1
|
Barone V, Coronado L, Ismail D, Fiaz S, Lyons DC. Advances in culturing of the sea star Patiria miniata. Dev Dyn 2025. [PMID: 40372060 DOI: 10.1002/dvdy.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The use of the sea star Patiria miniata as a model system has produced groundbreaking advances in a disparate set of biomedical research fields, including embryology, immunology, regeneration, cell biology, and evolution of development. Nonetheless, the life cycle of P. miniata has not yet been closed in the laboratory, precluding the generation of stable transgenic and mutant lines, which would greatly expand the toolset for experimentation with this model system. Rearing P. miniata in the laboratory has been challenging due to limited knowledge about metamorphosis cues, feeding habits of juveniles, and their relatively long generation time. RESULTS Here we report protocols to rear P. miniata embryos through sexual maturity in a laboratory setting. We provide detailed staging of early embryonic development at different temperatures, and show that larvae can be raised to competence in as little as 15 days. We find that retinoic acid induces metamorphosis effectively and present methods to rear juveniles on commercially available foods. We show that in a flow-through system, juveniles double in size every 2 months and reach sexual maturity in approximately 2 years. CONCLUSIONS We report the first example of P. miniata raised through sexual maturity in a laboratory setting, paving the way for the generation of stable mutant sea star lines.
Collapse
Affiliation(s)
- Vanessa Barone
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, California, USA
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California, USA
| | - Luisa Coronado
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, California, USA
| | - Deka Ismail
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, California, USA
| | - Sareen Fiaz
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California, USA
| | - Deirdre C Lyons
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Jackson EW, Romero E, Kling S, Lee Y, Tjeerdema E, Hamdoun A. Stable germline transgenesis using the Minos Tc1/mariner element in the sea urchin Lytechinus pictus. Development 2024; 151:dev202991. [PMID: 39023164 PMCID: PMC11361634 DOI: 10.1242/dev.202991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Stable transgenesis is a transformative tool in model organism biology. Although the sea urchin is one of the oldest animal models in cell and developmental biology, studies in this animal have largely relied on transient manipulation of wild animals, without a strategy for stable transgenesis. Here, we build on recent progress to develop a more genetically tractable sea urchin species, Lytechinus pictus, and establish a robust transgene integration method. Three commonly used transposons (Minos, Tol2 and piggyBac) were tested for non-autonomous transposition, using plasmids containing a polyubiquitin promoter upstream of a H2B-mCerulean nuclear marker. Minos was the only transposable element that resulted in significant expression beyond metamorphosis. F0 animals were raised to sexual maturity, and spawned to determine germline integration and transgene inheritance frequency, and to characterize expression patterns of the transgene in F1 progeny. The results demonstrate transgene transmission through the germline, the first example of a germline transgenic sea urchin and, indeed, of any echinoderm. This milestone paves the way for the generation of diverse transgenic resources that will dramatically enhance the utility, reproducibility and efficiency of sea urchin research.
Collapse
Affiliation(s)
- Elliot W. Jackson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Emilio Romero
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Svenja Kling
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Evan Tjeerdema
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Vacquier VD, Hamdoun A. Cold storage and cryopreservation methods for spermatozoa of the sea urchins Lytechinus pictus and Strongylocentrotus purpuratus. Dev Dyn 2024; 253:781-790. [PMID: 38340021 PMCID: PMC11294005 DOI: 10.1002/dvdy.691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Sea urchins have contributed greatly to knowledge of fertilization, embryogenesis, and cell biology. However, until now, they have not been genetic model organisms because of their long generation times and lack of tools for husbandry and gene manipulation. We recently established the sea urchin Lytechinus pictus, as a multigenerational model Echinoderm, because of its relatively short generation time of 4-6 months and ease of laboratory culture. To take full advantage of this new multigenerational species, methods are needed to biobank and share genetically modified L. pictus sperm. RESULTS Here, we describe a method, based on sperm ion physiology that maintains L. pictus and Strongylocentrotus purpuratus sperm fertilizable for at least 5-10 weeks when stored at 0°C. We also describe a new method to cryopreserve sperm of both species. Sperm of both species can be frozen and thawed at least twice and still give rise to larvae that undergo metamorphosis. CONCLUSIONS The simple methods we describe work well for both species, achieving >90% embryo development and producing larvae that undergo metamorphosis to juvenile adults. We hope that these methods will be useful to others working on marine invertebrate sperm.
