1
|
Bansal AK, Rao M. Nonequilibrium asymmetry in the living cell membrane. Faraday Discuss 2025. [PMID: 40338126 DOI: 10.1039/d4fd00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
We will discuss how sustained nonequilibrium processes operating at the plasma membrane (PM) determine the dynamical organisation (both lateral and transverse) of lipids, their maintenance and control, under physiological conditions. These nonequilibrium processes include active contractile stresses arising from the inevitable interaction of the inner leaflet of the PM with the adjoining actomyosin cortex, and active flipping of specific lipids. Recently, we showed that the inner leaflet phosphatidylserine (PS) interacts with the actomyosin cortex and engages in a strong transbilayer coupling across the leaflets. Here we develop an active Flory-Huggins theory for the mesoscale segregation of liquid-ordered (lo)-liquid-disordered (ld) domains in an asymmetric membrane bilayer, that incorporates both active contractile stresses at the inner leaflet and transbilayer coupling across the leaflets. The interplay between chemical potential gradients, transbilayer coupling and active stresses drives a rich pattern of mesoscale lo domains - static, strongly fluctuating and moving active emulsions - even at temperatures beyond the equilibrium phase transition temperature. We study conditions under which domain registry and slippage could be observed. We end with a discussion on the role of active flippases on PS in maintaining the active mesoscale organisation.
Collapse
Affiliation(s)
- Ajay Kumar Bansal
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore 560 065, India.
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore 560 065, India.
| |
Collapse
|
2
|
Troyanovsky RB, Indra I, Troyanovsky SM. Actin-dependent α-catenin oligomerization contributes to adherens junction assembly. Nat Commun 2025; 16:1801. [PMID: 39979305 PMCID: PMC11842732 DOI: 10.1038/s41467-025-57079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Classic cadherins, specifically E-cadherin in most epithelial cells, are transmembrane adhesion receptors, whose intracellular region interacts with proteins, termed catenins, forming the cadherin-catenin complex (CCC). The cadherin ectodomain generates 2D adhesive clusters (E-clusters) through cooperative trans and cis interactions, while catenins anchor the E-clusters to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. Here, we focus on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of the αABD with actin generates actin-bound linear CCC oligomers (CCC/actin strands) incorporating up to six CCCs. This actin-driven CCC oligomerization, which is cadherin ectodomain independent, preferentially occurs along the actin cortex enriched with key basolateral proteins, myosin-1c, scribble, and DLG1. In cell-cell contacts, the CCC/actin strands integrate with the E-clusters giving rise to the composite oligomers, E/actin clusters. Targeted inactivation of strand formation by point mutations emphasizes the importance of this oligomerization process for blocking intercellular protrusive membrane activity and for coupling AJs with the actomyosin-derived tensional forces.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Jin X, Rosenbohm J, Moghaddam AO, Kim E, Seiffert-Sinha K, Leiker M, Zhai H, Baddam SR, Minnick G, Huo Y, Safa BT, Wahl JK, Meng F, Huang C, Lim JY, Conway DE, Sinha AA, Yang R. Desmosomal Cadherin Tension Loss in Pemphigus Vulgaris Mediated by the Inhibition of Active RhoA at Cell-Cell Adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592394. [PMID: 38766211 PMCID: PMC11100601 DOI: 10.1101/2024.05.03.592394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Binding of autoantibodies to keratinocyte surface antigens, primarily desmoglein 3 (Dsg3) of the desmosomal complex, leads to the dissociation of cell-cell adhesion in the blistering disorder pemphigus vulgaris (PV). After the initial disassembly of desmosomes, cell-cell adhesions actively remodel in association with the cytoskeleton and focal adhesions. Growing evidence highlights the role of adhesion mechanics and mechanotransduction at cell-cell adhesions in this remodeling process, as their active participation may direct autoimmune pathogenicity. However, a large part of the biophysical transformations after antibody binding remains underexplored. Specifically, it is unclear how tension in desmosomes and cell-cell adhesions changes in response to antibodies, and how the altered tensional states translate to cellular responses. Here, we showed a tension loss at Dsg3 using fluorescence resonance energy transfer (FRET)-based tension sensors, a tension loss at the entire cell-cell adhesion, and a potentially compensatory increase in junctional traction force at cell-extracellular matrix adhesions after PV antibody binding. Further, our data indicate that this tension loss is mediated by the inhibition of RhoA at cell-cell contacts, and the extent of RhoA inhibition may be crucial in determining the severity of pathogenicity among different PV antibodies. More importantly, this tension loss can be partially restored by altering actomyosin based cell contractility. Collectively, these findings provide previously unattainable details in our understanding of the mechanisms that govern cell-cell interactions under physiological and autoimmune conditions, which may open the window to entirely new therapeutics aimed at restoring physiological balance to tension dynamics that regulates the maintenance of cell-cell adhesion.
