1
|
Pontzer H. The energetics of movement, from exercise to ecology and evolution. J Exp Biol 2025; 228:JEB247988. [PMID: 39973189 DOI: 10.1242/jeb.247988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Movement is energetically costly, requiring muscle activity to support and propel the animal as it walks, runs, climbs, swims or flies. In this Review, I examine the metabolic impact of locomotion over different timescales. During locomotion, whole-body energy expenditure can rise by more than an order of magnitude above resting, and these costs arise from activating muscle to exert force as well as the work that muscles perform. Over hours or days, locomotion can dominate daily energy expenditure (i.e. field metabolic rate), particularly when provisioning young, migrating, or during other periods of intense activity. The relationship between muscle force and metabolic cost means that locomotor costs and daily expenditures can be tracked using wearable accelerometers. Over longer timescales, however, the relationship between locomotion and daily expenditure becomes more tenuous. Compensatory trade-offs with other physiological activity, including thermoregulation, growth, maintenance and reproduction, obscure the relationship between daily locomotor activity and daily energy expenditure. Over evolutionary timeframes, variation in daily locomotor activity does not predict variation in daily expenditure. The apparent trade-offs between locomotor expenditure and other physiological tasks suggests that, over long timescales, the cost of locomotion might be best measured by its effects on other systems. The impact of locomotion on growth, reproduction and maintenance should be incorporated into ecological and evolutionary assessments of the costs of movement.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology and Duke Global Health Institute, Duke University, 211 Biological Sciences, Durham, NC 27708, USA
| |
Collapse
|
2
|
Cheng S, Li BW, Garber PA, Xia DP, Li JH. Wild Tibetan Macaques Use a Route-Based Mental Map to Navigate in Large-Scale Space. Am J Primatol 2025; 87:e23720. [PMID: 39726120 DOI: 10.1002/ajp.23720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Many animals face significant challenges in locating and acquiring resources that are unevenly distributed in space and time. In the case of nonhuman primates, it remains unclear how individuals remember goal locations and whether they navigate using a route-based or a coordinate-based mental representation when moving between out-of-sight feeding and resting sites (i.e., large-scale space). Here, we examine spatial memory and mental map formation in wild Tibetan macaques (Macaca thibetana) inhabiting a mountainous, forested ecosystem characterized by steep terrain that limits direct vision to 25 meters. We used an instantaneous scan sampling technique at 10-min intervals to record the behavior and location of macaques on Mt. Huangshan, Anhui Province, China, from September 2020 to August 2023. Over 214 days, we obtained 7180 GPS points of the macaques' locations. Our study revealed that the macaques reused 1264 route segments (average length 204.26 m) at least four times each. The number of feeding and resting sites around the habitual route segment, terrain roughness, and dense vegetation areas significantly influenced the use of route segments by our study group. In addition, we found evidence that the monkeys reused 48 nodes to reorient their travel path. We found that monkeys approached a revisited foraging or resting site from the same limited set of directions, which is inconsistent with a coordinate-based spatial representation. In addition, the direction in which the macaques left a feeding or resting site was significantly different from the straight-line direction required to reach their next feeding or resting site, suggesting that the macaques frequently reoriented their direction of travel to reach their goal. Finally, on average, macaques traveled 24% (CI = 1.24) farther than the straight-line distance to reach revisited feeding and resting sites. From our robust data set, we conclude that Tibetan macaques navigate large spaces using a route-based mental representation that appears to help them locate food resources in dense, rugged montane forests and heterogeneous habitats.
