1
|
Pales Espinosa E, Farhat S, Allam B. In silico identification of neuropeptide genes encoded by the genome of Crassostrea virginica with a special emphasis on feeding-related genes. Comp Biochem Physiol A Mol Integr Physiol 2025; 301:111792. [PMID: 39694410 DOI: 10.1016/j.cbpa.2024.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Suspension-feeding bivalves, including the oyster Crassostrea virginica, use mucosal lectins to capture food particles. For instance, oysters can increase the transcription of these molecules to enhance food uptake. However, the regulatory processes influencing food uptake remain unclear although likely involve neuropeptides. Information on the neuropeptidome of C. virginica is limited, hindering the comprehension of its physiology, including energy homeostasis. This study explored the genome of C. virginica to identify neuropeptide precursors in silico and compared these with orthologs from other mollusks. A special focus was given to genes with potential implication in feeding processes. qPCR was used to determine the main organs of transcription of feeding-related genes. To further probe the function of target neuropeptides, visceral ganglia extracts and synthetic NPF were injected into oysters to evaluate their impact on genes associated with feeding and energy homeostasis. A total of eighty-five neuropeptides genes were identified in C. virginica genome. About 50 % of these are suggested to play a role in feeding processes. qPCR analyses showed that visceral ganglia and digestive system are the main organs for the synthesis of feeding-related neuropeptides. Further, results showed that the transcription of several neuropeptide genes in the visceral ganglia, including NPF and insulin-like peptide, increased after starvation. Finally, the injection of visceral ganglia extracts and synthetic NPF increased the transcription of a mucosal lectin and a glycogen synthase, known to be involved in food capture and glucose storage. Overall, this study identifies key genes regulating oyster physiology, enhancing the understanding of the control of basic physiological mechanisms in C. virginica.
Collapse
Affiliation(s)
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA; Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, 75005 Paris, France
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
2
|
Yamakawa S, Hejnol A. Ecdysteroid-dependent molting in tardigrades. Curr Biol 2024; 34:5804-5812.e4. [PMID: 39566498 DOI: 10.1016/j.cub.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/07/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Although molting is a defining feature of the most species-rich animal taxa-the Ecdysozoa, including arthropods, tardigrades, nematodes, and others1,2-its evolutionary background remains enigmatic. In pancrustaceans, such as insects and decapods, molting is regulated by the ecdysteroid (Ecd) hormone and its downstream cascade (Figure 1A, see also the text).3,4,5 However, whether Ecd-dependent molting predates the emergence of the arthropods and represents an ancestral machinery in ecdysozoans remains unclear. For example, involvement of the Ecd hormone in molting regulation has been suggested only in some parasitic nematodes outside of arthropods,6,7 and insect Ecd synthesis and receptor genes are lacking in some ecysozoan lineages (Figure S1A).8,9,10 In this study, we investigated the role of Ecd in the molting process of the tardigrade Hypsibius exemplaris. We show that the endogenous Ecd level periodically increases during the molting cycle of H. exemplaris. The pulse treatment with exogenous Ecd induced molting, whereas an antagonist of the Ecd receptor suppressed the molting. Our spatial and temporal gene expression analysis revealed the putative regulatory organs and Ecd downstream cascades. We demonstrate that tardigrade molting is regulated by the Ecd hormone, supporting the ancestry of Ecd-dependent molting in panarthropods. Furthermore, we were able to identify the putative neural center of molting regulation in tardigrades. This region may be homologous to the neural center in the protocerebrum of pancrustaceans and represent an ancestral state of panarthropods. Together, our results suggest that Ecd-dependent molting evolved in the early-late Ediacaran, 22-76 million years earlier than previously suggested.11.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Andreas Hejnol
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway.
