1
|
Brown TC, McGee AW. Experience directs the instability of neuronal tuning for critical period plasticity in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633213. [PMID: 39868143 PMCID: PMC11761750 DOI: 10.1101/2025.01.15.633213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Brief monocular deprivation during a developmental critical period, but not thereafter, alters the receptive field properties (tuning) of neurons in visual cortex, but the characteristics of neural circuitry that permit this experience-dependent plasticity are largely unknown. We performed repeated calcium imaging at neuronal resolution to track the tuning properties of populations of excitatory layer 2/3 neurons in mouse visual cortex during or after the critical period, as well as in nogo-66 receptor (ngr1) mutant mice that sustain critical-period plasticity as adults. The instability of tuning for populations of neurons was greater in juvenile mice and adult ngr1 mutant mice. We propose instability of neuronal tuning gates plasticity and is directed by experience to alter the tuning of neurons during the critical period.
Collapse
|
2
|
Min R, Qin Y, Kerst S, Saiepour MH, van Lier M, Levelt CN. Inhibitory maturation and ocular dominance plasticity in mouse visual cortex require astrocyte CB1 receptors. iScience 2024; 27:111410. [PMID: 39687028 PMCID: PMC11647246 DOI: 10.1016/j.isci.2024.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/02/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Endocannabinoids, signaling through the cannabinoid CB1 receptor (CB1R), regulate several forms of neuronal plasticity. CB1Rs in the developing primary visual cortex (V1) play a key role in the maturation of inhibitory circuits. Although CB1Rs were originally thought to reside mainly on presynaptic axon terminals, several studies have highlighted an unexpected role for astrocytic CB1Rs in endocannabinoid mediated plasticity. Here, we investigate the impact of cell-type-specific removal of CB1Rs from interneurons or astrocytes on development of inhibitory synapses and network plasticity in mouse V1. We show that removing CB1Rs from astrocytes interferes with maturation of inhibitory synaptic transmission. In addition, it strongly reduces ocular dominance (OD) plasticity during the critical period. In contrast, removing interneuron CB1Rs leaves these processes intact. Our results reveal an unexpected role of astrocytic CB1Rs in critical period plasticity in V1 and highlight the involvement of glial cells in plasticity and synaptic maturation of sensory circuits.
Collapse
Affiliation(s)
- Rogier Min
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yi Qin
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Sven Kerst
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M. Hadi Saiepour
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Mariska van Lier
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Christiaan N. Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Tziridis K, Maul A, Rasheed J, Krauss P, Schilling A, Schulze H. Tinnitus is associated with increased extracellular matrix density in the auditory cortex of Mongolian gerbils. BMC Neurosci 2024; 25:52. [PMID: 39420272 PMCID: PMC11484117 DOI: 10.1186/s12868-024-00904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Most scientists agree that subjective tinnitus is the pathological result of an interaction of damage to the peripheral auditory system and central neuroplastic adaptations. Here we investigate such tinnitus related adaptations in the primary auditory cortex (AC) 7 and 13 days after noise trauma induction of tinnitus by quantifying the density of the extracellular matrix (ECM) in the AC of Mongolian gerbils (Meriones unguiculatus). The ECM density has been shown to be relevant for neuroplastic processes and synaptic stability within the cortex. We utilized a mild monaural acoustic noise trauma in overall 22 gerbils to induce tinnitus and a sham exposure in 16 control (C) animals. Tinnitus was assessed by a behavioral response paradigm. Animals were separated for a presence (T) or absence (NT) of a tinnitus percept by a behavioral task. The ECM density 7 and 13 days after trauma was quantified using immunofluorescence luminance of Wisteria floribunda lectin-fluoresceine-5-isothiocyanate (WFA-FITC) on histological slices of the primary AC, relative to the non-auditory brainstem as a reference area. At both timepoints, we found that the WFA-FITC luminance of the AC of NT animals was not significantly different from that of C animals. However, we found a significant increase of luminance in T animals' ACs compared to NT or C animals' cortices. This effect was found exclusively on the AC side contralateral to the trauma ear. These results point to a hemisphere specific process of stabilization of synaptic connections in primary AC, which may be involved in the chronic manifestation of tinnitus.
