1
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
2
|
Gargas J, Janowska J, Gebala P, Maksymiuk W, Sypecka J. Reactive Gliosis in Neonatal Disorders: Friend or Foe for Neuroregeneration? Cells 2024; 13:131. [PMID: 38247822 PMCID: PMC10813898 DOI: 10.3390/cells13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
A developing nervous system is particularly vulnerable to the influence of pathophysiological clues and injuries in the perinatal period. Astrocytes are among the first cells that react to insults against the nervous tissue, the presence of pathogens, misbalance of local tissue homeostasis, and a lack of oxygen and trophic support. Under this background, it remains uncertain if induced astrocyte activation, recognized as astrogliosis, is a friend or foe for progressing neonatal neurodevelopment. Likewise, the state of astrocyte reactivity is considered one of the key factors discriminating between either the initiation of endogenous reparative mechanisms compensating for aberrations in the structures and functions of nervous tissue or the triggering of neurodegeneration. The responses of activated cells are modulated by neighboring neural cells, which exhibit broad immunomodulatory and pro-regenerative properties by secreting a plethora of active compounds (including interleukins and chemokines, neurotrophins, reactive oxygen species, nitric oxide synthase and complement components), which are engaged in cell crosstalk in a paracrine manner. As the developing nervous system is extremely sensitive to the influence of signaling molecules, even subtle changes in the composition or concentration of the cellular secretome can have significant effects on the developing neonatal brain. Thus, modulating the activity of other types of cells and their interactions with overreactive astrocytes might be a promising strategy for controlling neonatal astrogliosis.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.G.); (J.J.)
| |
Collapse
|
3
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
4
|
Guluzade NA, Huggard JD, Duffin J, Keir DA. A test of the interaction between central and peripheral respiratory chemoreflexes in humans. J Physiol 2023; 601:4591-4609. [PMID: 37566804 DOI: 10.1113/jp284772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
How central and peripheral chemoreceptor drives to breathe interact in humans remains contentious. We measured the peripheral chemoreflex sensitivity to hypoxia (PChS) at various isocapnic CO2 tensions (P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to determine the form of the relationship between PChS and centralP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Twenty participants (10F) completed three repetitions of modified rebreathing tests with end-tidalP O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) clamped at 150, 70, 60 and 45 mmHg. End-tidalP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ),P ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , ventilation (V ̇ $\dot{V}$ E ) and calculated oxygen saturation (SC O2 ) were measured breath-by-breath by gas-analyser and pneumotach. TheV ̇ $\dot{V}$ E -P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ relationship of repeat-trials were linear-interpolated, combined, averaged into 1 mmHg bins, and fitted with a double-linear function (V ̇ $\dot{V}$ E S, L min-1 mmHg-1 ). PChS was computed at intervals of 1 mmHg ofP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ as follows: the difference inV ̇ $\dot{V}$ E between the three hypoxic profiles and the hyperoxic profile (∆V ̇ $\dot{V}$ E ) was calculated; three ∆V ̇ $\dot{V}$ E values were plotted against corresponding SC O2 ; and linear regression determined PChS (Lmin-1 mmHg-1 %SC O2 -1 ). These processing steps were repeated at eachP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ to produce the PChS vs. isocapnicP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ relationship. These were fitted with linear and polynomial functions, and Akaike information criterion identified the best-fit model. One-way repeated measures analysis of variance assessed between-condition differences.V ̇ $\dot{V}$ E S increased (P < 0.0001) with isoxicP ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ from 3.7 ± 1.5 L min-1 mmHg-1 at 150 mmHg to 4.4 ± 1.8, 5.0 ± 1.6 and 6.0 ± 2.2 Lmin-1 mmHg-1 at 70, 60 and 45 mmHg, respectively. Mean SC O2 fell progressively (99.3 ± 0%, 93.7 ± 0.1%, 90.4 ± 0.1% and 80.5 ± 0.1%; P < 0.0001). In all individuals, PChS increased withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , and this relationship was best described by a linear model in 75%. Despite increasing central chemoreflex activation, PChS increased linearly withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ indicative of an additive central-peripheral chemoreflex response. KEY POINTS: How central and peripheral chemoreceptor drives to breathe interact in humans remains contentious. We measured peripheral chemoreflex sensitivity to hypoxia (PChS) at various isocapnic carbon dioxide tensions (P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to determine the form of the relationship between PChS and centralP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Participants performed three repetitions of modified rebreathing with end-tidalP O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fixed at 150, 70, 60 and 45 mmHg. PChS was computed at intervals of 1 mmHg of end-tidalP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) as follows: the difference inV ̇ $\dot{V}$ E between the three hypoxic profiles and the hyperoxic profile (∆V ̇ $\dot{V}$ E ) was calculated; three ∆V ̇ $\dot{V}$ E values were plotted against corresponding calculated oxygen saturation (SC O2 ); and linear regression determined PChS (Lmin-1 mmHg-1 %SC O2 -1 ). In all individuals, PChS increased withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , and this relationship was best described by a linear (rather than polynomial) model in 15 of 20. Most participants did not exhibit a hypo- or hyper-additive effect of central chemoreceptors on the peripheral chemoreflex indicating that the interaction was additive.