| |
Collapse
|
3
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
4
|
Zhou H, Lei G, Li Y, Chen P, Liu Z, Li C, Li B. Novel regulation pathway of eclosion hormones in Tribolium castaneum by distinct transcription factors through the initiation of 20-hydroxyecdysone. J Biol Chem 2024; 300:107898. [PMID: 39424142 DOI: 10.1016/j.jbc.2024.107898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Eclosion hormone (EH) is not only a key trigger of insect ecdysis, but is also involved in the regulation of important physiological processes such as development, diapause, metamorphosis, and reproduction. EH is an ideal target for RNAi treatment and prevention of the Tribolium castaneum. However, two EH genes in T. castaneum demonstrate distinct replication and functional conversion relationships, and the mechanisms of transcriptional regulation of EH remain largely unexplored and poorly understood. In this study, the activity of highly active promoter fragments and potential transcription factors of TcEH and TcEHL were identified using the Dual-Luciferase reporter system and TANSFAC. TcSlbo and TcCAD were revealed to be important transcription factors for TcEH and TcEHL, respectively. Knockdown of TcSlbo failed to slough off the old epidermis of T. castaneum and prevented them from developing into adults. Furthermore, we demonstrated for the first time that 20-hydroxyecdysone affects the expression of TcEH and TcEHL by regulating the transcriptional activities of TcSlbo and TcCAD. This study provides new insights into the transcription regulation of TcEH and TcEHL, their roles in insect growth and development, and the involvement of 20-hydroxyecdysone in eclosion regulation, offering potential molecular targets for future pest management strategies.
Collapse
Affiliation(s)
- Huiling Zhou
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gaoke Lei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yusi Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiping Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
5
|
Liao LL, Li WZ, Jin L, Li GQ. Rnai-based functional analysis of bursicon genes related to cuticle pigmentation in a ladybird beetle. JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104696. [PMID: 39173874 DOI: 10.1016/j.jinsphys.2024.104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
In arthropods, the binding of a bursicon (encoded by burs and pburs) heterodimer or homodimer to a leucine-rich repeat-containing G protein coupled receptor LGR2 (encoded by rk) can activate many physiological processes, especially cuticle pigmentation during insect ecdysis. In the current paper, we intended to ascertain whether bursicon signaling mediates body coloration in the 28-spotted larger potato ladybird, Henosepilachna vigintioctomaculata, and if so, by which way bursicon signal governs the pigmentation. The high expression of Hvburs, Hvpburs and Hvrk occurred in the young larvae, pupae and adults, especially in the head and ventral nerve cord. RNA interference (RNAi) aided knockdown of Hvburs, Hvpburs or Hvrk in the prepupae caused similar phenotypic defects. The pigmentation of the resultant adults was affected, with significantly reduced dark areas on the sternums. Moreover, the accumulated mRNA levels of two sclerotin biosynthesis genes, aspartate 1-decarboxylase gene Hvadc and N-β-alanyldopamine synthase gene Hvebony, were significantly increased in the Hvburs, Hvpburs or Hvrk RNAi beetles. Furthermore, depletion of either Hvadc or Hvebony could completely rescue the impaired coloration on the sternums of Hvpburs RNAi adult. Our results supported that bursicon heterodimer-mediated signal regulate cuticle pigmentation. The bursicon signaling may tune the ratio of melanins (dark/black, brown) to sclerotins (light yellow, colorless) exerting its regulative role in the pigmentation of H. vigintioctomaculata sternums.
Collapse
Affiliation(s)
- Lan-Lan Liao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen-Ze Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Li WZ, Wu YK, Zhang YX, Jin L, Li GQ. Behavioral events and functional analysis of bursicon signal during adult eclosion in the 28-spotted larger potato ladybird. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106011. [PMID: 39084776 DOI: 10.1016/j.pestbp.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
To accommodate growth, insects must periodically shed their exoskeletons. In Manduca sexta, Drosophila melanogaster and Tribolium castaneum, Bursicon (Burs)/ Partner of bursicon (Pburs)-LGR2 signal is an indispensable component for the proper execution of ecdysis behavior during adult eclosion. Nevertheless, the behavioral events and the roles of bursicon signaling in other insects deserve further exploration. In the current paper, we found that the pupal-adult ecdysis in Henosepilachna vigintioctomaculata could be divided into three distinct stages, preecdysis, ecdysis and postecdysis. Preecdysis behavioral sequences included abdomen twitches, dorsal-ventral contractions and air filling that function to loosen the old cuticle. Ecdysis events began with anterior-posterior contractions that gradually split the old integument along the dorsal body midline, followed by freeing of legs and mouthparts, and culminated in detachment from pupal cuticle. Postecdysis behavioral processes contained three actions: perch selection and stretching of elytra and hindwings. RNA interference for HvBurs, HvPburs or Hvrk (encoding LGR2) strongly impaired wing expansion actions, and slightly influenced preecdysis and ecdysis behaviors. The RNAi beetles failed to extend their elytra and hindwings. In addition, injected with dsrk also caused kinked femurs and tibia. Our findings establish that bursicon pathway is involved in regulation of adult eclosion behavior, especially wing expansion motor programs. Given that wings facilitate food foraging, courtship, predator avoidance, dispersal and migration, our results provide a potential target for controlling H. vigintioctomaculata.