Collapse
Affiliation(s)
- Victor D. Vacquier
- Center for Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0202 USA
| | - Amro Hamdoun
- Center for Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0202 USA
| |
Collapse
|
4
|
Wessel GM, Xing L, Oulhen N. More than a colour; how pigment influences colourblind microbes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230077. [PMID: 38497266 PMCID: PMC10945406 DOI: 10.1098/rstb.2023.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 03/19/2024] Open
Abstract
Many animals have pigments when they themselves cannot see colour. Perhaps those pigments enable the animal to avoid predators, or to attract mates. Maybe even those pigmented surfaces are hosts for microbes, even when the microbes do not see colour. Do some pigments then serve as a chemical signal for a good or bad microbial substrate? Maybe pigments attract or repel various microbe types? Echinoderms serve as an important model to test the mechanisms of pigment-based microbial interactions. Echinoderms are marine benthic organisms, ranging from intertidal habitats to depths of thousands of metres and are exposed to large varieties of microbes. They are also highly pigmented, with a diverse variety of colours between and even within species. Here we focus on one type of pigment (naphthoquinones) made by polyketide synthase, modified by flavin-dependent monoxygenases, and on one type of function, microbial interaction. Recent successes in targeted gene inactivation by CRISPR/Cas9 in sea urchins supports the contention that colour is more than it seems. Here we dissect the players, and their interactions to better understand how such host factors influence a microbial colonization. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Tjeerdema E, Lee Y, Metry R, Hamdoun A. Semi-automated, high-content imaging of drug transporter knockout sea urchin (Lytechinus pictus) embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:313-329. [PMID: 38087422 PMCID: PMC12010930 DOI: 10.1002/jez.b.23231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 05/01/2024]
Abstract
A defining feature of sea urchins is their extreme fecundity. Urchins produce millions of transparent, synchronously developing embryos, ideal for spatial and temporal analysis of development. This biological feature has been effectively utilized for ensemble measurement of biochemical changes. However, it has been underutilized in imaging studies, where single embryo measurements are used. Here we present an example of how stable genetics and high content imaging, along with machine learning-based image analysis, can be used to exploit the fecundity and synchrony of sea urchins in imaging-based drug screens. Building upon our recently created sea urchin ABCB1 knockout line, we developed a high-throughput assay to probe the role of this drug transporter in embryos. We used high content imaging to compare accumulation and toxicity of canonical substrates and inhibitors of the transporter, including fluorescent molecules and antimitotic cancer drugs, in homozygous knockout and wildtype embryos. To measure responses from the resulting image data, we used a nested convolutional neural network, which rapidly classified embryos according to fluorescence or cell division. This approach identified sea urchin embryos with 99.8% accuracy and determined two-cell and aberrant embryos with 96.3% and 89.1% accuracy, respectively. The results revealed that ABCB1 knockout embryos accumulated the transporter substrate calcein 3.09 times faster than wildtypes. Similarly, knockouts were 4.71 and 3.07 times more sensitive to the mitotic poisons vinblastine and taxol. This study paves the way for large scale pharmacological screens in the sea urchin embryo.
