1
|
Chinta S, Pluta SR. Whisking and locomotion are jointly represented in superior colliculus neurons. PLoS Biol 2025; 23:e3003087. [PMID: 40193391 PMCID: PMC12005515 DOI: 10.1371/journal.pbio.3003087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Active sensation requires the brain to interpret external stimuli against an ongoing estimate of body position. While internal estimates of body position are often ascribed to the cerebral cortex, we examined the midbrain superior colliculus (SC), due to its close relationship with the sensory periphery as well as higher, motor-related brain regions. Using high-density electrophysiology and movement tracking, we discovered that the on-going kinematics of whisker motion and locomotion speed accurately predict the firing rate of mouse SC neurons. Neural activity was best predicted by movements occurring either in the past, present, or future, indicating that the SC population continuously estimates a trajectory of self-motion. A combined representation of slow and fast whisking features predicted absolute whisker angle at high temporal resolution. Sensory reafference played at least a partial role in shaping this feature tuning. Taken together, these data indicate that the SC contains a joint representation of whisking and locomotor features that is potentially useful in guiding complex orienting movements involving the face and limbs.
Collapse
Affiliation(s)
- Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott R. Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Lakhani A, Huang W, Rodgers CC, Wenner P. Whisker deprivation triggers a distinct form of cortical homeostatic plasticity that is impaired in the Fmr1 KO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614487. [PMID: 39386532 PMCID: PMC11463509 DOI: 10.1101/2024.09.23.614487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mouse models of Fragile X Syndrome (FXS) have demonstrated impairments in excitatory and inhibitory sensory-evoked neuronal firing. Homeostatic plasticity, which encompasses a set of mechanisms to stabilize baseline activity levels, does not compensate for these changes in activity. Previous work has shown that impairments in homeostatic plasticity are observed in FXS, including deficits in synaptic scaling and intrinsic excitability. Here, we aimed to examine how homeostatic plasticity is altered in vivo in an Fmr1 KO mouse model following unilateral whisker deprivation (WD). We show that WD in the wild type leads to an increase in the proportion of L5/6 somatosensory neurons that are recruited, but this does not occur in the KO. In addition, we observed a change in the threshold of excitatory neurons at a later developmental stage in the KO. Compromised homeostatic plasticity in development could influence sensory processing and long-term cortical organization.
Collapse
|
3
|
Zeldenrust F, Calcini N, Yan X, Bijlsma A, Celikel T. The tuning of tuning: How adaptation influences single cell information transfer. PLoS Comput Biol 2024; 20:e1012043. [PMID: 38739640 PMCID: PMC11115315 DOI: 10.1371/journal.pcbi.1012043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/23/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Sensory neurons reconstruct the world from action potentials (spikes) impinging on them. To effectively transfer information about the stimulus to the next processing level, a neuron needs to be able to adapt its working range to the properties of the stimulus. Here, we focus on the intrinsic neural properties that influence information transfer in cortical neurons and how tightly their properties need to be tuned to the stimulus statistics for them to be effective. We start by measuring the intrinsic information encoding properties of putative excitatory and inhibitory neurons in L2/3 of the mouse barrel cortex. Excitatory neurons show high thresholds and strong adaptation, making them fire sparsely and resulting in a strong compression of information, whereas inhibitory neurons that favour fast spiking transfer more information. Next, we turn to computational modelling and ask how two properties influence information transfer: 1) spike-frequency adaptation and 2) the shape of the IV-curve. We find that a subthreshold (but not threshold) adaptation, the 'h-current', and a properly tuned leak conductance can increase the information transfer of a neuron, whereas threshold adaptation can increase its working range. Finally, we verify the effect of the IV-curve slope in our experimental recordings and show that excitatory neurons form a more heterogeneous population than inhibitory neurons. These relationships between intrinsic neural features and neural coding that had not been quantified before will aid computational, theoretical and systems neuroscientists in understanding how neuronal populations can alter their coding properties, such as through the impact of neuromodulators. Why the variability of intrinsic properties of excitatory neurons is larger than that of inhibitory ones is an exciting question, for which future research is needed.