Collapse
Affiliation(s)
- Shi Cheng
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
| | - Bo-Wen Li
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Civil Engineering and Water Conservancy, Bengbu University, Bengbu, Anhui, China
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- International Center for Biodiversity and Primates Conservation, Dali University, Dali, Yunnan, China
| | - Dong-Po Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jin-Hua Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| |
Collapse
|
3
|
Stöckl C, Yang Y, Maass W. Local prediction-learning in high-dimensional spaces enables neural networks to plan. Nat Commun 2024; 15:2344. [PMID: 38490999 PMCID: PMC10943103 DOI: 10.1038/s41467-024-46586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Planning and problem solving are cornerstones of higher brain function. But we do not know how the brain does that. We show that learning of a suitable cognitive map of the problem space suffices. Furthermore, this can be reduced to learning to predict the next observation through local synaptic plasticity. Importantly, the resulting cognitive map encodes relations between actions and observations, and its emergent high-dimensional geometry provides a sense of direction for reaching distant goals. This quasi-Euclidean sense of direction provides a simple heuristic for online planning that works almost as well as the best offline planning algorithms from AI. If the problem space is a physical space, this method automatically extracts structural regularities from the sequence of observations that it receives so that it can generalize to unseen parts. This speeds up learning of navigation in 2D mazes and the locomotion with complex actuator systems, such as legged bodies. The cognitive map learner that we propose does not require a teacher, similar to self-attention networks (Transformers). But in contrast to Transformers, it does not require backpropagation of errors or very large datasets for learning. Hence it provides a blue-print for future energy-efficient neuromorphic hardware that acquires advanced cognitive capabilities through autonomous on-chip learning.
Collapse
Affiliation(s)
- Christoph Stöckl
- Institute of Theoretical Computer Science, Graz University of Technology, 8010, Graz, Austria
| | - Yukun Yang
- Institute of Theoretical Computer Science, Graz University of Technology, 8010, Graz, Austria
| | - Wolfgang Maass
- Institute of Theoretical Computer Science, Graz University of Technology, 8010, Graz, Austria.
| |
Collapse
|
4
|
Fei H, de Guinea M, Yang L, Garber PA, Zhang L, Chapman CA, Fan P. Wild gibbons plan their travel pattern according to food types of breakfast. Proc Biol Sci 2023; 290:20230430. [PMID: 37192666 PMCID: PMC10188241 DOI: 10.1098/rspb.2023.0430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Planning for the future is a complex skill that is often considered uniquely human. This cognitive ability has never been investigated in wild gibbons (Hylobatidae). Here we evaluated the movement patterns from sleeping trees to out-of-sight breakfast trees in two groups of endangered skywalker gibbons (Hoolock tianxing). These Asian apes inhabit a cold seasonal montane forest in southwestern China. After controlling for possible confounding variables including group size, sleeping pattern (sleep alone or huddle together), rainfall and temperature, we found that food type (fruits or leaves) of the breakfast tree was the most important factor affecting gibbon movement patterns. Fruit breakfast trees were more distant from sleeping trees compared with leaf trees. Gibbons left sleeping trees and arrived at breakfast trees earlier when they fed on fruits compared with leaves. They travelled fast when breakfast trees were located further away from the sleeping trees. Our study suggests that gibbons had foraging goals in mind and plan their departure times accordingly. This ability may reflect a capacity for route-planning, which would enable them to effectively exploit highly dispersed fruit resources in high-altitude montane forests.