Collapse
Affiliation(s)
- Evan Tjeerdema
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Rachel Metry
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Sakamoto N, Watanabe K, Awazu A, Yamamoto T. CRISPR-Cas9-Mediated Gene Knockout in a Non-Model Sea Urchin, Heliocidaris crassispina. Zoolog Sci 2024; 41:159-166. [PMID: 38587910 DOI: 10.2108/zs230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 04/10/2024]
Abstract
Sea urchins have been used as model organisms in developmental biology research and the genomes of several sea urchin species have been sequenced. Recently, genome editing technologies have become available for sea urchins, and methods for gene knockout using the CRISPRCas9 system have been established. Heliocidaris crassispina is an important marine fishery resource with edible gonads. Although H. crassispina has been used as a biological research material, its genome has not yet been published, and it is a non-model sea urchin for molecular biology research. However, as recent advances in genome editing technology have facilitated genome modification in non-model organisms, we applied genome editing using the CRISPR-Cas9 system to H. crassispina. In this study, we targeted genes encoding ETS transcription factor (HcEts) and pigmentation-related polyketide synthase (HcPks1). Gene fragments were isolated using primers designed by inter-specific sequence comparisons within Echinoidea. When Ets gene was targeted using two sgRNAs, one successfully introduced mutations and impaired skeletogenesis. In the Pks1 gene knockout, when two sgRNAs targeting the close vicinity of the site corresponding to the target site that showed 100% mutagenesis efficiency of the Pks1 gene in Hemicentrotus pulcherrimus, mutagenesis was not observed. However, two other sgRNAs targeting distant sites efficiently introduced mutations. In addition, Pks1 knockout H. crassispina exhibited an albino phenotype in the pluteus larvae and adult sea urchins after metamorphosis. This indicates that the CRISPRCas9 system can be used to modify the genome of the non-model sea urchin H. crassispina.
Collapse
Affiliation(s)
- Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan,
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kaichi Watanabe
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
7
|
Yamakawa S, Sasakura Y, Morino Y, Wada H. Detection of TALEN-mediated genome cleavage during the early embryonic stage of the starfish Patiria pectinifera. Dev Dyn 2023; 252:1471-1481. [PMID: 37431812 DOI: 10.1002/dvdy.641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Echinoderms have long been utilized as experimental materials to study the genetic control of developmental processes and their evolution. Among echinoderms, the molecular study of starfish embryos has received considerable attention across research topics such as gene regulatory network evolution and larval regeneration. Recently, experimental techniques to manipulate gene functions have been gradually established in starfish as the feasibility of genome editing methods was reported. However, it is still unclear when these techniques cause genome cleavage during the development of starfish, which is critical to understand the timeframe and applicability of the experiment during early development of starfish. RESULTS We herein reported that gene functions can be analyzed by the genome editing method TALEN in early embryos, such as the blastula of the starfish Patiria pectinifera. We injected the mRNA of TALEN targeting rar, which was previously constructed, into eggs of P. pectinifera and examined the efficiency of genome cleavage through developmental stages from 6 to 48 hours post fertilization. CONCLUSION The results will be key knowledge not only when designing TALEN-based experiments but also when assessing the results.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Abstract
The goal of comparative developmental biology is identifying mechanistic differences in embryonic development between different taxa and how these evolutionary changes have led to morphological and organizational differences in adult body plans. Much of this work has focused on direct-developing species in which the adult forms straight from the embryo and embryonic modifications have direct effects on the adult. However, most animal lineages are defined by indirect development, in which the embryo gives rise to a larval body plan and the adult forms by transformation of the larva. Historically, much of our understanding of complex life cycles is viewed through the lenses of ecology and zoology. In this review, we discuss the importance of establishing developmental rather than morphological or ecological criteria for defining developmental mode and explicitly considering the evolutionary implications of incorporating complex life cycles into broad developmental comparisons of embryos across metazoans.