Collapse
Affiliation(s)
- Wen-Ze Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi-Kuan Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yu-Xing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Chen A, Vannier J, Guo J, Wang D, Gąsiorek P, Han J, Ma W. Molting in early Cambrian armored lobopodians. Commun Biol 2024; 7:820. [PMID: 38969778 PMCID: PMC11226638 DOI: 10.1038/s42003-024-06440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Lobopodians represent a key step in the early history of ecdysozoans since they were the first animals to evolve legs within this clade. Their Cambrian representatives share a similar body plan with a typically cylindrical annulated trunk and a series of non-jointed legs. However, they do not form a monophyletic group and likely include ancestors of the three extant panarthropod lineages (Tardigrada, Onychophora, Euarthropoda). Some species display astonishing protective devices such as cuticular plates and spines. We describe here the armor and molting process of Microdictyon from the early Cambrian of China. Microdictyon secreted ovoid paired cuticular sclerites that were duplicated in a non-synchronous way along the animal's body. The reticulated pattern and cuticular architecture of these sclerites have similarities to extant armored tardigrades that recently served in hypothesizing that tardigrades are possibly miniaturized lobopodians. Ecdysis and hard cuticular protection are now well documented in the whole spectrum of early Cambrian ecdysozoans such as soft-bodied scalidophorans, lobopodians and fully articulated euarthropods. We hypothesize that the secretion of sclerotized cuticular elements periodically renewed via ecdysis was a key innovation that opened large-scale evolutionary opportunities to invertebrate animal life, specifically ecdysozoans, both in terms of anatomical functionalities and ecological success.
Collapse
Affiliation(s)
- Ailin Chen
- Research Centre of Palaeobiology, Yuxi Normal University, 653100, Yuxi, China.
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008, Nanjing, China.
| | - Jean Vannier
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement (CNRS-UMR 5276), Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, Villeurbanne, 69622, France.
| | - Jin Guo
- Chengjiang Science Museum, Management Committee of the Chengjiang Fossil Site World Heritage, 652500, Chengjiang, China
| | - Deng Wang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, 710069, Xi'an, China
| | - Piotr Gąsiorek
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Department of Invertebrate Evolution, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Jian Han
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, 710069, Xi'an, China
| | | |
Collapse
|
8
|
Yan C, Wu Z, Liu Y, Sun Y, Zhang J. Comparative transcriptomic analysis primarily explores the molecular mechanism of compound eye formation in Neocaridina denticulata sinensis. BMC Genomics 2024; 25:570. [PMID: 38844864 PMCID: PMC11155044 DOI: 10.1186/s12864-024-10453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Compound eyes formation in decapod crustaceans occurs after the nauplius stage. However, the key genes and regulatory mechanisms of compound eye development during crustacean embryonic development have not yet been clarified. In this study, RNA-seq was used to investigate the gene expression profiles of Neocaridina denticulata sinensis from nauplius to zoea stage. Based on RNA-seq data analysis, the phototransduction and insect hormone biosynthesis pathways were enriched, and molting-related neuropeptides were highly expressed. There was strong cell proliferation in the embryo prior to compound eye development. The formation of the visual system and the hormonal regulation of hatching were the dominant biological events during compound eye development. The functional analysis of DEGs across all four developmental stages showed that cuticle formation, muscle growth and the establishment of immune system occurred from nauplius to zoea stage. Key genes related to eye development were discovered, including those involved in the determination and differentiation of the eye field, eye-color formation, and visual signal transduction. In conclusion, the results increase the understanding of the molecular mechanism of eye formation in crustacean embryonic stage.