Collapse
Affiliation(s)
- Hanlan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- College of Life Science, China West Normal University, Nanchong 637002, People's Republic of China
| | - Miguel de Guinea
- Movement Ecology Lab, Department of Ecology Evolution and Behavior, Alexander Silverman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Li Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Paul A. Garber
- Department of Anthropology, Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, IL 61801, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671000, People's Republic of China
| | - Lu Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Colin A. Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada V9R 5S5
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710127, People's Republic of China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
5
|
Williams L, Shultz S, Jensen K. The primate workplace: Cooperative decision-making in human and non-human primates. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.887187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The success of group foraging in primates is not only determined by ecological and social factors. It is also influenced by cognition. Group foraging success is constrained, for instance, by the challenges of coordination, synchrony and decision-making, and it is enhanced by the ability to share, learn from others and coordinate actions. However, what we currently know about the cognition of individuals in groups comes primarily from experiments on dyads, and what we know of the effect of ecological factors on group dynamics comes from larger wild groups. Our current knowledge of primate group behaviour is thus incomplete. In this review, we identify a gap in our knowledge of primate group dynamics between the dyadic studies on primate cooperation and the large group observational studies of behavioural ecology. We highlight the potential for controlled experimental studies on coordination and cooperation in primate groups. Currently, these exist primarily as studies of dyads, and these do not go far enough in testing limits of group-level behaviours. Controlled studies on primate groups beyond the dyad would be highly informative regarding the bounds of non-human primate collaboration. We look to the literature on how humans behave in groups, specifically from organisational psychology, draw parallels between human and non-human group dynamics and highlight approaches that could be applied across disciplines. Organisational psychology is explicitly concerned with the interactions between individuals in a group and the emergent properties at the group-level of these decisions. We propose that some of the major shortfalls in our understanding of primate social cognition and group dynamics can be filled by using approaches developed by organisational psychologists, particularly regarding the effects of group size and composition on group-level cooperation. To illustrate the potential applications, we provide a list of research questions drawn from organisational psychology that could be applied to non-human primates.
Collapse
|
6
|
de Chevalier G, Bouret S, Bardo A, Simmen B, Garcia C, Prat S. Cost-Benefit Trade-Offs of Aquatic Resource Exploitation in the Context of Hominin Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.812804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the exploitation of aquatic fauna and flora has been documented in several primate species to date, the evolutionary contexts and mechanisms behind the emergence of this behavior in both human and non-human primates remain largely overlooked. Yet, this issue is particularly important for our understanding of human evolution, as hominins represent not only the primate group with the highest degree of adaptedness to aquatic environments, but also the only group in which true coastal and maritime adaptations have evolved. As such, in the present study we review the available literature on primate foraging strategies related to the exploitation of aquatic resources and their putative associated cognitive operations. We propose that aquatic resource consumption in extant primates can be interpreted as a highly site-specific behavioral expression of a generic adaptive foraging decision-making process, emerging in sites at which the local cost-benefit trade-offs contextually favor aquatic over terrestrial foods. Within this framework, we discuss the potential impacts that the unique intensification of this behavior in hominins may have had on the evolution of the human brain and spatial ecology.
Collapse
|
7
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
8
|