Collapse
Affiliation(s)
- Laurent Formery
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA;
- Department of Cell and Molecular Biology, University of California, Berkeley, California, USA
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA;
- Chan Zuckerberg BioHub, San Francisco, California, USA
| |
Collapse
|
9
|
Shaw CG, Pavloudi C, Barela Hudgell MA, Crow RS, Saw JH, Pyron RA, Smith LC. Bald sea urchin disease shifts the surface microbiome on purple sea urchins in an aquarium. Pathog Dis 2023; 81:ftad025. [PMID: 37715299 PMCID: PMC10550250 DOI: 10.1093/femspd/ftad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Bald sea urchin disease (BSUD) is most likely a bacterial infection that occurs in a wide range of sea urchin species and causes the loss of surface appendages. The disease has a variety of additional symptoms, which may be the result of the many bacteria that are associated with BSUD. Previous studies have investigated causative agents of BSUD, however, there are few reports on the surface microbiome associated with the infection. Here, we report changes to the surface microbiome on purple sea urchins in a closed marine aquarium that contracted and then recovered from BSUD in addition to the microbiome of healthy sea urchins in a separate aquarium. 16S rRNA gene sequencing shows that microhabitats of different aquaria are characterized by different microbial compositions, and that diseased, recovered, and healthy sea urchins have distinct microbial compositions, which indicates that there is a correlation between microbial shifts and recovery from disease.
Collapse
Affiliation(s)
- Chloe G Shaw
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - Christina Pavloudi
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - Megan A Barela Hudgell
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - Ryley S Crow
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - Jimmy H Saw
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - R Alexander Pyron
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| | - L Courtney Smith
- Department of Biological Sciences, Suite 6000 Science and Engineering Hall, 800 22nd St NW, Washington DC 20052, United States
| |
Collapse
|
10
|
Oulhen N, Pieplow C, Perillo M, Gregory P, Wessel GM. Optimizing CRISPR/Cas9-based gene manipulation in echinoderms. Dev Biol 2022; 490:117-124. [PMID: 35917936 DOI: 10.1016/j.ydbio.2022.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/26/2022]
Abstract
The impact of new technology can be appreciated by how broadly it is used. Investigators that previously relied only on pharmacological approaches or the use of morpholino antisense oligonucleotide (MASO) technologies are now able to apply CRISPR-Cas9 to study biological problems in their model organism of choice much more effectively. The transitions to new CRISPR-based approaches could be enhanced, first, by standardized protocols and education in their applications. Here we summarize our results for optimizing the CRISPR-Cas9 technology in a sea urchin and a sea star, and provide advice on how to set up CRISPR-Cas9 experiments and interpret the results in echinoderms. Our goal through these protocols and sharing examples of success by other labs is to lower the activation barrier so that more laboratories can apply CRISPR-Cas9 technologies in these important animals.
Collapse
Affiliation(s)
- Nathalie Oulhen
- MCB Department, Brown University, Providence, RI, 02906, USA
| | - Cosmo Pieplow
- MCB Department, Brown University, Providence, RI, 02906, USA
| | | | - Pauline Gregory
- MCB Department, Brown University, Providence, RI, 02906, USA
| | - Gary M Wessel
- MCB Department, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
11
|
Wessel GM, Kiyomoto M, Reitzel AM, Carrier TJ. Pigmentation biosynthesis influences the microbiome in sea urchins. Proc Biol Sci 2022; 289:20221088. [PMID: 35975446 PMCID: PMC9382222 DOI: 10.1098/rspb.2022.1088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
Organisms living on the seafloor are subject to encrustations by a wide variety of animals, plants and microbes. Sea urchins, however, thwart this covering. Despite having a sophisticated immune system, there is no clear molecular mechanism that allows sea urchins to remain free of epibiotic microorganisms. Here, we test the hypothesis that pigmentation biosynthesis in sea urchin spines influences their interactions with microbes in vivo using CRISPR/Cas9. We report three primary findings. First, the microbiome of sea urchin spines is species-specific and much of this community is lost in captivity. Second, different colour morphs associate with bacterial communities that are similar in taxonomic composition, diversity and evenness. Lastly, loss of the pigmentation biosynthesis genes polyketide synthase and flavin-dependent monooxygenase induces a shift in which bacterial taxa colonize sea urchin spines. Therefore, our results are consistent with the hypothesis that host pigmentation biosynthesis can, but may not always, influence the microbiome in sea urchin spines.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Masato Kiyomoto
- Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Tateyama, Japan
| | - Adam M. Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Tyler J. Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
12
|
Vyas H, Schrankel CS, Espinoza JA, Mitchell KL, Nesbit KT, Jackson E, Chang N, Lee Y, Warner J, Reitzel A, Lyons DC, Hamdoun A. Generation of a homozygous mutant drug transporter (ABCB1) knockout line in the sea urchin Lytechinus pictus. Development 2022; 149:275601. [PMID: 35666622 PMCID: PMC9245184 DOI: 10.1242/dev.200644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.