Collapse
Affiliation(s)
- Konstantin Tziridis
- Experimental Otolaryngology, Head and Neck Surgery, University Hospital Erlangen, ENT Hospital, Waldstrasse 1, 91054, Erlangen, Germany.
| | - Antonia Maul
- Experimental Otolaryngology, Head and Neck Surgery, University Hospital Erlangen, ENT Hospital, Waldstrasse 1, 91054, Erlangen, Germany
| | - Jwan Rasheed
- Experimental Otolaryngology, Head and Neck Surgery, University Hospital Erlangen, ENT Hospital, Waldstrasse 1, 91054, Erlangen, Germany
| | - Patrick Krauss
- Experimental Otolaryngology, Head and Neck Surgery, University Hospital Erlangen, ENT Hospital, Waldstrasse 1, 91054, Erlangen, Germany
- Friedrich-Alexander University Erlangen-Nürnberg, CCN group, pattern recognition lab, Immerwahrstrasse 2A, 91058, Erlangen, Germany
| | - Achim Schilling
- Experimental Otolaryngology, Head and Neck Surgery, University Hospital Erlangen, ENT Hospital, Waldstrasse 1, 91054, Erlangen, Germany
- Friedrich-Alexander University Erlangen-Nürnberg, CCN group, pattern recognition lab, Immerwahrstrasse 2A, 91058, Erlangen, Germany
| | - Holger Schulze
- Experimental Otolaryngology, Head and Neck Surgery, University Hospital Erlangen, ENT Hospital, Waldstrasse 1, 91054, Erlangen, Germany
| |
Collapse
|
4
|
Brown TC, Crouse EC, Attaway CA, Oakes DK, Minton SW, Borghuis BG, McGee AW. Microglia are dispensable for experience-dependent refinement of mouse visual circuitry. Nat Neurosci 2024; 27:1462-1467. [PMID: 38977886 DOI: 10.1038/s41593-024-01706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
To test the hypothesized crucial role of microglia in the developmental refinement of neural circuitry, we depleted microglia from mice of both sexes with PLX5622 and examined the experience-dependent maturation of visual circuitry and function. We assessed retinal function, receptive field tuning of visual cortex neurons, acuity and experience-dependent plasticity. None of these measurements detectibly differed in the absence of microglia, challenging the role of microglia in sculpting neural circuits.
Collapse
Affiliation(s)
- Thomas C Brown
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Emily C Crouse
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Cecilia A Attaway
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Dana K Oakes
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Sarah W Minton
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Aaron W McGee
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Translational Neuroscience, The University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
5
|
Yoneda T, Kameyama K, Gotou T, Terata K, Takagi M, Yoshimura Y, Sakimura K, Kano M, Hata Y. Layer specific regulation of critical period timing and maturation of mouse visual cortex by endocannabinoids. iScience 2024; 27:110145. [PMID: 38952682 PMCID: PMC11215304 DOI: 10.1016/j.isci.2024.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Plasticity during the critical period is important for the functional maturation of cortical neurons. While characteristics of plasticity are diverse among cortical layers, it is unknown whether critical period timing is controlled by a common or unique molecular mechanism among them. We here clarified layer-specific regulation of the critical period timing of ocular dominance plasticity in the primary visual cortex. Mice lacking the endocannabinoid synthesis enzyme diacylglycerol lipase-α exhibited precocious critical period timing, earlier maturation of inhibitory synaptic function in layers 2/3 and 4, and impaired development of the binocular matching of orientation selectivity exclusively in layer 2/3. Activation of cannabinoid receptor restored ocular dominance plasticity at the normal critical period in layer 2/3. Suppression of GABAA receptor rescued precocious ocular dominance plasticity in layer 4. Therefore, endocannabinoids regulate critical period timing and maturation of visual function partly through the development of inhibitory synaptic functions in a layer-dependent manner.
