1
|
Cabrera V, Abate P, Balaszczuk V, Macchione AF. Alcohol outcomes on anxiety, impulsivity and spatial memory: Possible Omega-3 amelioration effects. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111281. [PMID: 39904400 DOI: 10.1016/j.pnpbp.2025.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Alcohol consumption is a worldwide concern that causes 5 % of the global disease burden and contributes to 3 million deaths per year. Several studies suggest an increase in alcohol drinking and alcohol related problems. Alcohol Use Disorder (formerly referred as alcoholism or alcohol addiction) is one of many possible outcomes of an early and prolonged alcohol consumption and it is highly comorbid with anxiety disorders, impulsivity and memory deficits among others. In this review we approach recent data about global and American prevalence of alcohol use and discuss different factors that contribute to alcohol consumption. Furthermore, we revise evidence of ethanol effects on anxiety-like behaviors, impulsivity and spatial memory. Lastly, we look at the Omega-3 fatty acid as a possible course of action in mitigating the aforementioned deleterious effects of alcohol consumption.
Collapse
Affiliation(s)
- Valentín Cabrera
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina
| | - Paula Abate
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Balaszczuk
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Ana Fabiola Macchione
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Schaeffer EA, LaCour A, Donaldson TN, Linsenbardt DN, Davies S, Savage DD, Wallace DG, Clark BJ. Organization of spontaneous spatial behaviors under dark conditions is unaffected in adult male and female long-Evans rats after moderate prenatal alcohol exposure. Behav Neurosci 2025; 139:44-52. [PMID: 38635177 PMCID: PMC11858146 DOI: 10.1037/bne0000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Prenatal alcohol exposure can produce disruptions in a wide range of cognitive functions, but it is especially detrimental to spatial navigation. In open environments, rodents organize their spatial behaviors around centralized locations, termed home bases, from which they make circuitous and slow locomotor trips (progressions) into the rest of the environment. Open-field behaviors are organized even under darkened test conditions, suggesting a role for self-motion cues (vestibular, motor, etc.). The impact of moderate prenatal alcohol exposure (mPAE) on the organization of spontaneous open-field behaviors under darkened conditions has not been investigated. Here we tested adult female and male rats with mPAE or saccharin control exposure in a circular open field for 30 min in a testing room that was made completely dark. While general locomotion, as measured by reductions in travel distance and increased stop duration, decreased across the test session, the organization of these behaviors, as measured by stop duration, home base establishment, home base stability, progression accuracy, and scaling of peak speeds with progression length, did not differ between mPAE and saccharin control rats. Together, the findings strongly suggest that spontaneous movement organization in relation to self-motion cues remains intact in adult mPAE rats. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | - Suzy Davies
- Department of Neurosciences, University of New Mexico
| | | | | | | |
Collapse
|
3
|
Matthews DB, Kerr E, Zank A, Hartwig J, Garscia A, Stumo S, Sharma P. Recent Investigations Designed to Unravel the Interaction of Age and Alcohol on Behavior and Cognition: Potential Neurobiological Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:243-256. [PMID: 40128482 DOI: 10.1007/978-3-031-81908-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Understanding factors that alter the effect of alcohol in biological systems has been an area of active investigation for several decades. Recently, it has become clear that age is one of the most salient factors influencing how both acute and chronic alcohol exposure alters behavioral function. The following book chapter discusses how alcohol produces differential effects in adolescent animals in comparison to adult and aged (i.e., older) animals. Furthermore, where possible, relevant research identifying possible brain mechanisms mediating the differential effects of alcohol will be discussed. Finally, we highlight a small number of studies where sex and age of the subject interact to modify cognitive impairments produced by alcohol. We conclude that much work still needs to be done to fully understand how age, sex, and alcohol interact to produce the wide range of effects caused by consumption of the drug.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA.