Collapse
Affiliation(s)
- Himanshu Vyas
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Catherine S. Schrankel
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Jose A. Espinoza
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Kasey L. Mitchell
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Katherine T. Nesbit
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Elliot Jackson
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Nathan Chang
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Jacob Warner
- University of North Carolina Wilmington 2 Department of Biology and Marine Biology , , Wilmington, NC 28403-5915 , USA
| | - Adam Reitzel
- University of North Carolina Charlotte 3 Department of Biological Sciences , , Charlotte, NC 28223-0001 , USA
| | - Deirdre C. Lyons
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| |
Collapse
|
13
|
Li F, Lin Z, Torres JP, Hill EA, Li D, Townsend CA, Schmidt EW. Sea Urchin Polyketide Synthase SpPks1 Produces the Naphthalene Precursor to Echinoderm Pigments. J Am Chem Soc 2022; 144:9363-9371. [PMID: 35588530 DOI: 10.1021/jacs.2c01416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly every animal species on Earth contains a unique polyketide synthase (PKS) encoded in its genome, yet no animal-clade PKS has been biochemically characterized, and even the chemical products of these ubiquitous enzymes are known in only a few cases. The earliest animal genome-encoded PKS gene to be identified was SpPks1 from sea urchins. Previous genetic knockdown experiments implicated SpPks1 in synthesis of the sea urchin pigment echinochrome. Here, we express and purify SpPks1, performing biochemical experiments to demonstrate that the sea urchin protein is responsible for the synthesis of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (ATHN). Since ATHN is a plausible precursor of echinochromes, this result defines a biosynthetic pathway to the ubiquitous echinoderm pigments and rewrites the previous hypothesis for echinochrome biosynthesis. Truncation experiments showed that, unlike other type I iterative PKSs so far characterized, SpPks1 produces the naphthalene core using solely ketoacylsynthase (KS), acyltransferase, and acyl carrier protein domains, delineating a unique class of animal nonreducing aromatic PKSs (aPKSs). A series of amino acids in the KS domain define the family and are likely crucial in cyclization activity. Phylogenetic analyses indicate that SpPks1 and its homologs are widespread in echinoderms and their closest relatives, the acorn worms, reinforcing their fundamental importance to echinoderm biology. While the animal microbiome is known to produce aromatic polyketides, this work provides biochemical evidence that animals themselves also harbor ancient, convergent, dedicated pathways to carbocyclic aromatic polyketides. More fundamentally, biochemical analysis of SpPks1 begins to define the vast and unexplored biosynthetic space of the ubiquitous animal PKS family.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric A Hill
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Yaguchi S, Wada H. Marine genomics, transcriptomics, and beyond in developmental, cell, and evolutionary biology. Dev Growth Differ 2022; 64:196-197. [PMID: 35665922 DOI: 10.1111/dgd.12792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Kinjo S, Kiyomoto M, Suzuki H, Yamamoto T, Ikeo K, Yaguchi S. TrBase: A genome and transcriptome database of Temnopleurus reevesii. Dev Growth Differ 2022; 64:210-218. [PMID: 35451498 DOI: 10.1111/dgd.12780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Sea urchins have a long history as model organisms in biology, but their use in genetics is limited because of their long breeding cycle. In sea urchin genetics, genome editing technology was first established in Hemicentrotus pulcherrimus, whose genome has already been published. However, because this species also has a long breeding cycle, new model sea urchins that are more suitable for genetics have been sought. Here, we report a draft genome of another Western Pacific species, Temnopleurus reevesii, which we established as a new model sea urchin recently since this species has a comparable developmental process to other model sea urchins but a short breeding cycle of approximately half a year. The genome of T. reevesii was assembled into 28,742 scaffold sequences with an N50 length of 67.6 kb and an estimated genome size of 905.9 Mb. In the assembled genome, 27,064 genes were identified, 23,624 of which were expressed in at least one of the seven developmental stages. To provide genetic information, we constructed the genome database TrBase (https://cell-innovation.nig.ac.jp/Tree/). We also constructed the Western Pacific Sea Urchin Genome Database (WestPac-SUGDB) (https://cell-innovation.nig.ac.jp/WPAC/) with the aim of establishing a portal site for genetic information on sea urchins in the West Pacific. This site contains genomic information on two species, T. reevesii and H. pulcherrimus, and is equipped with homology search programs for comparing the two datasets. Therefore, TrBase and WestPac-SUGDB are expected to contribute not only to genetic research using sea urchins but also to comparative genomics and evolutionary research.