Collapse
Affiliation(s)
- Nasimi A Guluzade
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Joshua D Huggard
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
5
|
Turk AZ, Millwater M, SheikhBahaei S. Whole-brain analysis of CO 2 chemosensitive regions and identification of the retrotrapezoid and medullary raphé nuclei in the common marmoset ( Callithrix jacchus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558361. [PMID: 37986845 PMCID: PMC10659419 DOI: 10.1101/2023.09.26.558361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory chemosensitivity is an important mechanism by which the brain senses changes in blood partial pressure of CO2 (PCO2). It is proposed that special neurons (and astrocytes) in various brainstem regions play key roles as CO2 central respiratory chemosensors in rodents. Although common marmosets (Callithrix jacchus), New-World non-human primates, show similar respiratory responses to elevated inspired CO2 as rodents, the chemosensitive regions in marmoset brain have not been defined yet. Here, we used c-fos immunostainings to identify brain-wide CO2-activated brain regions in common marmosets. In addition, we mapped the location of the retrotrapezoid nucleus (RTN) and raphé nuclei in the marmoset brainstem based on colocalization of CO2-induced c-fos immunoreactivity with Phox2b, and TPH immunostaining, respectively. Our data also indicated that, similar to rodents, marmoset RTN astrocytes express Phox2b and have complex processes that create a meshwork structure at the ventral surface of medulla. Our data highlight some cellular and structural regional similarities in brainstem of the common marmosets and rodents.
Collapse
Affiliation(s)
- Ariana Z. Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| |
Collapse
|
6
|
Xu G, Mihaylova T, Li D, Tian F, Farrehi PM, Parent JM, Mashour GA, Wang MM, Borjigin J. Surge of neurophysiological coupling and connectivity of gamma oscillations in the dying human brain. Proc Natl Acad Sci U S A 2023; 120:e2216268120. [PMID: 37126719 PMCID: PMC10175832 DOI: 10.1073/pnas.2216268120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023] Open
Abstract
The brain is assumed to be hypoactive during cardiac arrest. However, animal models of cardiac and respiratory arrest demonstrate a surge of gamma oscillations and functional connectivity. To investigate whether these preclinical findings translate to humans, we analyzed electroencephalogram and electrocardiogram signals in four comatose dying patients before and after the withdrawal of ventilatory support. Two of the four patients exhibited a rapid and marked surge of gamma power, surge of cross-frequency coupling of gamma waves with slower oscillations, and increased interhemispheric functional and directed connectivity in gamma bands. High-frequency oscillations paralleled the activation of beta/gamma cross-frequency coupling within the somatosensory cortices. Importantly, both patients displayed surges of functional and directed connectivity at multiple frequency bands within the posterior cortical "hot zone," a region postulated to be critical for conscious processing. This gamma activity was stimulated by global hypoxia and surged further as cardiac conditions deteriorated in the dying patients. These data demonstrate that the surge of gamma power and connectivity observed in animal models of cardiac arrest can be observed in select patients during the process of dying.
Collapse
Affiliation(s)
- Gang Xu
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Temenuzhka Mihaylova
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Duan Li
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Fangyun Tian
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Peter M. Farrehi
- Department of Internal Medicine-Cardiology, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Jack M. Parent
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI48109
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI48109
- VA Ann Arbor Healthcare System, Ann Arbor, MI48105
| | - George A. Mashour
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI48109
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI48109
- Department of Anesthesiology, University of Michigan School of Medicine, Ann Arbor, MI48109
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI48109
| | - Michael M. Wang
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI48109
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI48109
- VA Ann Arbor Healthcare System, Ann Arbor, MI48105
| | - Jimo Borjigin
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI48109
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI48109
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
7
|
Zhong T, Zhang W, Guo H, Pan X, Chen X, He Q, Yang B, Ding L. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm Sin B 2022; 12:1761-1780. [PMID: 35847486 PMCID: PMC9279634 DOI: 10.1016/j.apsb.2021.11.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.