Collapse
Affiliation(s)
- Taisuke Yoneda
- Division of Neuroscience, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Katsuro Kameyama
- Division of Neuroscience, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Takahiro Gotou
- Division of Neuroscience, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Keiko Terata
- Division of Neuroscience, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Masahiro Takagi
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo 173-0003, Japan
| | - Yoshio Hata
- Division of Neuroscience, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
6
|
Brown TC, Crouse EC, Attaway CA, Oakes DK, Minton SW, Borghuis BG, McGee AW. Microglia are dispensable for experience-dependent refinement of visual circuitry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562708. [PMID: 37905138 PMCID: PMC10614920 DOI: 10.1101/2023.10.17.562708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Microglia are proposed to be critical for the refinement of developing neural circuitry. However, evidence identifying specific roles for microglia has been limited and often indirect. Here we examined whether microglia are required for the experience-dependent refinement of visual circuitry and visual function during development. We ablated microglia by administering the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622, and then examined the consequences for retinal function, receptive field tuning of neurons in primary visual cortex (V1), visual acuity, and experience-dependent plasticity in visual circuitry. Eradicating microglia by treating mice with PLX5622 beginning at postnatal day (P) 14 did not alter visual response properties of retinal ganglion cells examined three or more weeks later. Mice treated with PLX5622 from P14 lacked more than 95% of microglia in V1 by P18, prior to the opening of the critical period. Despite the absence of microglia, the receptive field tuning properties of neurons in V1 were normal at P32. Similarly, eradicating microglia did not affect the maturation of visual acuity. Mice treated with PLX5622 displayed typical ocular dominance plasticity in response to brief monocular deprivation. Thus, none of these principal measurements of visual circuit development and function detectibly differed in the absence of microglia. We conclude that microglia are dispensable for experience-dependent refinement of visual circuitry. These findings challenge the proposed critical role of microglia in refining neural circuitry.
Collapse
Affiliation(s)
- Thomas C. Brown
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Emily C. Crouse
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Cecilia A. Attaway
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Dana K. Oakes
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Sarah W. Minton
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Bart G. Borghuis
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| |
Collapse
|
7
|
Brown TC, McGee AW. Monocular deprivation during the critical period alters neuronal tuning and the composition of visual circuitry. PLoS Biol 2023; 21:e3002096. [PMID: 37083549 PMCID: PMC10155990 DOI: 10.1371/journal.pbio.3002096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/03/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
Abnormal visual experience during a developmental critical period degrades cortical responsiveness. Yet how experience-dependent plasticity alters the response properties of individual neurons and composition of visual circuitry is unclear. Here, we measured with calcium imaging in alert mice how monocular deprivation (MD) during the developmental critical period affects tuning for binocularity, orientation, and spatial frequency for neurons in primary visual cortex. MD of the contralateral eye did not uniformly shift ocular dominance (OD) of neurons towards the fellow ipsilateral eye but reduced the number of monocular contralateral neurons and increased the number of monocular ipsilateral neurons. MD also impaired matching of preferred orientation for binocular neurons and reduced the percentage of neurons responsive at most spatial frequencies for the deprived contralateral eye. Tracking the tuning properties for several hundred neurons before and after MD revealed that the shift in OD is complex and dynamic, with many previously monocular neurons becoming binocular and binocular neurons becoming monocular. Binocular neurons that became monocular were more likely to lose responsiveness to the deprived contralateral eye if they were better matched for orientation prior to deprivation. In addition, the composition of visual circuitry changed as population of neurons more responsive to the deprived eye were exchanged for neurons with tuning properties more similar to the network of responsive neurons altered by MD. Thus, plasticity during the critical period adapts to recent experience by both altering the tuning of responsive neurons and recruiting neurons with matching tuning properties.
Collapse
Affiliation(s)
- Thomas C. Brown
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, Kentucky, United States of America
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
8
|