Collapse
Affiliation(s)
- Fleur Zeldenrust
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen - the Netherlands
| | - Niccolò Calcini
- Maastricht Centre for Systems Biology (MaCSBio), University of Maastricht, Maastricht, The Netherlands
| | - Xuan Yan
- Institute of Neuroscience, Chinese Academy of Sciences, Beijing, China
| | - Ate Bijlsma
- Department of Population Health Sciences / Department of Biology, Universiteit Utrecht, the Netherlands
| | - Tansu Celikel
- School of Psychology, Georgia Institute of Technology, Atlanta - GA, United States of America
| |
Collapse
|
4
|
Elbaz MA, Demers M, Kleinfeld D, Ethier C, Deschênes M. Interchangeable Role of Motor Cortex and Reafference for the Stable Execution of an Orofacial Action. J Neurosci 2023; 43:5521-5536. [PMID: 37400255 PMCID: PMC10376937 DOI: 10.1523/jneurosci.2089-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Animals interact with their environment through mechanically active, mobile sensors. The efficient use of these sensory organs implies the ability to track their position; otherwise, perceptual stability or prehension would be profoundly impeded. The nervous system may keep track of the position of a sensorimotor organ via two complementary feedback mechanisms-peripheral reafference (external, sensory feedback) and efference copy (internal feedback). Yet, the potential contributions of these mechanisms remain largely unexplored. By training male rats to place one of their vibrissae within a predetermined angular range without contact, a task that depends on knowledge of vibrissa position relative to their face, we found that peripheral reafference is not required. The presence of motor cortex is not required either, except in the absence of peripheral reafference to maintain motor stability. Finally, the red nucleus, which receives descending inputs from motor cortex and cerebellum and projects to facial motoneurons, is critically involved in the execution of the vibrissa positioning task. All told, our results point toward the existence of an internal model that requires either peripheral reafference or motor cortex to optimally drive voluntary motion.SIGNIFICANCE STATEMENT How does an animal know where a mechanically active, mobile sensor lies relative to its body? We address this basic question in sensorimotor integration using the motion of the vibrissae in rats. We show that rats can learn to reliably position their vibrissae in the absence of sensory feedback or in the absence of motor cortex. Yet, when both sensory feedback and motor cortex are absent, motor precision is degraded. This suggests the existence of an internal model able to operate in closed- and open-loop modes, requiring either motor cortex or sensory feedback to maintain motor stability.
Collapse
Affiliation(s)
- Michaël A Elbaz
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Maxime Demers
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - David Kleinfeld
- Departments of Physics
- Neurobiology, University of California, San Diego, La Jolla, California 92093
| | - Christian Ethier
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Martin Deschênes
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| |
Collapse
|
5
|
Elbaz M, Callado Perez A, Demers M, Zhao S, Foo C, Kleinfeld D, Deschenes M. A vibrissa pathway that activates the limbic system. eLife 2022; 11:72096. [PMID: 35142608 PMCID: PMC8830883 DOI: 10.7554/elife.72096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrissa sensory inputs play a central role in driving rodent behavior. These inputs transit through the sensory trigeminal nuclei, which give rise to the ascending lemniscal and paralemniscal pathways. While lemniscal projections are somatotopically mapped from brainstem to cortex, those of the paralemniscal pathway are more widely distributed. Yet the extent and topography of paralemniscal projections are unknown, along with the potential role of these projections in controlling behavior. Here, we used viral tracers to map paralemniscal projections. We find that this pathway broadcasts vibrissa-based sensory signals to brainstem regions that are involved in the regulation of autonomic functions and to forebrain regions that are involved in the expression of emotional reactions. We further provide evidence that GABAergic cells of the Kölliker-Fuse nucleus gate trigeminal sensory input in the paralemniscal pathway via a mechanism of presynaptic or extrasynaptic inhibition.
Collapse
Affiliation(s)
- Michaël Elbaz
- CERVO Research Center, Laval University, Québec City, Canada
| | - Amalia Callado Perez
- CERVO Research Center, Laval University, Québec City, Canada.,Department of Physics, University of California, San Diego, San Diego, United States
| | - Maxime Demers
- CERVO Research Center, Laval University, Québec City, Canada
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Conrad Foo
- Department of Physics, University of California, San Diego, San Diego, United States
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, San Diego, United States.,Section of Neurobiology, University of California, San Diego, San Diego, United States
| | | |
Collapse
|
6
|
Sherf N, Shamir M. STDP and the distribution of preferred phases in the whisker system. PLoS Comput Biol 2021; 17:e1009353. [PMID: 34534208 PMCID: PMC8480728 DOI: 10.1371/journal.pcbi.1009353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/29/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Rats and mice use their whiskers to probe the environment. By rhythmically swiping their whiskers back and forth they can detect the existence of an object, locate it, and identify its texture. Localization can be accomplished by inferring the whisker’s position. Rhythmic neurons that track the phase of the whisking cycle encode information about the azimuthal location of the whisker. These neurons are characterized by preferred phases of firing that are narrowly distributed. Consequently, pooling the rhythmic signal from several upstream neurons is expected to result in a much narrower distribution of preferred phases in the downstream population, which however has not been observed empirically. Here, we show how spike timing dependent plasticity (STDP) can provide a solution to this conundrum. We investigated the effect of STDP on the utility of a neural population to transmit rhythmic information downstream using the framework of a modeling study. We found that under a wide range of parameters, STDP facilitated the transfer of rhythmic information despite the fact that all the synaptic weights remained dynamic. As a result, the preferred phase of the downstream neuron was not fixed, but rather drifted in time at a drift velocity that depended on the preferred phase, thus inducing a distribution of preferred phases. We further analyzed how the STDP rule governs the distribution of preferred phases in the downstream population. This link between the STDP rule and the distribution of preferred phases constitutes a natural test for our theory. The distribution of preferred phases of whisking neurons in the somatosensory system of rats and mice presents a conundrum: a simple pooling model predicts a distribution that is an order of magnitude narrower than what is observed empirically. Here, we suggest that this non-trivial distribution may result from activity-dependent plasticity in the form of spike timing dependent plasticity (STDP). We show that under STDP, the synaptic weights do not converge to a fixed value, but rather remain dynamic. As a result, the preferred phases of the whisking neurons vary in time, hence inducing a non-trivial distribution of preferred phases, which is governed by the STDP rule. Our results imply that the considerable synaptic volatility which has long been viewed as a difficulty that needs to be overcome, may actually be an underlying principle of the organization of the central nervous system.