Collapse
Affiliation(s)
- Congcong Yan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yujie Liu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
9
|
Sullivan LF, Barker MS, Felix PC, Vuong RQ, White BH. Neuromodulation and the toolkit for behavioural evolution: can ecdysis shed light on an old problem? FEBS J 2024; 291:1049-1079. [PMID: 36223183 PMCID: PMC10166064 DOI: 10.1111/febs.16650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/12/2022] [Indexed: 05/10/2023]
Abstract
The geneticist Thomas Dobzhansky famously declared: 'Nothing in biology makes sense except in the light of evolution'. A key evolutionary adaptation of Metazoa is directed movement, which has been elaborated into a spectacularly varied number of behaviours in animal clades. The mechanisms by which animal behaviours have evolved, however, remain unresolved. This is due, in part, to the indirect control of behaviour by the genome, which provides the components for both building and operating the brain circuits that generate behaviour. These brain circuits are adapted to respond flexibly to environmental contingencies and physiological needs and can change as a function of experience. The resulting plasticity of behavioural expression makes it difficult to characterize homologous elements of behaviour and to track their evolution. Here, we evaluate progress in identifying the genetic substrates of behavioural evolution and suggest that examining adaptive changes in neuromodulatory signalling may be a particularly productive focus for future studies. We propose that the behavioural sequences used by ecdysozoans to moult are an attractive model for studying the role of neuromodulation in behavioural evolution.
Collapse
Affiliation(s)
- Luis F Sullivan
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Matthew S Barker
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Princess C Felix
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Richard Q Vuong
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Benjamin H White
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Quiroga-Artigas G, Moriel-Carretero M. Storage cell proliferation during somatic growth establishes that tardigrades are not eutelic organisms. Biol Open 2024; 13:bio060299. [PMID: 38411464 PMCID: PMC10924213 DOI: 10.1242/bio.060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Tardigrades, microscopic ecdysozoans known for extreme environment resilience, were traditionally believed to maintain a constant cell number after completing embryonic development, a phenomenon termed eutely. However, sporadic reports of dividing cells have raised questions about this assumption. In this study, we explored tardigrade post-embryonic cell proliferation using the model species Hypsibius exemplaris. Comparing hatchlings to adults, we observed an increase in the number of storage cells, responsible for nutrient storage. We monitored cell proliferation via 5-ethynyl-2'-deoxyuridine (EdU) incorporation, revealing large numbers of EdU+ storage cells during growth, which starvation halted. EdU incorporation associated with molting, a vital post-embryonic development process involving cuticle renewal for further growth. Notably, DNA replication inhibition strongly reduced EdU+ cell numbers and caused molting-related fatalities. Our study is the first to demonstrate using molecular approaches that storage cells actively proliferate during tardigrade post-embryonic development, providing a comprehensive insight into replication events throughout their somatic growth. Additionally, our data underscore the significance of proper DNA replication in tardigrade molting and survival. This work definitely establishes that tardigrades are not eutelic, and offers insights into cell cycle regulation, replication stress, and DNA damage management in these remarkable creatures as genetic manipulation techniques emerge within the field.
Collapse
Affiliation(s)
- Gonzalo Quiroga-Artigas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| |
Collapse
|
11
|
Yin C, Morita T, Parrish JZ. A cell atlas of the larval Aedes aegypti ventral nerve cord. Neural Dev 2024; 19:2. [PMID: 38297398 PMCID: PMC10829479 DOI: 10.1186/s13064-023-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
Mosquito-borne diseases account for nearly 1 million human deaths annually, yet we have a limited understanding of developmental events that influence host-seeking behavior and pathogen transmission in mosquitoes. Mosquito-borne pathogens are transmitted during blood meals, hence adult mosquito behavior and physiology have been intensely studied. However, events during larval development shape adult traits, larvae respond to many of the same sensory cues as adults, and larvae are susceptible to infection by many of the same disease-causing agents as adults. Hence, a better understanding of larval physiology will directly inform our understanding of physiological processes in adults. Here, we use single cell RNA sequencing (scRNA-seq) to provide a comprehensive view of cellular composition in the Aedes aegypti larval ventral nerve cord (VNC), a central hub of sensory inputs and motor outputs which additionally controls multiple aspects of larval physiology. We identify more than 35 VNC cell types defined in part by neurotransmitter and neuropeptide expression. We also explore diversity among monoaminergic and peptidergic neurons that likely control key elements of larval physiology and developmental timing, and identify neuroblasts and immature neurons, providing a view of neuronal differentiation in the VNC. Finally, we find that larval cell composition, number, and position are preserved in the adult abdominal VNC, suggesting studies of larval VNC form and function will likely directly inform our understanding adult mosquito physiology. Altogether, these studies provide a framework for targeted analysis of VNC development and neuronal function in Aedes aegypti larvae.