Collapse
Affiliation(s)
- Sonoko Kinjo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Masato Kiyomoto
- Institute for Marine and Coastal Research, Ochanomizu University, Tateyama, Japan
| | - Haruka Suzuki
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan.,PRESTO, JST, Kawaguchi, Japan
| |
Collapse
|
16
|
Abstract
Larvae of sea urchins have a population of conspicuous pigmented cells embedded in the outer surface epithelium. Pigment cells are a distinct mesodermal lineage that gives rise to a key component of the larval immune system. During cleavage, signaling from adjacent cells influences a small crescent of cells to initiate a network of genetic interactions that prepare the cells for morphogenesis and specializes them as immunocytes. The cells become active during gastrulation, detach from the epithelium, migrate through the blastocoel, and insert into the ectoderm where they complete their differentiation. Studies of pigment cell development have helped establish how cellular signaling controls networks of genetic interactions that bring about morphogenesis and differentiation. This review summarizes studies of pigment cell development and concludes that pigment cells are an excellent experimental model. Pigment cells provide several opportunities to further test and refine our understanding of the molecular basis of cellular development.
Collapse
Affiliation(s)
- Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
17
|
Yaguchi S, Yaguchi J. Temnopleurus reevesii as a new sea urchin model in genetics. Dev Growth Differ 2021; 64:59-66. [PMID: 34923630 DOI: 10.1111/dgd.12768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Echinoderms, including sea urchins and starfish, have played important roles in cell, developmental and evolutionary biology research for more than a century. However, since most of them take a long time to mature sexually and their breeding seasons are limited, it has been difficult to obtain subsequent generations in the laboratory, resulting in them not being recognized as model organisms in recent genetics research. To overcome this issue, we maintained and obtained gametes from several nonmodel sea urchins in Japan and finally identified Temnopleurus reevesii as a suitable model for sea urchin genetics. Genomic and transcriptomic information was obtained for this model, and the DNA database TrBase was made publicly available. In this review, we describe how we found this species useful for biological research and show an example of CRISPR/Cas9 based knockout sea urchin.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.,PRESTO, JST, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan
| | - Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| |
Collapse
|
18
|
Kiyozumi D, Yaguchi S, Yaguchi J, Yamazaki A, Sekiguchi K. Human disease-associated extracellular matrix orthologs ECM3 and QBRICK regulate primary mesenchymal cell migration in sea urchin embryos. Exp Anim 2021; 70:378-386. [PMID: 33828019 PMCID: PMC8390315 DOI: 10.1538/expanim.21-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/11/2021] [Indexed: 10/31/2022] Open
Abstract
Sea urchin embryos have been one of model organisms to investigate cellular behaviors because of their simple cell composition and transparent body. They also give us an opportunity to investigate molecular functions of human proteins of interest that are conserved in sea urchin. Here we report that human disease-associated extracellular matrix orthologues ECM3 and QBRICK are necessary for mesenchymal cell migration during sea urchin embryogenesis. Immunofluorescence has visualized the colocalization of QBRICK and ECM3 on both apical and basal surface of ectoderm. On the basal surface, QBRICK and ECM3 constitute together a mesh-like fibrillar structure along the blastocoel wall. When the expression of ECM3 was knocked down by antisense-morpholino oligonucleotides, the ECM3-QBRICK fibrillar structure completely disappeared. When QBRICK was knocked down, the ECM3 was still present, but the basally localized fibers became fragmented. The ingression and migration of primary mesenchymal cells were not critically affected, but their migration at later stages was severely affected in both knock-down embryos. As a consequence of impaired primary mesenchymal cell migration, improper spicule formation was observed. These results indicate that ECM3 and QBRICK are components of extracellular matrix, which play important role in primary mesenchymal cell migration, and that sea urchin is a useful experimental animal model to investigate human disease-associated extracellular matrix proteins.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Atsuko Yamazaki