Janmaat KRL, de Guinea M, Collet J, Byrne RW, Robira B, van Loon E, Jang H, Biro D, Ramos-Fernández G, Ross C, Presotto A, Allritz M, Alavi S, Van Belle S. Using natural travel paths to infer and compare primate cognition in the wild. iScience 2021; 24:102343. [PMID: 33997670 PMCID: PMC8101046 DOI: 10.1016/j.isci.2021.102343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Within comparative psychology, the evolution of animal cognition is typically studied either by comparing indirect measures of cognitive abilities (e.g., relative brain size) across many species or by conducting batteries of decision-making experiments among (typically) a few captive species. Here, we propose a third, complementary approach: inferring and comparing cognitive abilities through observational field records of natural information gradients and the associated variation in decision-making outcomes, using the ranging behavior of wild animals. To demonstrate the feasibility of our proposal, we present the results of a global survey assessing the availability of long-term ranging data sets from wild primates and the willingness of primatologists to share such data. We explore three ways in which such ranging data, with or without the associated behavioral and ecological data often collected by primatologists, might be used to infer and compare spatial cognition. Finally, we suggest how ecological complexity may be best incorporated into comparative analyses. Comparing animal ranging decisions in natural habitats has untapped potential How decisions vary with natural information gradients reveals wild animal cognition Ranging data on at least 164 populations of 105 wild primate species are available We present three thought analyses to compare cognition and explain its evolution
Collapse
Affiliation(s)
- Karline R L Janmaat
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.,Department of Cognitive Psychology, Faculty of Social Sciences, Leiden University, Leiden, the Netherlands.,ARTIS Amsterdam Royal zoo, Amsterdam, the Netherlands
| | - Miguel de Guinea
- Department of Social Sciences, Oxford Brookes University, Oxford, UK
| | - Julien Collet
- Oxford Navigation Group, Department of Zoology, Oxford University, Oxford, UK
| | - Richard W Byrne
- Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, University of St Andrews, St Andrew, UK.,Scottish Primate Research Group, Scotland, UK
| | - Benjamin Robira
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, Montpellier, France.,Eco-anthropologie, Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Emiel van Loon
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Haneul Jang
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dora Biro
- Oxford Navigation Group, Department of Zoology, Oxford University, Oxford, UK.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA
| | - Gabriel Ramos-Fernández
- Department of Mathematical Modelling of Social Systems, Institute for Research on Applied Mathematics and Systems, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cody Ross
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrea Presotto
- Department of Geography and Geosciences, Salisbury University, Salisbury, MA, USA
| | - Matthias Allritz
- School of Psychology and Neuroscience, University of St Andrews, Scotland, UK
| | - Shauhin Alavi
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sarie Van Belle
- Department of Anthropology, University of Austin at Texas, Austin, TX, USA
| |
Collapse
|
9
|
van der Hoek Y, Binyinyi E, Ngobobo U, Stoinski TS, Caillaud D. Daily Travel Distances of Unhabituated Grauer's Gorillas (Gorilla beringei graueri) in a Low Elevation Forest. Folia Primatol (Basel) 2021; 92:112-125. [PMID: 33756464 DOI: 10.1159/000514626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
To accurately determine the space use of animals, we need to follow animal movements over prolonged periods, which is especially challenging for the critically endangered Grauer's gorillas (Gorilla beringei graueri) in eastern Democratic Republic of the Congo (DRC). As a consequence, we know little about Grauer's gorillas, particularly from the lower elevational parts of their range. Between 2016 and 2018, we tracked unhabituated Grauer's gorillas in lowland forests (500-1,000 m a.s.l.), at the community-managed Nkuba Conservation Area in Nord Kivu (DRC) to provide estimates of daily travel distances (DTD), daily displacement distances (DDD), and the linearity of recorded paths expressed as the Linearity Index (LI): DDD/DTD. We found an average DTD of ∼1.3 km (range 0.05-5.0 km), with temporal variation among monthly averages; specifically, an increase in travel distance over the June-August dry season resulting in peak travel distances at the beginning of the September-December wet season. Daily displacements showed similar temporal variation, which resulted in a lack of obvious temporal patterns in LI. We conclude that the movement patterns of Grauer's gorillas in lowland forests, which are characterized by larger DTD than those of Grauer's gorillas that inhabit highland habitats, show similarity to travel distances of other predominantly frugivorous gorillas. Moreover, the observed temporal patterns in space use may be tentatively linked to temporal changes in fruit availability or consumption. These observations have consequences for our understanding of the ecological role that Grauer's gorillas play and provide baseline data to estimate current and future distributions, abundances, and carrying capacities of this highly threatened animal.