Collapse
Affiliation(s)
- Chang Yin
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Takeshi Morita
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA.
| |
Collapse
|
12
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
13
|
Lyu B, Li J, Niemeyer B, Stanley D, Song Q. Identification and characterization of ecdysis-related neuropeptides in the lone star tick Amblyomma americanum. Front Endocrinol (Lausanne) 2023; 14:1256618. [PMID: 37693356 PMCID: PMC10490126 DOI: 10.3389/fendo.2023.1256618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The lone star tick, Amblyomma americanum, is an important ectoparasite known for transmitting diseases to humans and animals. Ecdysis-related neuropeptides (ERNs) control behaviors crucial for arthropods to shed exoskeletons. However, ERN identification and characterization in A. americanum remain incomplete. Methods We investigated ERNs in A. americanum, assessing their evolutionary relationships, protein properties, and functions. Phylogeny, sequence alignment, and domain structures of ERNs were analyzed. ERN functionality was explored using enrichment analysis, and developmental and tissue-specific ERN expression profiles were examined using qPCR and RNAi experiments. Results and discussion The study shows that ERN catalogs (i.e., eclosion hormone, corazonin, and bursicon) are found in most arachnids, and these ERNs in A. americanum have high evolutionary relatedness with other tick species. Protein modeling analysis indicates that ERNs primarily consist of secondary structures and protein stabilizing forces (i.e., hydrophobic clusters, hydrogen bond networks, and salt bridges). Gene functional analysis shows that ENRs are involved in many ecdysis-related functions, including ecdysis-triggering hormone activity, neuropeptide signaling pathway, and corazonin receptor binding. Bursicon proteins have functions in chitin binding and G protein-coupled receptor activity and strong interactions with leucine-rich repeat-containing G-protein coupled receptor 5. ERNs were expressed in higher levels in newly molted adults and synganglia. RNAi-mediated knockdown of burs α and burs β expression led to a significant decrease in the expression of an antimicrobial peptide, defensin, suggesting they might act in signaling or regulatory pathways that control the expression of immune-related genes. Arthropods are vulnerable immediately after molting because new cuticles are soft and susceptible to injury and pathogen infections. Bursicon homodimers act in prophylactic immunity during this vulnerable period by increasing the synthesis of transcripts encoding antimicrobial peptides to protect them from microbial invasion. Collectively, the expression pattern and characterization of ERNs in this study contribute to a deeper understanding of the physiological processes in A. americanum.
Collapse
Affiliation(s)
- Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brigid Niemeyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - David Stanley
- Biological Control of Insect Research Laboratory, United States Department of Agriculture-Agricultural Research Station (USDA/ARS), Columbia, MO, United States
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
14
|
Styfhals R, Zolotarov G, Hulselmans G, Spanier KI, Poovathingal S, Elagoz AM, De Winter S, Deryckere A, Rajewsky N, Ponte G, Fiorito G, Aerts S, Seuntjens E. Cell type diversity in a developing octopus brain. Nat Commun 2022; 13:7392. [PMID: 36450803 PMCID: PMC9712504 DOI: 10.1038/s41467-022-35198-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Octopuses are mollusks that have evolved intricate neural systems comparable with vertebrates in terms of cell number, complexity and size. The brain cell types that control their sophisticated behavioral repertoire are still unknown. Here, we profile the cell diversity of the paralarval Octopus vulgaris brain to build a cell type atlas that comprises mostly neural cells, but also multiple glial subtypes, endothelial cells and fibroblasts. We spatially map cell types to the vertical, subesophageal and optic lobes. Investigation of cell type conservation reveals a shared gene signature between glial cells of mouse, fly and octopus. Genes related to learning and memory are enriched in vertical lobe cells, which show molecular similarities with Kenyon cells in Drosophila. We construct a cell type taxonomy revealing transcriptionally related cell types, which tend to appear in the same brain region. Together, our data sheds light on cell type diversity and evolution in the octopus brain.