| | - Emily Kerr
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Aeda Zank
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Jadyn Hartwig
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Averi Garscia
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | - Samuel Stumo
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, USA
| | | |
Collapse
|
4
|
Clark BJ, Acosta G, Sanchez L, Rico KT. The Neurobiology of Learning and Memory in Rodent Models of Fetal Alcohol Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:41-65. [PMID: 40128474 DOI: 10.1007/978-3-031-81908-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Exposure to ethanol during gestation can lead to the onset of Fetal Alcohol Spectrum Disorders, which describes a range of neurodevelopmental and behavioral dysfunctions that include impairments in learning and memory and can have serious repercussions for scholastic performance during adolescence. The neurobiological basis of learning and memory dysfunction in Fetal Alcohol Spectrum Disorders has been frequently linked to the hippocampal formation, which is due in part to the fact that some hippocampal neurons, called place cells, fire action potentials correlated with an animal's spatial location as well as other features of memory episodes. The goal of this chapter is to provide an overview of research investigating developmental alcohol exposure in rodent models and the impact on learning and memory, hippocampal circuitry, and neural representations of learning and memory. We conclude by highlighting areas in which more concentrated behavioral and neurobiological study is needed to expand and develop rodent models of memory dysfunction in Fetal Alcohol Spectrum Disorders.
Collapse
Affiliation(s)
- Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, United States.
| | - Gabriela Acosta
- Department of Psychology, University of New Mexico, Albuquerque, United States
| | - Lilliana Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, United States
| | - Kehiry Trejo Rico
- Department of Psychology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
5
|
Acosta G, Rico KT, Madden JT, LaCour A, Wang E, Sanchez LM, Davies S, Maestas-Olguin C, Cox KB, Reyna NC, Hogeveen J, Savage DD, Pentkowski NS, Clark BJ. The effects of moderate prenatal alcohol exposure on performance in hippocampal-sensitive spatial memory and anxiety tasks by adult male and female rat offspring. Alcohol 2024; 121:75-86. [PMID: 39122134 PMCID: PMC11637952 DOI: 10.1016/j.alcohol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Moderate prenatal alcohol exposure (mPAE) results in structural alterations to the hippocampus. Previous studies have reported impairments in hippocampal-sensitive tasks, but have not compared performance between male and female animals. In the present study, performance in hippocampal-sensitive spatial memory and anxiety behavior tests were compared across adult male and female saccharin (SACC) control mPAE Long-Evans rat offspring. Two tests of spatial memory were conducted that were aimed at assessing memory for recently acquired spatial information: A delayed spatial alternation task using an M-shaped maze and a delayed match-to-place task in the Morris water task. In both tasks, rats in SACC and mPAE groups showed similar learning and retention of a spatial location even after a 2-h interval between encoding and retention. A separate group of adult male and female SACC and mPAE rat offspring were tested for anxiety-like behaviors in the elevated plus-maze paradigm. In this test, both male and female mPAE rats exhibited a significantly greater amount of time and a greater number of head dips in the open arms, while locomotion and open arm entries did not differ between groups. The results suggest that mPAE produces a reduction in anxiety-like behaviors in both male and female rats in the elevated plus-maze.
Collapse
Affiliation(s)
- Gabriela Acosta
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Kehiry Trejo Rico
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - John T Madden
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Ariyana LaCour
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Enhui Wang
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Lilliana M Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Kayla B Cox
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Nicole C Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Breffle J, Germaine H, Shin JD, Jadhav SP, Miller P. Intrinsic dynamics of randomly clustered networks generate place fields and preplay of novel environments. eLife 2024; 13:RP93981. [PMID: 39422556 PMCID: PMC11488848 DOI: 10.7554/elife.93981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
During both sleep and awake immobility, hippocampal place cells reactivate time-compressed versions of sequences representing recently experienced trajectories in a phenomenon known as replay. Intriguingly, spontaneous sequences can also correspond to forthcoming trajectories in novel environments experienced later, in a phenomenon known as preplay. Here, we present a model showing that sequences of spikes correlated with the place fields underlying spatial trajectories in both previously experienced and future novel environments can arise spontaneously in neural circuits with random, clustered connectivity rather than pre-configured spatial maps. Moreover, the realistic place fields themselves arise in the circuit from minimal, landmark-based inputs. We find that preplay quality depends on the network's balance of cluster isolation and overlap, with optimal preplay occurring in small-world regimes of high clustering yet short path lengths. We validate the results of our model by applying the same place field and preplay analyses to previously published rat hippocampal place cell data. Our results show that clustered recurrent connectivity can generate spontaneous preplay and immediate replay of novel environments. These findings support a framework whereby novel sensory experiences become associated with preexisting "pluripotent" internal neural activity patterns.