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Wavreil FDM, Poon J, Wessel GM, Yajima M. Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin. Dev Biol 2021; 478:13-24. [PMID: 34147471 DOI: 10.1016/j.ydbio.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
Differential protein regulation is a critical biological process that regulates cellular activity and controls cell fate determination. It is especially important during early embryogenesis when post-transcriptional events predominate differential fate specification in many organisms. Light-induced approaches have been a powerful technology to interrogate protein functions with temporal and spatial precision, even at subcellular levels within a cell by controlling laser irradiation on the confocal microscope. However, application and efficacy of these tools need to be tested for each model system or for the cell type of interest because of the complex nature of each system. Here, we introduce two types of light-induced approaches to track and control proteins at a subcellular level in the developing embryo of the sea urchin. We found that the photoconvertible fluorescent protein Kaede is highly efficient to distinguish pre-existing and newly synthesized proteins with no apparent phototoxicity, even when interrogating proteins associated with the mitotic spindle. Further, chromophore-assisted light inactivation (CALI) using miniSOG successfully inactivated target proteins of interest in the vegetal cortex and selectively delayed or inhibited asymmetric cell division. Overall, these light-induced manipulations serve as important molecular tools to identify protein function for for subcellular interrogations in developing embryos.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Jessica Poon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA.
| |
Collapse
|
20
|
Warner JF, Lord JW, Schreiter SA, Nesbit KT, Hamdoun A, Lyons DC. Chromosomal-Level Genome Assembly of the Painted Sea Urchin Lytechinus pictus: A Genetically Enabled Model System for Cell Biology and Embryonic Development. Genome Biol Evol 2021; 13:evab061. [PMID: 33769486 PMCID: PMC8085125 DOI: 10.1093/gbe/evab061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The painted urchin Lytechinus pictus is a sea urchin in the family Toxopneustidae and one of several sea urchin species that are routinely used as an experimental research organism. Recently, L. pictus has emerged as a tractable model system for establishing transgenic sea urchin lines due to its amenability to long term laboratory culture. We present the first published genome of L. pictus. This chromosomal-level assembly was generated using Illumina sequencing in conjunction with Oxford Nanopore Technologies long read sequencing and HiC chromatin conformation capture sequencing. The 998.9-Mb assembly exhibits high contiguity and has a scaffold length N50 of 46.0 Mb with 97% of the sequence assembled into 19 chromosomal-length scaffolds. These 19 scaffolds exhibit a high degree of synteny compared with the 19 chromosomes of a related species Lytechinus variegatus. Ab initio and transcript evidence gene modeling, combined with sequence homology, identified 28,631 gene models that capture 92% of BUSCO orthologs. This annotation strategy was validated by manual curation of gene models for the ABC transporter superfamily, which confirmed the completeness and accuracy of the annotations. Thus, this genome assembly, in conjunction with recent high contiguity assemblies of related species, positions L. pictus as an exceptional model system for comparative functional genomics and it will be a key resource for the developmental, toxicological, and ecological biology scientific communities.