Collapse
Affiliation(s)
- Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Grygoriy Zolotarov
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Gert Hulselmans
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Katina I Spanier
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | | | - Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Seppe De Winter
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biological Sciences, Columbia University, New York, US
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stein Aerts
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
16
|
Hayashi Y, Oguchi K, Nakamura M, Koshikawa S, Miura T. Construction of a massive genetic resource by transcriptome sequencing and genetic characterization of Megasyllis nipponica (Annelida: Syllidae). Genes Genet Syst 2022; 97:153-166. [PMID: 36070927 DOI: 10.1266/ggs.21-00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Understanding the processes and consequences of the morphological diversity of organisms is one of the major goals of evolutionary biology. Studies on the evolution of developmental mechanisms of morphologies, or evo-devo, have been extensively conducted in many taxa and have revealed many interesting phenomena at the molecular level. However, many other taxa exhibiting intriguing morphological diversity remain unexplored in the field of evo-devo. Although the annelid family Syllidae shows spectacular diversity in morphological development associated with reproduction, its evo-devo study, especially on molecular development, has progressed slowly. In this study, we focused on Megasyllis nipponica as a new model species for evo-devo in syllids and performed transcriptome sequencing to develop a massive genetic resource, which will be useful for future molecular studies. From the transcriptome data, we identified candidate genes that are likely involved in morphogenesis, including genes involved in hormone regulation, sex determination and appendage development. Furthermore, a computational analysis of the transcriptome sequence data indicated the occurrence of DNA methylation in coding regions of the M. nipponica genome. In addition, flow cytometry analysis showed that the genome size of M. nipponica was approximately 524 megabases. These results facilitate the study of morphogenesis in molecular terms and contribute to our understanding of the morphological diversity in syllids.
Collapse
Affiliation(s)
| | - Kohei Oguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo.,National Institute of Advanced Industrial Science and Technology (AIST)
| | - Mayuko Nakamura
- Misaki Marine Biological Station, School of Science, The University of Tokyo
| | - Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University.,Graduate School of Environmental Science, Hokkaido University
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo
| |
Collapse
|
17
|
Sterkel M, Volonté M, Albornoz MG, Wulff JP, Del Huerto Sánchez M, Terán PM, Ajmat MT, Ons S. The role of neuropeptides in regulating ecdysis and reproduction in the hemimetabolous insect Rhodnius prolixus. J Exp Biol 2022; 225:276563. [PMID: 35929492 DOI: 10.1242/jeb.244696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
In ecdysozoan animals, moulting entails the production of a new exoskeleton and shedding the old one during ecdysis. It is induced by a pulse of ecdysone that regulates the expression of different hormonal receptors and activates a peptide-mediated signalling cascade. In Holometabola, the peptidergic cascade regulating ecdysis has been well described. However, very little functional information regarding the neuroendocrine regulation of ecdysis is available for Hemimetabola, which displays an incomplete metamorphosis. We use Rhodnius prolixus as a convenient experimental model to test two hypotheses: (a) the role of neuropeptides that regulate ecdysis in Holometabola is conserved in hemimetabolous insects; (b) the neuropeptides regulating ecdysis play a role in the regulation of female reproduction during the adult stage. The RNA interference-mediated reduction of ETH expression in fourth-instar nymphs resulted in lethality at the expected time of ecdysis. Unlike in holometabolous insects, the knockdown of ETH and OKA did not affect oviposition in adult females, pointing to a different endocrine regulation of ovary maturation. However, ETH knockdown prevented egg hatching. The blockage of egg hatching appears to be a consequence of embryonic ecdysis failure. Most of the first-instar nymphs hatched from the eggs laid by females injected with dsEH, dsCCAP and dsOKA died at the expected time of ecdysis, indicating the crucial involvement of these genes in post-embryonic development. No phenotypes were observed upon CZ knockdown in nymphs or adult females. The results are relevant for evolutionary entomology and could reveal targets for neuropeptide-based pest control tools.