Collapse
Affiliation(s)
- Jordan Breffle
- Neuroscience Program, Brandeis UniversityWalthamUnited States
| | - Hannah Germaine
- Neuroscience Program, Brandeis UniversityWalthamUnited States
| | - Justin D Shin
- Neuroscience Program, Brandeis UniversityWalthamUnited States
- Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
- Department of Psychology , Brandeis UniversityWalthamUnited States
| | - Shantanu P Jadhav
- Neuroscience Program, Brandeis UniversityWalthamUnited States
- Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
- Department of Psychology , Brandeis UniversityWalthamUnited States
| | - Paul Miller
- Neuroscience Program, Brandeis UniversityWalthamUnited States
- Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
7
|
Goncalves-Garcia M, Davies S, Savage DD, Hamilton DA. The histamine H 3 receptor inverse agonist SAR-152954 reverses deficits in long-term potentiation associated with moderate prenatal alcohol exposure. Alcohol 2024; 118:45-55. [PMID: 38705312 PMCID: PMC11409852 DOI: 10.1016/j.alcohol.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.
Collapse
Affiliation(s)
| | - Suzy Davies
- Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Daniel D Savage
- Departments of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Derek A Hamilton
- Departments of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Breffle J, Germaine H, Shin JD, Jadhav SP, Miller P. Intrinsic dynamics of randomly clustered networks generate place fields and preplay of novel environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564173. [PMID: 37961479 PMCID: PMC10634993 DOI: 10.1101/2023.10.26.564173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
During both sleep and awake immobility, hippocampal place cells reactivate time-compressed versions of sequences representing recently experienced trajectories in a phenomenon known as replay. Intriguingly, spontaneous sequences can also correspond to forthcoming trajectories in novel environments experienced later, in a phenomenon known as preplay. Here, we present a model showing that sequences of spikes correlated with the place fields underlying spatial trajectories in both previously experienced and future novel environments can arise spontaneously in neural circuits with random, clustered connectivity rather than pre-configured spatial maps. Moreover, the realistic place fields themselves arise in the circuit from minimal, landmark-based inputs. We find that preplay quality depends on the network's balance of cluster isolation and overlap, with optimal preplay occurring in small-world regimes of high clustering yet short path lengths. We validate the results of our model by applying the same place field and preplay analyses to previously published rat hippocampal place cell data. Our results show that clustered recurrent connectivity can generate spontaneous preplay and immediate replay of novel environments. These findings support a framework whereby novel sensory experiences become associated with preexisting "pluripotent" internal neural activity patterns.
Collapse
Affiliation(s)
- Jordan Breffle
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
| | - Hannah Germaine
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
| | - Justin D Shin
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
- Volen National Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02454
- Department of Psychology, Brandeis University, 415 South St., Waltham, MA 02454
| | - Shantanu P Jadhav
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
- Volen National Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02454
- Department of Psychology, Brandeis University, 415 South St., Waltham, MA 02454
| | - Paul Miller
- Neuroscience Program, Brandeis University, 415 South St., Waltham, MA 02454
- Volen National Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02454
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02454
| |
Collapse
|
9
|
Goncalves-Garcia M, Hamilton DA. Unraveling the complex relationship between prenatal alcohol exposure, hippocampal LTP, and learning and memory. Front Mol Neurosci 2024; 16:1326089. [PMID: 38283699 PMCID: PMC10811250 DOI: 10.3389/fnmol.2023.1326089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Prenatal alcohol exposure (PAE) has been extensively studied for its profound impact on neurodevelopment, synaptic plasticity, and cognitive outcomes. While PAE, particularly at moderate levels, has long-lasting cognitive implications for the exposed individuals, there remains a substantial gap in our understanding of the precise mechanisms underlying these deficits. This review provides a framework for comprehending the neurobiological basis of learning and memory processes that are negatively impacted by PAE. Sex differences, diverse PAE protocols, and the timing of exposure are explored as potential variables influencing the diverse outcomes of PAE on long-term potentiation (LTP). Additionally, potential interventions, both pharmacological and non-pharmacological, are reviewed, offering promising avenues for mitigating the detrimental effects of PAE on cognitive processes. While significant progress has been made, further research is required to enhance our understanding of how prenatal alcohol exposure affects neural plasticity and cognitive functions and to develop effective therapeutic interventions for those impacted. Ultimately, this work aims to advance the comprehension of the consequences of PAE on the brain and cognitive functions.