Collapse
Affiliation(s)
- Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Amir Ostadi Moghaddam
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | | | - Merced Leiker
- Department of Dermatology, University at Buffalo, Buffalo, NY 14203
| | - Haiwei Zhai
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Sindora R. Baddam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Yucheng Huo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Bahareh Tajvidi Safa
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - James K. Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Fanben Meng
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Daniel E. Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210
| | - Animesh A. Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY 14203
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
5
|
Troyanovsky RB, Indra I, Troyanovsky SM. Characterization of early and late events of adherens junction assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583373. [PMID: 38496678 PMCID: PMC10942379 DOI: 10.1101/2024.03.04.583373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cadherins are transmembrane adhesion receptors. Cadherin ectodomains form adhesive 2D clusters through cooperative trans and cis interactions, whereas its intracellular region interacts with specific cytosolic proteins, termed catenins, to anchor the cadherin-catenin complex (CCC) to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. We focus here on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of αABD with actin generates actin-bound CCC oligomers (CCC/actin strands) incorporating up to six CCCs. The strands are primarily formed on the actin-rich cell protrusions. Once in cell-cell interface, the strands become involved in cadherin ectodomain clustering. Such combination of the extracellular and intracellular oligomerizations gives rise to the composite oligomers, trans CCC/actin clusters. To mature, these clusters then rearrange their actin filaments using several redundant pathways, two of which are characterized here: one depends on the α-catenin-associated protein, vinculin and the second one depends on the unstructured C-terminus of αABD. Thus, AJ assembly proceeds through spontaneous formation of trans CCC/actin clusters and their successive reorganization.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, IL 60614
| |
Collapse
|
6
|
Garcia-Parajo MF, Mayor S. The ubiquitous nanocluster: A molecular scale organizing principle that governs cellular information flow. Curr Opin Cell Biol 2024; 86:102285. [PMID: 38056142 PMCID: PMC7617173 DOI: 10.1016/j.ceb.2023.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
The language of biology at the scale of the cell is constituted of alphabets represented by biomolecules. These are stitched together in a variety of ways to create meaning. We argue that the phrases of this language are nanoscale molecular assemblies or nano-hubs for the purpose of information flow. At the cell surface information is sensed and processed via membrane receptors, often configured as multimers. These nano-assemblies serve as receiver nano-hubs, which are flexibly configured with additional nano-hubs that we term modifiers and transducers. This framework serves to process information that is transmitted for execution inside the cell. Here, we explore some examples about how nano-hubs are built and how they may contribute to cellular information flow.