Collapse
Affiliation(s)
- Marcos Sterkel
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Mariano Volonté
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Maximiliano G Albornoz
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Juan Pedro Wulff
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Mariana Del Huerto Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - Paula María Terán
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - María Teresa Ajmat
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
18
|
Salamanca-Díaz DA, Ritschard EA, Schmidbaur H, Wanninger A. Comparative Single-Cell Transcriptomics Reveals Novel Genes Involved in Bivalve Embryonic Shell Formation and Questions Ontogenetic Homology of Molluscan Shell Types. Front Cell Dev Biol 2022; 10:883755. [PMID: 35813198 PMCID: PMC9261976 DOI: 10.3389/fcell.2022.883755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/29/2022] Open
Abstract
Mollusks are known for their highly diverse repertoire of body plans that often includes external armor in form of mineralized hardparts. Representatives of the Conchifera, one of the two major lineages that comprises taxa which originated from a uni-shelled ancestor (Monoplacophora, Gastropoda, Cephalopoda, Scaphopoda, Bivalvia), are particularly relevant regarding the evolution of mollusk shells. Previous studies have found that the shell matrix of the adult shell (teleoconch) is rapidly evolving and that the gene set involved in shell formation is highly taxon-specific. However, detailed annotation of genes expressed in tissues involved in the formation of the embryonic shell (protoconch I) or the larval shell (protoconch II) are currently lacking. Here, we analyzed the genetic toolbox involved in embryonic and larval shell formation in the quagga mussel Dreissena rostriformis using single cell RNA sequencing. We found significant differences in genes expressed during embryonic and larval shell secretion, calling into question ontogenetic homology of these transitory bivalve shell types. Further ortholog comparisons throughout Metazoa indicates that a common genetic biomineralization toolbox, that was secondarily co-opted into molluscan shell formation, was already present in the last common metazoan ancestor. Genes included are engrailed, carbonic anhydrase, and tyrosinase homologs. However, we found that 25% of the genes expressed in the embryonic shell field of D. rostriformis lack an ortholog match with any other metazoan. This indicates that not only adult but also embryonic mollusk shells may be fast-evolving structures. We raise the question as to what degree, and on which taxonomic level, the gene complement involved in conchiferan protoconch formation may be lineage-specific or conserved across taxa.
Collapse
Affiliation(s)
- David A. Salamanca-Díaz
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Elena A. Ritschard
- Division of Molecular Evolution and Development, Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Hannah Schmidbaur
- Division of Molecular Evolution and Development, Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Transcriptome Profiling of the Pacific Oyster Crassostrea gigas Visceral Ganglia over a Reproduction Cycle Identifies Novel Regulatory Peptides. Mar Drugs 2021; 19:md19080452. [PMID: 34436291 PMCID: PMC8398477 DOI: 10.3390/md19080452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
The neuropeptides involved in the regulation of reproduction in the Pacific oyster (Crassostrea gigas) are quite diverse. To investigate this diversity, a transcriptomic survey of the visceral ganglia (VG) was carried out over an annual reproductive cycle. RNA-seq data from 26 samples corresponding to VG at different stages of reproduction were de novo assembled to generate a specific reference transcriptome of the oyster nervous system and used to identify differentially expressed transcripts. Transcriptome mining led to the identification of novel neuropeptide precursors (NPPs) related to the bilaterian Eclosion Hormone (EH), crustacean female sex hormone/Interleukin 17, Nesfatin, neuroparsin/IGFBP, prokineticins, and urotensin I; to the protostome GNQQN, pleurin, prohormones 3 and 4, prothoracotropic hormones (PTTH), and QSamide/PXXXamide; to the lophotrochozoan CCWamide, CLCCY, HFAamide, and LXRX; and to the mollusk-specific NPPs CCCGS, clionin, FYFY, GNamide, GRWRN, GSWN, GWE, IWMPxxGYxx, LXRYamide, RTLFamide, SLRFamide, and WGAGamide. Among the complete repertoire of NPPs, no sex-biased expression was observed. However, 25 NPPs displayed reproduction stage-specific expression, supporting their involvement in the control of gametogenesis or associated metabolisms.
