1
|
Ito KK, Takumi K, Matsuhashi K, Sakamoto H, Nagai K, Fukuyama M, Yamamoto S, Chinen T, Hata S, Kitagawa D. Multimodal mechanisms of human centriole engagement and disengagement. EMBO J 2025; 44:1294-1321. [PMID: 39905228 PMCID: PMC11876316 DOI: 10.1038/s44318-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
Centrioles are unique cellular structures that replicate to produce identical copies, ensuring accurate chromosome segregation during mitosis. A new centriole, the "daughter", is assembled adjacent to an existing "mother" centriole. Only after the daughter centriole is fully developed as a complete replica, does it disengage and become the core of a new functional centrosome. The mechanisms preventing precocious disengagement of the immature daughter centriole have remained unclear. Here, we identify three key mechanisms maintaining mother-daughter centriole engagement: the cartwheel, the torus, and the pericentriolar material (PCM). Among these, the torus critically establishes the characteristic orthogonal engagement. We also demonstrate that engagement mediated by the cartwheel and torus is progressively released during centriole maturation. This release involves structural changes in the daughter, known as centriole blooming and distancing, respectively. Disrupting these structural transitions blocks subsequent steps, preventing centriole disengagement and centrosome conversion in the G1 phase. This study provides a comprehensive understanding of how the maturing daughter centriole progressively disengages from its mother through multiple steps, ensuring its complete structure and conversion into an independent centrosome.
Collapse
Grants
- 18K06246,19H05651,20K15987,20K22701,21H02623,21J22462,22H02629,22K20624,22KJ0633,22KJ0687,23K14176,23KJ0800,23H02627,24K02174 MEXT | Japan Society for the Promotion of Science (JSPS)
- 24H02284 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMJPR21EC MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
- JPMJCR22E1 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- Naito Foundation (内藤記念科学振興財団)
- Tokyo Foundation for Pharmaceutical Sciences
- Astellas Foundation for Research on Metabolic Disorders
- Takeda Science Foundation (TSF)
- Uehara Memorial Foundation (UMF)
- The Research Foundation for Pharmaceutical Sciences
- Koyanagi Zaidan
- Kanae Foundation for the Promotion of Medical Science (Kanae Foundation)
- Kato Memorial Bioscience Foundation
- Heiwa Nakajima Foundation (HNF)
- Sumitomo Foundation (SF)
- Inamori Foundation
Collapse
Affiliation(s)
- Kei K Ito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kyohei Matsuhashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, 102-8666, Saitama, Japan
| | - Kaho Nagai
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Masamitsu Fukuyama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, 102-8666, Saitama, Japan.
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Rios MU, Stachera WE, Familiari NE, Brito C, Surrey T, Woodruff JB. In vitro reconstitution of minimal human centrosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639226. [PMID: 40027679 PMCID: PMC11870475 DOI: 10.1101/2025.02.20.639226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
CDK5RAP2/CEP215 is a key pericentriolar material (PCM) protein that recruits microtubule-nucleating factors at human centrosomes. Using an in vitro reconstitution system, we show that CDK5RAP2 is sufficient to form micron-scale scaffolds around a nanometer-scale nucleator in a PLK-1-regulated manner. CDK5RAP2 assemblies recruited and activated gamma tubulin ring complexes (γ-TuRCs) which, in the presence of α/β tubulin, generated microtubule asters. We found that F75 in CDK5RAP2 is partially needed to recruit γ-TuRC yet is indispensable for γ-TuRC activation. Furthermore, our system recapitulated key features of centrosome-amplified cancer cells. CDK5RAP2 scaffolds selectively recruited the molecular motor KifC1/HSET, which enhanced concentration of α/β tubulin, microtubule polymerization, and clustering of the assemblies. Our results highlight the specificity and selectivity of in vitro generated CDK5RAP2 scaffolds and identify a minimal set of components required for human centrosome assembly and function. This minimal centrosome model offers a powerful tool for studying centrosome biology and dysfunction in human health and disease.
Collapse
Affiliation(s)
- Manolo U. Rios
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Nicole E. Familiari
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claudia Brito
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jeffrey B. Woodruff
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
5
|
Zheng H, Wen W. Protein phase separation: new insights into cell division. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1042-1051. [PMID: 37249333 PMCID: PMC10415187 DOI: 10.3724/abbs.2023093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 05/31/2023] Open
Abstract
As the foundation for the development of multicellular organisms and the self-renewal of single cells, cell division is a highly organized event which segregates cellular components into two daughter cells equally or unequally, thus producing daughters with identical or distinct fates. Liquid-liquid phase separation (LLPS), an emerging biophysical concept, provides a new perspective for us to understand the mechanisms of a wide range of cellular events, including the organization of membrane-less organelles. Recent studies have shown that several key organelles in the cell division process are assembled into membrane-free structures via LLPS of specific proteins. Here, we summarize the regulatory functions of protein phase separation in centrosome maturation, spindle assembly and polarity establishment during cell division.