Collapse
Affiliation(s)
- Nimrod Sherf
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| | - Maoz Shamir
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Physiology and Cell Biology Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
Ebert C, Bagdasarian K, Haidarliu S, Ahissar E, Wallach A. Interactions of Whisking and Touch Signals in the Rat Brainstem. J Neurosci 2021; 41:4826-4839. [PMID: 33893218 PMCID: PMC8260172 DOI: 10.1523/jneurosci.1410-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Perception is an active process, requiring the integration of both proprioceptive and exteroceptive information. In the rat's vibrissal system, a classical model for active sensing, the relative contribution of the two information streams was previously studied at the peripheral, thalamic, and cortical levels. Contributions of brainstem neurons were only indirectly inferred for some trigeminal nuclei according to their thalamic projections. The current work addressed this knowledge gap by performing the first comparative study of the encoding of proprioceptive whisking and exteroceptive touch signals in the oralis (SpVo), interpolaris (SpVi), and paratrigeminal (Pa5) brainstem nuclei. We used artificial whisking in anesthetized male rats, which allows a systematic analysis of the relative contribution of the proprioceptive and exteroceptive information streams along the ascending pathways in the absence of motor or cognitive top-down modulations. We found that (1) neurons in the rostral and caudal parts of the SpVi convey whisking and touch information, respectively, as predicted by their thalamic projections; (2) neurons in the SpVo encode both whisking and (primarily) touch information; and (3) neurons of the Pa5 encode a complex combination of whisking and touch information. In particular, the Pa5 contains a relatively large fraction of neurons that are inhibited by active touch, a response observed so far only in the thalamus. Overall, our systematic characterization of afferent responses to active touch in the trigeminal brainstem approves the hypothesized functions of SpVi neurons and presents evidence that SpVo and Pa5 neurons are involved in the processing of active vibrissal touch.SIGNIFICANCE STATEMENT The present work constitutes the first comparative study of the encoding of proprioceptive (whisking) and exteroceptive (touch) information in the rat's brainstem trigeminal nuclei, the first stage of vibrissal processing in the CNS. It shows that (1) as expected, the rostral and caudal interpolaris neurons convey primarily whisking and touch information, respectively; (2) the oralis nucleus, whose function was previously unknown, encodes both whisking and (primarily) touch touch information; (3) a subtractive computation, reported at the thalamic level, already occurs at the brainstem level; and (4) a novel afferent pathway probably ascends via the paratrigeminal nucleus, encoding both proprioceptive and exteroceptive information.
Collapse
Affiliation(s)
- Coralie Ebert
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | | | | - Ehud Ahissar
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | |
Collapse
|
8
|
Cheung JA, Maire P, Kim J, Lee K, Flynn G, Hires SA. Independent representations of self-motion and object location in barrel cortex output. PLoS Biol 2020; 18:e3000882. [PMID: 33141817 PMCID: PMC7665803 DOI: 10.1371/journal.pbio.3000882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/13/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022] Open
Abstract
During active tactile exploration, the dynamic patterns of touch are transduced to electrical signals and transformed by the brain into a mental representation of the object under investigation. This transformation from sensation to perception is thought to be a major function of the mammalian cortex. In primary somatosensory cortex (S1) of mice, layer 5 (L5) pyramidal neurons are major outputs to downstream areas that influence perception, decision-making, and motor control. We investigated self-motion and touch representations in L5 of S1 with juxtacellular loose-seal patch recordings of optogenetically identified excitatory neurons. We found that during rhythmic whisker movement, 54 of 115 active neurons (47%) represented self-motion. This population was significantly more modulated by whisker angle than by phase. Upon active touch, a distinct pattern of activity was evoked across L5, which represented the whisker angle at the time of touch. Object location was decodable with submillimeter precision from the touch-evoked spike counts of a randomly sampled handful of these neurons. These representations of whisker angle during self-motion and touch were independent, both in the selection of which neurons were active and in the angle-tuning preference of coactive neurons. Thus, the output of S1 transiently shifts from a representation of self-motion to an independent representation of explored object location during active touch.
Collapse
Affiliation(s)
- Jonathan Andrew Cheung
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Phillip Maire
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Jinho Kim
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Kiana Lee
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Garrett Flynn
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Samuel Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Touch: Fluctuating Waves of Perception. Curr Biol 2020; 30:R934-R936. [PMID: 32810452 DOI: 10.1016/j.cub.2020.06.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Does sensory input flow into the brain as a stream, or does it come in waves? New research shows that tactile information in the cortex rises and falls in phase with the forward and back motion of whiskers during surface exploration.
Collapse
|