Collapse
Affiliation(s)
- Maria F Garcia-Parajo
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Satyajit Mayor
- National Centre for Biological Sciences, 560065 Bangalore, India.
| |
Collapse
|
7
|
Zhang N, Häring M, Wolf F, Großhans J, Kong D. Dynamics and functions of E-cadherin complexes in epithelial cell and tissue morphogenesis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:585-601. [PMID: 38045551 PMCID: PMC10689684 DOI: 10.1007/s42995-023-00206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Cell-cell adhesion is at the center of structure and dynamics of epithelial tissue. E-cadherin-catenin complexes mediate Ca2+-dependent trans-homodimerization and constitute the kernel of adherens junctions. Beyond the basic function of cell-cell adhesion, recent progress sheds light the dynamics and interwind interactions of individual E-cadherin-catenin complex with E-cadherin superclusters, contractile actomyosin and mechanics of the cortex and adhesion. The nanoscale architecture of E-cadherin complexes together with cis-interactions and interactions with cortical actomyosin adjust to junctional tension and mechano-transduction by reinforcement or weakening of specific features of the interactions. Although post-translational modifications such as phosphorylation and glycosylation have been implicated, their role for specific aspects of in E-cadherin function has remained unclear. Here, we provide an overview of the E-cadherin complex in epithelial cell and tissue morphogenesis focusing on nanoscale architectures by super-resolution approaches and post-translational modifications from recent, in particular in vivo, studies. Furthermore, we review the computational modelling in E-cadherin complexes and highlight how computational modelling has contributed to a deeper understanding of the E-cadherin complexes.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
8
|
Mayor S, Bhat A, Kusumi A. A Survey of Models of Cell Membranes: Toward a New Understanding of Membrane Organization. Cold Spring Harb Perspect Biol 2023; 15:a041394. [PMID: 37643877 PMCID: PMC10547391 DOI: 10.1101/cshperspect.a041394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cell membrane, the boundary that separates living cells from their environment, has been the subject of study for over a century. The fluid-mosaic model of Singer and Nicolson in 1972 proposed the plasma membrane as a two-dimensional fluid composed of lipids and proteins. Fifty years hence, advances in biophysical and biochemical tools, particularly optical imaging techniques, have allowed for a better understanding of the physical nature, organization, and composition of cell membranes. This has been made possible by visualizing membrane heterogeneities and their dynamics and appreciating the asymmetrical arrangement of lipids in living cell membranes. Despite these advances, mechanisms underlying the local spatiotemporal organization of membrane components remain unclear. This review surveys various models of membrane organization, culminating in a new model that incorporates nonequilibrium processes and forces exerted by interactions with extramembrane elements such as the actin cytoskeleton. The proposed model provides a comprehensive understanding of membrane organization, taking into account the dynamic nature of the cell membrane and its interactions with its immediate environment.
Collapse
Affiliation(s)
- Satyajit Mayor
- National Centre for Biological Science, TIFR, Bangalore 560065, India
| | - Abrar Bhat
- National Centre for Biological Science, TIFR, Bangalore 560065, India
| | - Akihiro Kusumi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Noordstra I, Hermoso MD, Schimmel L, Bonfim-Melo A, Currin-Ross D, Duong CN, Kalappurakkal JM, Morris RG, Vestweber D, Mayor S, Gordon E, Roca-Cusachs P, Yap AS. An E-cadherin-actin clutch translates the mechanical force of cortical flow for cell-cell contact to inhibit epithelial cell locomotion. Dev Cell 2023; 58:1748-1763.e6. [PMID: 37480844 PMCID: PMC7616453 DOI: 10.1016/j.devcel.2023.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023]
Abstract
Adherens junctions (AJs) allow cell contact to inhibit epithelial migration yet also permit epithelia to move as coherent sheets. How, then, do cells identify which contacts will inhibit locomotion? Here, we show that in human epithelial cells this arises from the orientation of cortical flows at AJs. When the leader cells from different migrating sheets make head-on contact with one another, they assemble AJs that couple together oppositely directed cortical flows. This applies a tensile signal to the actin-binding domain (ABD) of α-catenin, which provides a clutch to promote lateral adhesion growth and inhibit the lamellipodial activity necessary for migration. In contrast, AJs found between leader cells in the same migrating sheet have cortical flows aligned in the same direction, and no such mechanical inhibition takes place. Therefore, α-catenin mechanosensitivity in the clutch between E-cadherin and cortical F-actin allows cells to interpret the direction of motion via cortical flows and signal for contact to inhibit locomotion.