Collapse
Affiliation(s)
| | | | - Urbain Ngobobo
- The Dian Fossey Gorilla Fund International, Musanze, Rwanda
| | | | - Damien Caillaud
- Department of Anthropology, University of California, Davis, California, USA
| |
Collapse
|
10
|
Chitayat AB, Wich SA, Lewis M, Stewart FA, Piel AK. Ecological correlates of chimpanzee (Pan troglodytes schweinfurthii) density in Mahale Mountains National Park, Tanzania. PLoS One 2021; 16:e0246628. [PMID: 33577598 PMCID: PMC7880473 DOI: 10.1371/journal.pone.0246628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the ecological factors that drive animal density patterns in time and space is key to devising effective conservation strategies. In Tanzania, most chimpanzees (~75%) live outside national parks where human activities threaten their habitat's integrity and connectivity. Mahale Mountains National Park (MMNP), therefore, is a critical area for chimpanzees (Pan troglodytes schweinfurthii) in the region due to its location and protective status. Yet, despite its importance and long history of chimpanzee research (>50 years), a park-wide census of the species has never been conducted. The park is categorized as a savanna-woodland mosaic, interspersed with riparian forest, wooded grassland, and bamboo thicket. This heterogeneous landscape offers an excellent opportunity to assess the ecological characteristics associated with chimpanzee density, a topic still disputed, which could improve conservation plans that protect crucial chimpanzee habitat outside the park. We examined the influence of fine-scale vegetative characteristics and topographical features on chimpanzee nest density, modeling nest counts using hierarchical distance sampling. We counted 335 nests in forest and woodland habitats across 102 transects in 13 survey sites. Nests were disproportionately found more in or near evergreen forests, on steep slopes, and in feeding tree species. We calculated chimpanzee density in MMNP to be 0.23 ind/km2, although density varied substantially among sites (0.09-3.43 ind/km2). Density was associated with factors related to the availability of food and nesting trees, with topographic heterogeneity and the total basal area of feeding tree species identified as significant positive predictors. Species-rich habitats and floristic diversity likely play a principal role in shaping chimpanzee density within a predominately open landscape with low food abundance. Our results provide valuable baseline data for future monitoring efforts in MMNP and enhance our understanding of this endangered species' density and distribution across Tanzania.
Collapse
Affiliation(s)
- Adrienne B. Chitayat
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Serge A. Wich
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Matthew Lewis
- Loango Gorilla Project (Gabon), Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fiona A. Stewart
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Anthropology, University College London, London, United Kingdom
| | - Alex K. Piel
- Department of Anthropology, University College London, London, United Kingdom
| |
Collapse
|
11
|
Abreu F, Garber PA, Souto A, Presotto A, Schiel N. Navigating in a challenging semiarid environment: the use of a route-based mental map by a small-bodied neotropical primate. Anim Cogn 2021; 24:629-643. [PMID: 33394185 DOI: 10.1007/s10071-020-01465-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 11/27/2022]
Abstract
To increase efficiency in the search for resources, many animals rely on their spatial abilities. Specifically, primates have been reported to use mostly topological and rarely Euclidean maps when navigating in large-scale space. Here, we aimed to investigate if the navigation of wild common marmosets inhabiting a semiarid environment is consistent with a topological representation and how environmental factors affect navigation. We collected 497 h of direct behavioral and GPS information on a group of marmosets using a 2-min instantaneous focal animal sampling technique. We found that our study group reused not only long-route segments (mean of 1007 m) but entire daily routes, a pattern that is not commonly seen in primates. The most frequently reused route segments were the ones closer to feeding sites, distant to resting sites, and in areas sparse in tree vegetation. We also identified a total of 56 clustered direction change points indicating that the group modified their direction of travel. These changes in direction were influenced by their close proximity to resting and feeding sites. Despite our small sample size, the obtained results are important and consistent with the contention that common marmosets navigate using a topological map that seems to benefit these animals in response to the exploitation of clustered exudate trees. Based on our findings, we hypothesize that the Caatinga landscape imposes physical restrictions in our group's navigation such as gaps in vegetation, small trees and xerophytic plants. This study, based on preliminary evidence, raises the question of whether navigation patterns are an intrinsic characteristic of a species or are ecologically dependent and change according to the environment.
Collapse
Affiliation(s)
- Filipa Abreu
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil.
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Av. Professor Moraes Rego, 1235, Recife, PE, 50670-901, Brazil
| | - Andrea Presotto
- Department of Geography and Geosciences, Salisbury University, Salisbury, USA
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| |
Collapse
|
12
|
Pontzer H. Ranging Ecology: The View from Above. Curr Biol 2020; 30:R1378-R1380. [PMID: 33202239 DOI: 10.1016/j.cub.2020.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Animals use a variety of strategies to navigate their world, but few are thought to have detailed mental maps of their landscapes. New research with our closest relatives suggests chimpanzees may use cognitive maps to find the most energy efficient routes.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology, Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC 27710, USA.
| |
Collapse
|