Collapse
|
10
|
Davies S, Nelson DE, Shrestha S, Savage DD. Impact of two different rodent diets on maternal ethanol consumption, serum ethanol concentration and pregnancy outcome measures. Alcohol 2023; 111:39-49. [PMID: 37225109 PMCID: PMC10527634 DOI: 10.1016/j.alcohol.2023.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Recent studies report varying levels of ethanol consumption by rodents maintained on different commercially available laboratory diets. As varied ethanol consumption by dams may impact offspring outcome measures in prenatal ethanol exposure paradigms, we compared ethanol consumption by rats maintained on the Envigo 2920 diet, used in our vivarium, with an isocalorically equivalent PicoLab 5L0D diet used in some alcohol consumption studies. Compared to 5L0D diet, female rats maintained on 2920 diet consumed 14% less ethanol during daily 4-h drinking sessions prior to pregnancy and 28% less ethanol during gestation. Rat dams consuming 5L0D diet gained significantly less weight during pregnancy. However, their pup birth weights were significantly higher. A subsequent study revealed that hourly ethanol consumption was not different between diets during the first 2 h, but was significantly lower on 2920 diet at the end of the third and fourth hours. The mean serum ethanol concentration in 5L0D dams after the first 2 h of drinking was 46 mg/dL compared to 25 mg/dL in 2920 dams. Further, ethanol consumption at the 2-h blood sampling time point was more variable in 2920 dams compared to 5L0D dams. An in vitro analysis mixing each powdered diet with 5% ethanol in acidified saline revealed that a 2920 diet suspension adsorbed more aqueous medium than the 5L0D diet suspension. The total ethanol remaining in aqueous supernatant of 5L0D mixtures was nearly twice the amount of ethanol in supernatants of the 2920 mixtures. These results suggest that the 2920 diet expands to a greater extent in aqueous medium than the 5L0D diet. We speculate that increasing adsorption of water and ethanol by the 2920 diet may reduce or delay the amount of ethanol absorbed and may decrease serum ethanol concentration to a greater extent than would be predicted from the amount of ethanol consumed.
Collapse
Affiliation(s)
- Suzy Davies
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States
| | - Danika E Nelson
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States
| | - Sumi Shrestha
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States
| | - Daniel D Savage
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States.
| |
Collapse
|
11
|
Burke MW, Slimani H, Ptito M, Ervin FR, Palmour RM. Dose-Related Reduction in Hippocampal Neuronal Populations in Fetal Alcohol Exposed Vervet Monkeys. Brain Sci 2022; 12:1117. [PMID: 36138853 PMCID: PMC9496786 DOI: 10.3390/brainsci12091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a chronic debilitating condition resulting in behavioral and intellectual impairments and is considered the most prevalent form of preventable mental retardation in the industrialized world. We previously reported that 2-year-old offspring of vervet monkey (Chlorocebus sabeus) dams drinking, on average, 2.3 ± 0.49 g ethanol per Kg maternal body weight 4 days per week during the last third of pregnancy had significantly lower numbers of CA1 (-51.6%), CA2 (-51.2%) and CA3 (-42.8%) hippocampal neurons, as compared to age-matched sucrose controls. Fetal alcohol-exposed (FAE) offspring also showed significantly lower volumes for these structures at 2 years of age. In the present study, we examined these same parameters in 12 FAE offspring with a similar average but a larger range of ethanol exposures (1.01-2.98 g/Kg/day; total ethanol exposure 24-158 g/Kg). Design-based stereology was performed on cresyl violet-stained and doublecortin (DCX)-immunostained sections of the hippocampus. We report here significant neuronal deficits in the hippocampus with a significant negative correlation between daily dose and neuronal population in CA1 (r2 = 0.486), CA2 (r2 = 0.492), and CA3 (r2 = 0.469). There were also significant correlations between DCX population in the dentate gyrus and daily dose (r2 = 0.560). Both correlations were consistent with linear dose-response models. This study illustrates that neuroanatomical sequelae of fetal ethanol exposure are dose-responsive and suggests that there may be a threshold for this effect.