Sokhadze G, Campbell PW, Charalambakis N, Govindaiah G, Guido W, McGee AW. Cre driver mouse lines for thalamocortical circuit mapping. J Comp Neurol 2022; 530:1049-1063. [PMID: 34545582 PMCID: PMC9891227 DOI: 10.1002/cne.25248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Subpopulations of neurons and associated neural circuits can be targeted in mice with genetic tools in a highly selective manner for visualization and manipulation. However, there are not well-defined Cre "driver" lines that target the expression of Cre recombinase to thalamocortical (TC) neurons. Here, we characterize three Cre driver lines for the nuclei of the dorsal thalamus: Oligodendrocyte transcription factor 3 (Olig3)-Cre, histidine decarboxylase (HDC)-Cre, and corticotropin-releasing hormone (CRH)-Cre. We examined the postnatal distribution of Cre expression for each of these lines with the Cre-dependent reporter CAG-tdTomato (Ai9). Cre-dependent expression of tdTomato reveals that Olig3-Cre expresses broadly within the thalamus, including TC neurons and interneurons, while HDC-Cre and CRH-Cre each have unique patterns of expression restricted to TC neurons within and across the sensory relay nuclei of the dorsal thalamus. Cre expression is present by the time of natural birth in all three lines, underscoring their utility for developmental studies. To demonstrate the utility of these Cre drivers for studying sensory TC circuitry, we targeted the expression of channelrhodopsin-2 to thalamus from the CAG-COP4*H134R/EYFP (Ai32) allele with either HDC-Cre or CRH-Cre. Optogenetic activation of TC afferents in primary visual cortex was sufficient to measure frequency-dependent depression. Thus, these Cre drivers provide selective Cre-dependent gene expression in thalamus suitable for both anatomical and functional studies.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Peter W Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Naomi Charalambakis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Aaron W McGee
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Tan L, Ringach DL, Trachtenberg JT. The Development of Receptive Field Tuning Properties in Mouse Binocular Primary Visual Cortex. J Neurosci 2022; 42:3546-3556. [PMID: 35296547 PMCID: PMC9053846 DOI: 10.1523/jneurosci.1702-21.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/06/2021] [Accepted: 01/08/2022] [Indexed: 11/21/2022] Open
Abstract
The mouse primary visual cortex is a model system for understanding the relationship between cortical structure, function, and behavior (Seabrook et al., 2017; Chaplin and Margrie, 2020; Hooks and Chen, 2020; Saleem, 2020; Flossmann and Rochefort, 2021). Binocular neurons in V1 are the cellular basis of binocular vision, which is required for predation (Scholl et al., 2013; Hoy et al., 2016; La Chioma et al., 2020; Berson, 2021; Johnson et al., 2021). The normal development of binocular responses, however, has not been systematically measured. Here, we measure tuning properties of neurons to either eye in awake mice of either sex from eye opening to the closure of the critical period. At eye opening, we find an adult-like fraction of neurons responding to the contralateral-eye stimulation, which are selective for orientation and spatial frequency; few neurons respond to ipsilateral eye, and their tuning is immature. Fraction of ipsilateral-eye responses increases rapidly in the first few days after eye opening and more slowly thereafter, reaching adult levels by critical period closure. Tuning of these responses improves with a similar time course. The development and tuning of binocular responses parallel that of ipsilateral-eye responses. Four days after eye opening, monocular neurons respond to a full range of orientations but become more biased to cardinal orientations. Binocular responses, by contrast, lose their cardinal bias with age. Together, these data provide an in-depth accounting of the development of monocular and binocular responses in the binocular region of mouse V1 using a consistent set of visual stimuli and measurements.SIGNIFICANCE STATEMENT In this manuscript, we present a full accounting of the emergence and refinement of monocular and binocular receptive field tuning properties of thousands of pyramidal neurons in mouse primary visual cortex. Our data reveal new features of monocular and binocular development that revise current models on the emergence of cortical binocularity. Given the recent interest in visually guided behaviors in mice that require binocular vision (e.g., predation), our measures will provide the basis for studies on the emergence of the neural circuitry guiding these behaviors.
Collapse
Affiliation(s)
- Liming Tan
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Dario L Ringach
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- Department of Psychology, UCLA, Los Angeles, California 90095
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|
10
|
All-or-none disconnection of pyramidal inputs onto parvalbumin-positive interneurons gates ocular dominance plasticity. Proc Natl Acad Sci U S A 2021; 118:2105388118. [PMID: 34508001 DOI: 10.1073/pnas.2105388118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2021] [Indexed: 12/16/2022] Open
Abstract
Disinhibition is an obligatory initial step in the remodeling of cortical circuits by sensory experience. Our investigation on disinhibitory mechanisms in the classical model of ocular dominance plasticity uncovered an unexpected form of experience-dependent circuit plasticity. In the layer 2/3 of mouse visual cortex, monocular deprivation triggers a complete, "all-or-none," elimination of connections from pyramidal cells onto nearby parvalbumin-positive interneurons (Pyr→PV). This binary form of circuit plasticity is unique, as it is transient, local, and discrete. It lasts only 1 d, and it does not manifest as widespread changes in synaptic strength; rather, only about half of local connections are lost, and the remaining ones are not affected in strength. Mechanistically, the deprivation-induced loss of Pyr→PV is contingent on a reduction of the protein neuropentraxin2. Functionally, the loss of Pyr→PV is absolutely necessary for ocular dominance plasticity, a canonical model of deprivation-induced model of cortical remodeling. We surmise, therefore, that this all-or-none loss of local Pyr→PV circuitry gates experience-dependent cortical plasticity.
Collapse
|