Collapse
Key Words
- 4α-PDD, 4α-phorbol-12,13-didecanoate
- ABCB, ATP-binding cassette B1
- AKT, protein kinase B
- ALA, alpha lipoic acid
- AMPK, AMP-activated protein kinase
- APB, aminoethoxydiphenyl borate
- ATP, adenosine triphosphate
- CBD, cannabidiol
- CRAC, Ca2+ release-activated Ca2+ channel
- CaR, calcium-sensing receptor
- CaSR, calcium sensing receptor
- Cancer progression
- DAG, diacylglycerol
- DBTRG, Denver Brain Tumor Research Group
- ECFC, endothelial colony-forming cells
- ECM, enhanced extracellular matrix
- EGF, epidermal growth factor
- EMT, epithelial–mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular signal-regulated kinase
- ETS, erythroblastosis virus E26 oncogene homolog
- FAK, focal adhesion kinase
- GADD, growth arrest and DNA damage-inducible gene
- GC, gastric cancer
- GPCR, G-protein coupled receptor
- GSC, glioma stem-like cells
- GSK, glycogen synthase kinase
- HCC, hepatocellular carcinoma
- HIF, hypoxia-induced factor
- HSC, hematopoietic stem cells
- IP3R, inositol triphosphate receptor
- Intracellular mechanism
- KO, knockout
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LRP, lipoprotein receptor-related protein
- MAPK, mitogen-activated protein kinase
- MLKL, mixed lineage kinase domain-like protein
- MMP, matrix metalloproteinases
- NEDD4, neural precursor cell expressed, developmentally down-regulated 4
- NFAT, nuclear factor of activated T-cells
- NLRP3, NLR family pyrin domain containing 3
- NO, nitro oxide
- NSCLC, non-small cell lung cancer
- Nrf2, nuclear factor erythroid 2-related factor 2
- P-gp, P-glycoprotein
- PCa, prostate cancer
- PDAC, pancreatic ductal adenocarcinoma
- PHD, prolyl hydroxylases
- PI3K, phosphoinositide 3-kinase
- PKC, protein kinase C
- PKD, polycystic kidney disease
- PLC, phospholipase C
- Programmed cancer cell death
- RNS/ROS, reactive nitrogen species/reactive oxygen species
- RTX, resiniferatoxin
- SMAD, Caenorhabditis elegans protein (Sma) and mothers against decapentaplegic (Mad)
- SOCE, store operated calcium entry
- SOR, soricimed
- STIM1, stromal interaction molecules 1
- TEC, tumor endothelial cells
- TGF, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- TRP channels
- TRPA/C/M/ML/N/P/V, transient receptor potential ankyrin/canonical/melastatin/mucolipon/NOMPC/polycystin/vanilloid
- Targeted tumor therapy
- Tumor microenvironment
- Tumor-associated immunocytes
- UPR, unfolded protein response
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- VPAC, vasoactive intestinal peptide receptor subtype
- mTOR, mammalian target of rapamycin
- pFRG/RTN, parafacial respiratory group/retrotrapezoid nucleus
Collapse
|
8
|
Turk AZ, Bishop M, Adeck A, SheikhBahaei S. Astrocytic modulation of central pattern generating motor circuits. Glia 2022; 70:1506-1519. [PMID: 35212422 DOI: 10.1002/glia.24162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/26/2022]
Abstract
Central pattern generators (CPGs) generate the rhythmic and coordinated neural features necessary for the proper conduction of complex behaviors. In particular, CPGs are crucial for complex motor behaviors such as locomotion, mastication, respiration, and vocal production. While the importance of these networks in modulating behavior is evident, the mechanisms driving these CPGs are still not fully understood. On the other hand, accumulating evidence suggests that astrocytes have a significant role in regulating the function of some of these CPGs. Here, we review the location, function, and role of astrocytes in locomotion, respiration, and mastication CPGs and propose that, similarly, astrocytes may also play a significant role in the vocalization CPG.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
9
|
Bishop M, Weinhold M, Turk AZ, Adeck A, SheikhBahaei S. An open-source tool for automated analysis of breathing behaviors in common marmosets and rodents. eLife 2022; 11:e71647. [PMID: 35049499 PMCID: PMC8856653 DOI: 10.7554/elife.71647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The respiratory system maintains homeostatic levels of oxygen (O2) and carbon dioxide (CO2) in the body through rapid and efficient regulation of breathing frequency and depth (tidal volume). The commonly used methods of analyzing breathing data in behaving experimental animals are usually subjective, laborious, and time-consuming. To overcome these hurdles, we optimized an analysis toolkit for the unsupervised study of respiratory activities in animal subjects. Using this tool, we analyzed breathing behaviors of the common marmoset (Callithrix jacchus), a New World non-human primate model. Using whole-body plethysmography in room air as well as acute hypoxic (10% O2) and hypercapnic (6% CO2) conditions, we describe breathing behaviors in awake, freely behaving marmosets. Our data indicate that marmosets' exposure to acute hypoxia decreased metabolic rate and increased sigh rate. However, the hypoxic condition did not augment ventilation. Hypercapnia, on the other hand, increased both the frequency and depth (i.e., tidal volume) of breathing.