Collapse
Affiliation(s)
- Mark W. Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059, USA
| | - Hocine Slimani
- School of Optometry and Department of Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Maurice Ptito
- School of Optometry and Department of Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Neuroscience, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frank R. Ervin
- Behavioural Science Foundation, St. Kitts, Saint Kitts and Nevis
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC H3A 1A1, Canada
| | - Roberta M. Palmour
- Behavioural Science Foundation, St. Kitts, Saint Kitts and Nevis
- Departments of Human Genetics and Psychiatry, Faculty of Medicine, McGill University, Montréal, QC H3A 1A1, Canada
| |
Collapse
|
12
|
Muthukumar S, Mehrotra K, Fouda M, Hamimi S, Jantzie LL, Robinson S. Prenatal and postnatal insults differentially contribute to executive function and cognition: Utilizing touchscreen technology for perinatal brain injury research. Exp Neurol 2022; 354:114104. [PMID: 35525306 PMCID: PMC10085749 DOI: 10.1016/j.expneurol.2022.114104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/19/2022]
Abstract
The use of touchscreen technology to evaluate cognitive deficits in animal models has grown tremendously over the past 20 years. The touchscreen apparatus encompasses many advantages, namely a high level of standardization and translational capability. Improvements in technology in recent years have expanded the versatility of the touchscreen platform, as it is able to test distinct cognitive modalities including working memory, attention, discrimination, and association. Importantly, touchscreen technology has allowed researchers to explore deficits in multiple pillars of cognition in a wide variety of perinatal disorders with neurological sequelae across critical developmental windows. The touchscreen platform has been used to dissect deficits in antenatal CNS injury including fetal alcohol syndrome, prenatal opioid exposure, and chorioamnionitis, to peripartum insults such as term hypoxic-ischemic encephalopathy, to early postnatal insults including infantile traumatic brain injury. Most importantly, touchscreen technology offers the sensitivity necessary to detect subtle injury and treatment-induced changes in cognition and executive function beyond those offered by more rudimentary tests of rodent cognition. Understanding the pathophysiology of these disorders in rodents is paramount to addressing these deficits in human infants and dissecting the neural circuitry essential to perinatal brain injury pathophysiology and responsiveness to novel therapeutics. Touchscreen testing provides an effective, facile, sophisticated technique to accelerate the goal of improving cognitive and behavioral outcomes of children who suffer perinatal brain injury.
Collapse
Affiliation(s)
- Sankar Muthukumar
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karnika Mehrotra
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Fouda
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Hamimi
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren L Jantzie
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shenandoah Robinson
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Osterlund Oltmanns JR, Schaeffer EA, Goncalves Garcia M, Donaldson TN, Acosta G, Sanchez LM, Davies S, Savage DD, Wallace DG, Clark BJ. Sexually dimorphic organization of open field behavior following moderate prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:861-875. [PMID: 35315075 PMCID: PMC9117438 DOI: 10.1111/acer.14813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can produce deficits in a wide range of cognitive functions but is especially detrimental to behaviors requiring accurate spatial information processing. In open field environments, spatial behavior is organized such that animals establish "home bases" marked by long stops focused around one location. Progressions away from the home base are circuitous and slow, while progressions directed toward the home base are non-circuitous and fast. The impact of PAE on the organization of open field behavior has not been experimentally investigated. METHODS In the present study, adult female and male rats with moderate PAE or saccharin exposure locomoted a circular high walled open field for 30 minutes under lighted conditions. RESULTS The findings indicate that PAE and sex influence the organization of open field behavior. Consistent with previous literature, PAE rats exhibited greater locomotion in the open field. Novel findings from the current study indicate that PAE and sex also impact open field measures specific to spatial orientation. While all rats established a home base on the periphery of the open field, PAE rats, particularly males, exhibited significantly less clustered home base stopping with smaller changes in heading between stops. PAE also impaired progression measures specific to distance estimation, while sex alone impacted progression measures specific to direction estimation. CONCLUSIONS These findings support the conclusion that adult male rats have an increased susceptibility to the effects of PAE on the organization of open field behavior.
Collapse
Affiliation(s)
| | - Ericka A Schaeffer
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | | | - Tia N Donaldson
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Gabriela Acosta
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Lilliana M Sanchez
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Suzy Davies
- Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel D Savage
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Benjamin J Clark
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
14
|
Wirt RA, McNeela AM, Hyman JM. Spatial Cognition: Prenatal Alcohol Exposure and the Memory Puzzle. Curr Biol 2021; 30:R1058-R1061. [PMID: 32961165 DOI: 10.1016/j.cub.2020.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We navigate through space using the coordinated activity of spatially sensitive cells in the hippocampus. A new study shows that moderate prenatal alcohol exposure alters multiple features of hippocampal spatial responses, leading to inflexible and less precise representations of our surroundings.
Collapse
Affiliation(s)
- Ryan A Wirt
- Interdisciplinary Program in Neuroscience, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Adam M McNeela
- Interdisciplinary Program in Neuroscience, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - James M Hyman
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|