Collapse
|
20
|
Thiel D, Guerra LAY, Franz-Wachtel M, Hejnol A, Jékely G. Nemertean, brachiopod and phoronid neuropeptidomics reveals ancestral spiralian signalling systems. Mol Biol Evol 2021; 38:4847-4866. [PMID: 34272863 PMCID: PMC8557429 DOI: 10.1093/molbev/msab211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropeptides are diverse signaling molecules in animals commonly acting through G-protein coupled receptors (GPCRs). Neuropeptides and their receptors underwent extensive diversification in bilaterians and the relationships of many peptide–receptor systems have been clarified. However, we lack a detailed picture of neuropeptide evolution in lophotrochozoans as in-depth studies only exist for mollusks and annelids. Here, we analyze peptidergic systems in Nemertea, Brachiopoda, and Phoronida. We screened transcriptomes from 13 nemertean, 6 brachiopod, and 4 phoronid species for proneuropeptides and neuropeptide GPCRs. With mass spectrometry from the nemertean Lineus longissimus, we validated several predicted peptides and identified novel ones. Molecular phylogeny combined with peptide-sequence and gene-structure comparisons allowed us to comprehensively map spiralian neuropeptide evolution. We found most mollusk and annelid peptidergic systems also in nemerteans, brachiopods, and phoronids. We uncovered previously hidden relationships including the orthologies of spiralian CCWamides to arthropod agatoxin-like peptides and of mollusk APGWamides to RGWamides from annelids, with ortholog systems in nemerteans, brachiopods, and phoronids. We found that pleurin neuropeptides previously only found in mollusks are also present in nemerteans and brachiopods. We also identified cases of gene family duplications and losses. These include a protostome-specific expansion of RFamide/Wamide signaling, a spiralian expansion of GnRH-related peptides, and duplications of vasopressin/oxytocin before the divergence of brachiopods, phoronids, and nemerteans. This analysis expands our knowledge of peptidergic signaling in spiralians and other protostomes. Our annotated data set of nearly 1,300 proneuropeptide sequences and 600 GPCRs presents a useful resource for further studies of neuropeptide signaling.
Collapse
Affiliation(s)
- Daniel Thiel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Mirita Franz-Wachtel
- Eberhard Karls Universität Tübingen, Interfaculty Institute for Cell Biology, Tübingen, Germany
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, 5006, Norway
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| |
Collapse
|
21
|
Paps J. Evolution: How Animals Come of Age. Curr Biol 2021; 31:R30-R32. [PMID: 33434485 DOI: 10.1016/j.cub.2020.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Animals display a diversity of life cycles, including larvae in some lineages but not in others. A new study reveals a shared genetic toolkit in many animals that regulates the transition to the juvenile form, from an embryo or a larva.
Collapse
Affiliation(s)
- Jordi Paps
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
22
|
Goymann W, Schwabl H. The tyranny of phylogeny-A plea for a less dogmatic stance on two-species comparisons: Funding bodies, journals and referees discourage two- or few-species comparisons, but such studies provide essential insights complementary to phylogenetic comparative studies. Bioessays 2021; 43:e2100071. [PMID: 34155665 DOI: 10.1002/bies.202100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/11/2022]
Abstract
Phylogenetically controlled studies across multiple species correct for taxonomic confounds in physiological performance traits. Therefore, they are preferred over comparisons of two or few closely-related species. Funding bodies, referees and journal editors nowadays often even reject to consider detailed comparisons of two or few closely related species. Here, we plea for a less dogmatic stance on such comparisons, because phylogenetic studies come with their own limitations similar in magnitude as those of two-species comparisons. Two-species comparisons are particularly relevant and instructive for understanding physiological pathways and de novo mutations in three contexts: in a purely mechanistic context, when differences in the regulation of a trait are the focus of investigation, when a physiological trait lacks a direct connection to fitness, and when physiological measures cannot easily be standardized among laboratories. In conclusion, phylogenetic comparative and two-species studies have different strengths and weaknesses and combining these complementary approaches will help integrating biology.
Collapse
Affiliation(s)
- Wolfgang Goymann
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Hubert Schwabl
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|