Collapse
Affiliation(s)
- Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Maximilian Weinhold
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| |
Collapse
|
10
|
Montalant A, Carlsen EMM, Perrier J. Role of astrocytes in rhythmic motor activity. Physiol Rep 2021; 9:e15029. [PMID: 34558208 PMCID: PMC8461027 DOI: 10.14814/phy2.15029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
Rhythmic motor activities such as breathing, locomotion, tremor, or mastication are organized by groups of interconnected neurons. Most synapses in the central nervous system are in close apposition with processes belonging to astrocytes. Neurotransmitters released from neurons bind to receptors expressed by astrocytes, activating a signaling pathway that leads to an increase in calcium concentration and the release of gliotransmitters that eventually modulate synaptic transmission. It is therefore likely that the activation of astrocytes impacts motor control. Here we review recent studies demonstrating that astrocytes inhibit, modulate, or trigger motor rhythmic behaviors.
Collapse
Affiliation(s)
- Alexia Montalant
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Eva M. M. Carlsen
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jean‐François Perrier
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
11
|
Alm PA. Stuttering: A Disorder of Energy Supply to Neurons? Front Hum Neurosci 2021; 15:662204. [PMID: 34630054 PMCID: PMC8496059 DOI: 10.3389/fnhum.2021.662204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022] Open
Abstract
Stuttering is a disorder characterized by intermittent loss of volitional control of speech movements. This hypothesis and theory article focuses on the proposal that stuttering may be related to an impairment of the energy supply to neurons. Findings from electroencephalography (EEG), brain imaging, genetics, and biochemistry are reviewed: (1) Analyses of the EEG spectra at rest have repeatedly reported reduced power in the beta band, which is compatible with indications of reduced metabolism. (2) Studies of the absolute level of regional cerebral blood flow (rCBF) show conflicting findings, with two studies reporting reduced rCBF in the frontal lobe, and two studies, based on a different method, reporting no group differences. This contradiction has not yet been resolved. (3) The pattern of reduction in the studies reporting reduced rCBF corresponds to the regional pattern of the glycolytic index (GI; Vaishnavi et al., 2010). High regional GI indicates high reliance on non-oxidative metabolism, i.e., glycolysis. (4) Variants of the gene ARNT2 have been associated with stuttering. This gene is primarily expressed in the brain, with a pattern roughly corresponding to the pattern of regional GI. A central function of the ARNT2 protein is to act as one part of a sensor system indicating low levels of oxygen in brain tissue and to activate appropriate responses, including activation of glycolysis. (5) It has been established that genes related to the functions of the lysosomes are implicated in some cases of stuttering. It is possible that these gene variants result in a reduced peak rate of energy supply to neurons. (6) Lastly, there are indications of interactions between the metabolic system and the dopamine system: for example, it is known that acute hypoxia results in an elevated tonic level of dopamine in the synapses. Will mild chronic limitations of energy supply also result in elevated levels of dopamine? The indications of such interaction effects suggest that the metabolic theory of stuttering should be explored in parallel with the exploration of the dopaminergic theory.
Collapse
Affiliation(s)
- Per A. Alm
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|