novelty necessary for adaptation to a changing environment, such as living in multiple hosts. Here we present the de novo sequenced and annotated genome of the parasitic trematode Atriophallophorus winterbourni and its comparative genomic analysis to other major parasitic trematodes. First, we reconstructed the species phylogeny, and dated the split of A. winterbourni from the Opisthorchiata suborder to approximately 237.4 Ma (±120.4 Myr). We then addressed the question of which expanded gene families and gained genes are potentially involved in adaptation to parasitism. To do this, we used hierarchical orthologous groups to reconstruct three ancestral genomes on the phylogeny leading to A. winterbourni and performed a GO (Gene Ontology) enrichment analysis of the gene composition of each ancestral genome, allowing us to characterize the subsequent genomic changes. Out of the 11,499 genes in the A. winterbourni genome, as much as 24% have arisen through duplication events since the speciation of A. winterbourni from the Opisthorchiata, and as much as 31.9% appear to be novel, that is, newly acquired. We found 13 gene families in A. winterbourni to have had more than ten genes arising through these recent duplications; all of which have functions potentially relating to host behavioral manipulation, host tissue penetration, and hiding from host immunity through antigen presentation. We identified several families with genes evolving under positive selection. Our results provide a valuable resource for future studies on the genomic basis of adaptation to parasitism and point to specific candidate genes putatively involved in antagonistic host-parasite adaptation.
Collapse
Affiliation(s)
- Natalia Zajac
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
| | - Stefan Zoller
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
| | - Katri Seppälä
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - David Moi
- Department of Computational Biology, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, Lausanne, Switzerland
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, Lausanne, Switzerland
- Centre for Life’s Origins and Evolution, Department of Genetics Evolution and Environment, University College London, United Kingdom
- Department of Computer Science, University College London, United Kingdom
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
| | - Hanna Hartikainen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
- School of Life Sciences, University of Nottingham, University Park, United Kingdom
| | - Natasha Glover
- Department of Computational Biology, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, Lausanne, Switzerland
| |
Collapse
|
17
|
Conservative route to genome compaction in a miniature annelid. Nat Ecol Evol 2020; 5:231-242. [PMID: 33199869 PMCID: PMC7854359 DOI: 10.1038/s41559-020-01327-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The causes and consequences of genome reduction in animals are unclear because our understanding of this process mostly relies on lineages with often exceptionally high rates of evolution. Here, we decode the compact 73.8-megabase genome of Dimorphilus gyrociliatus, a meiobenthic segmented worm. The D. gyrociliatus genome retains traits classically associated with larger and slower-evolving genomes, such as an ordered, intact Hox cluster, a generally conserved developmental toolkit and traces of ancestral bilaterian linkage. Unlike some other animals with small genomes, the analysis of the D. gyrociliatus epigenome revealed canonical features of genome regulation, excluding the presence of operons and trans-splicing. Instead, the gene-dense D. gyrociliatus genome presents a divergent Myc pathway, a key physiological regulator of growth, proliferation and genome stability in animals. Altogether, our results uncover a conservative route to genome compaction in annelids, reminiscent of that observed in the vertebrate Takifugu rubripes. This study reports the genome of the miniature segmented annelid Dimorphilus gyrociliatus and reveals no drastic changes in genome architecture and regulation, unlike other cases of genome miniaturization.
Collapse
|
18
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Giribet G. Genomes: Miniaturization Taken to Extremes. Curr Biol 2020; 30:R314-R316. [DOI: 10.1016/j.cub.2020.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|