Collapse
Affiliation(s)
- Hongdan Zheng
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Wenyu Wen
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
6
|
Gomes Pereira S, Sousa AL, Nabais C, Paixão T, Holmes AJ, Schorb M, Goshima G, Tranfield EM, Becker JD, Bettencourt-Dias M. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. Curr Biol 2021; 31:4340-4353.e7. [PMID: 34433076 DOI: 10.1101/2020.12.21.423647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 05/19/2023]
Abstract
Centrioles are structurally conserved organelles, composing both centrosomes and cilia. In animal cycling cells, centrioles often form through a highly characterized process termed canonical duplication. However, a large diversity of eukaryotes assemble centrioles de novo through uncharacterized pathways. This unexplored diversity is key to understanding centriole assembly mechanisms and how they evolved to assist specific cellular functions. Here, we show that, during spermatogenesis of the bryophyte Physcomitrium patens, centrioles are born as a co-axially oriented centriole pair united by a cartwheel. Interestingly, we observe that these centrioles are twisted in opposite orientations. Microtubules emanate from the bicentrioles, which localize to the spindle poles during cell division. After their separation, the two resulting sister centrioles mature asymmetrically, elongating specific microtubule triplets and a naked cartwheel. Subsequently, two motile cilia are assembled that appear to alternate between different motility patterns. We further show that centriolar components SAS6, Bld10, and POC1, which are conserved across eukaryotes, are expressed during spermatogenesis and required for this de novo biogenesis pathway. Our work supports a scenario where centriole biogenesis, while driven by conserved molecular modules, is more diverse than previously thought.
Collapse
Affiliation(s)
- Sónia Gomes Pereira
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Ana Laura Sousa
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Alexander J Holmes
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, 429-63, Toba 517-0004, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Erin M Tranfield
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | | |
Collapse
|
7
|
Gomes Pereira S, Sousa AL, Nabais C, Paixão T, Holmes AJ, Schorb M, Goshima G, Tranfield EM, Becker JD, Bettencourt-Dias M. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. Curr Biol 2021; 31:4340-4353.e7. [PMID: 34433076 DOI: 10.1016/j.cub.2021.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Centrioles are structurally conserved organelles, composing both centrosomes and cilia. In animal cycling cells, centrioles often form through a highly characterized process termed canonical duplication. However, a large diversity of eukaryotes assemble centrioles de novo through uncharacterized pathways. This unexplored diversity is key to understanding centriole assembly mechanisms and how they evolved to assist specific cellular functions. Here, we show that, during spermatogenesis of the bryophyte Physcomitrium patens, centrioles are born as a co-axially oriented centriole pair united by a cartwheel. Interestingly, we observe that these centrioles are twisted in opposite orientations. Microtubules emanate from the bicentrioles, which localize to the spindle poles during cell division. After their separation, the two resulting sister centrioles mature asymmetrically, elongating specific microtubule triplets and a naked cartwheel. Subsequently, two motile cilia are assembled that appear to alternate between different motility patterns. We further show that centriolar components SAS6, Bld10, and POC1, which are conserved across eukaryotes, are expressed during spermatogenesis and required for this de novo biogenesis pathway. Our work supports a scenario where centriole biogenesis, while driven by conserved molecular modules, is more diverse than previously thought.
Collapse
Affiliation(s)
- Sónia Gomes Pereira
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Ana Laura Sousa
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Alexander J Holmes
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, 429-63, Toba 517-0004, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Erin M Tranfield
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | | |
Collapse
|
8
|
Falk S, Han D, Karow M. Cellular identity through the lens of direct lineage reprogramming. Curr Opin Genet Dev 2021; 70:97-103. [PMID: 34333231 DOI: 10.1016/j.gde.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
Direct lineage reprogramming challenges our traditional view on basic aspects of cellular identity, and in particular on processes crucial for identity acquisition. This is partly because in direct lineage reprogramming but not during natural differentiation processes changing cellular identity can occur in the absence of mitosis. Only recently, technologies emerged to deconstruct the cellular and molecular processes governing the transitory states a cell passes through on the journey from its original identity to the new target cell fate. Here we discuss arising concepts on the nature of these transitory states and the challenges and decisions cells must conquer to reach their new cellular identity.
Collapse
Affiliation(s)
- Sven Falk
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| | - Dandan Han
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Marisa Karow
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
Woodruff JB. The material state of centrosomes: lattice, liquid, or gel? Curr Opin Struct Biol 2020; 66:139-147. [PMID: 33248427 DOI: 10.1016/j.sbi.2020.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022]
Abstract
Centrosomes are micron-scale structures that nucleate microtubule arrays for chromosome segregation and mitotic spindle positioning. For these jobs, centrosomes must be dynamic enough to grow, yet stable enough to resist microtubule-mediated forces. How do centrosomes achieve such seemingly contradictory features? While much is understood about the molecular parts of centrosomes, very little is known about their functional material properties. Two prevalent hypotheses pose that the centrosome is either a liquid droplet or a solid lattice. However, many material states exist between a pure Newtonian liquid and a crystalline solid, and it is not clear where centrosomes lie along this spectrum. Furthermore, broad terms like "liquid" or "solid" do not reveal functional properties like strength, ductility, elasticity, and toughness, which are more relevant to understand how centrosomes resist forces. This review covers recent findings and new rheology techniques that reveal the material characteristics of centrosomes and how they are regulated.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|