Collapse
Affiliation(s)
- Jacob F Warner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, North Carolina, USA
| | - James W Lord
- Department of Biology and Marine Biology, University of North Carolina Wilmington, North Carolina, USA
| | - Samantha A Schreiter
- Department of Biology and Marine Biology, University of North Carolina Wilmington, North Carolina, USA
| | - Katherine T Nesbit
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Fleming TJ, Schrankel CS, Vyas H, Rosenblatt HD, Hamdoun A. CRISPR/Cas9 mutagenesis reveals a role for ABCB1 in gut immune responses to Vibrio diazotrophicus in sea urchin larvae. J Exp Biol 2021; 224:jeb232272. [PMID: 33653719 PMCID: PMC8077557 DOI: 10.1242/jeb.232272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
The ABC transporter ABCB1 plays an important role in the disposition of xenobiotics. Embryos of most species express high levels of this transporter in early development as a protective mechanism, but its native substrates are not known. Here, we used larvae of the sea urchin Strongylocentrotus purpuratus to characterize the early life expression and role of Sp-ABCB1a, a homolog of ABCB1. The results indicate that while Sp-ABCB1a is initially expressed ubiquitously, it becomes enriched in the developing gut. Using optimized CRISPR/Cas9 gene editing methods to achieve high editing efficiency in the F0 generation, we generated ABCB1a crispant embryos with significantly reduced transporter efflux activity. When infected with the opportunistic pathogen Vibrio diazotrophicus, Sp-ABCB1a crispant larvae demonstrated significantly stronger gut inflammation, immunocyte migration and cytokine Sp-IL-17 induction, as compared with infected control larvae. The results suggest an ancestral function of ABCB1 in host-microbial interactions, with implications for the survival of invertebrate larvae in the marine microbial environment.
Collapse
Affiliation(s)
- Travis J. Fleming
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine S. Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Himanshu Vyas
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah D. Rosenblatt
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Bardhan A, Deiters A, Ettensohn CA. Conditional gene knockdowns in sea urchins using caged morpholinos. Dev Biol 2021; 475:21-29. [PMID: 33684434 DOI: 10.1016/j.ydbio.2021.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/01/2022]
Abstract
Echinoderms are important experimental models for analyzing embryonic development, but a lack of spatial and temporal control over gene perturbations has hindered developmental studies using these animals. Morpholino antisense oligonucleotides (MOs) have been used successfully by the echinoderm research community for almost two decades, and MOs remain the most widely used tool for acute gene knockdowns in these organisms. Echinoderm embryos develop externally and are optically transparent, making them ideally-suited to many light-based approaches for analyzing and manipulating development. Studies using zebrafish embryos have demonstrated the effectiveness of photoactivatable (caged) MOs for conditional gene knockdowns. Here we show that caged MOs, synthesized using nucleobase-caged monomers, provide light-regulated control over gene expression in sea urchin embryos. Our work provides the first robust approach for conditional gene silencing in this prominent model system.
Collapse
Affiliation(s)
- Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Perillo M, Oulhen N, Foster S, Spurrell M, Calestani C, Wessel G. Regulation of dynamic pigment cell states at single-cell resolution. eLife 2020; 9:e60388. [PMID: 32812865 PMCID: PMC7455242 DOI: 10.7554/elife.60388] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cells bearing pigment have diverse roles and are often under strict evolutionary selection. Here, we explore the regulation of pigmented cells in the purple sea urchin Strongylocentrotus purpuratus, an emerging model for diverse pigment function. We took advantage of single cell RNA-seq (scRNAseq) technology and discovered that pigment cells in the embryo segregated into two distinct populations, a mitotic cluster and a post-mitotic cluster. Gcm is essential for expression of several genes important for pigment function, but is only transiently expressed in these cells. We discovered unique genes expressed by pigment cells and test their expression with double fluorescence in situ hybridization. These genes include new members of the fmo family that are expressed selectively in pigment cells of the embryonic and in the coelomic cells of the adult - both cell-types having immune functions. Overall, this study identifies nodes of molecular intersection ripe for change by selective evolutionary pressures.
Collapse
Affiliation(s)
- Margherita Perillo
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Stephany Foster
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Maxwell Spurrell
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | | | - Gary Wessel
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| |
Collapse
|