Collapse
Affiliation(s)
- Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mario Díez Hermoso
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Lilian Schimmel
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Alexis Bonfim-Melo
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Denni Currin-Ross
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Physics & EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cao Nguyen Duong
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | | | - Richard G Morris
- School of Physics & EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dietmar Vestweber
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Emma Gordon
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain; Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
11
|
Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol 2023; 33:374-387. [PMID: 36127186 PMCID: PMC10020127 DOI: 10.1016/j.tcb.2022.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
The cell-cell connections in adherens junctions (AJs) are mediated by transmembrane receptors, type I cadherins (referred to here as cadherins). These cadherin-based connections (or trans bonds) are weak. To upregulate their strength, cadherins exploit avidity, the increased affinity of binding between cadherin clusters compared with isolated monomers. Formation of such clusters is a unique molecular process that is driven by a synergy of direct and indirect cis interactions between cadherins located at the same cell. In addition to their role in adhesion, cadherin clusters provide structural scaffolds for cytosolic proteins, which implicate cadherin into different cellular activities and signaling pathways. The cluster lifetime, which depends on the actin cytoskeleton, and on the mechanical forces it generates, determines the strength of AJs and their plasticity. The key aspects of cadherin adhesion, therefore, cannot be understood at the level of isolated cadherin molecules, but should be discussed in the context of cadherin clusters.
Collapse
Affiliation(s)
- Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Molecular Biology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Noordstra I, Morris RG, Yap AS. Cadherins and the cortex: A matter of time? Curr Opin Cell Biol 2023; 80:102154. [PMID: 36822056 DOI: 10.1016/j.ceb.2023.102154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/23/2023]
Abstract
Cell adhesion systems commonly operate in close partnership with the cytoskeleton. Adhesion receptors bind to the cortex and regulate its dynamics, organization and mechanics; conversely, the cytoskeleton influences aspects of adhesion, including strength, stability and ductility. In this review we consider recent advances in elucidating such cooperation, focusing on interactions between classical cadherins and actomyosin. The evidence presents an apparent paradox. Molecular mechanisms of mechanosensation by the cadherin-actin apparatus imply that adhesion strengthens under tension. However, this does not always translate to the broader setting of confluent tissues, where increases in fluctuations of tension can promote intercalation due to the shrinkage of adherens junctions. Emerging evidence suggests that understanding of timescales may be important in resolving this issue, but that further work is needed to understand the role of adhesive strengthening across scales.
Collapse
Affiliation(s)
- Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia
| | - Richard G Morris
- School of Physics, Sydney, NSW 2052, Australia; EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia.
| |
Collapse
|
13
|
Active emulsions in living cell membranes driven by contractile stresses and transbilayer coupling. Proc Natl Acad Sci U S A 2022; 119:e2123056119. [PMID: 35867835 PMCID: PMC9335261 DOI: 10.1073/pnas.2123056119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The spatiotemporal organization of proteins and lipids on the cell surface has direct functional consequences for signaling, sorting, and endocytosis. Earlier studies have shown that multiple types of membrane proteins, including transmembrane proteins that have cytoplasmic actin binding capacity and lipid-tethered glycosylphosphatidylinositol-anchored proteins (GPI-APs), form nanoscale clusters driven by active contractile flows generated by the actin cortex. To gain insight into the role of lipids in organizing membrane domains in living cells, we study the molecular interactions that promote the actively generated nanoclusters of GPI-APs and transmembrane proteins. This motivates a theoretical description, wherein a combination of active contractile stresses and transbilayer coupling drives the creation of active emulsions, mesoscale liquid order (lo) domains of the GPI-APs and lipids, at temperatures greater than equilibrium lipid phase segregation. To test these ideas, we use spatial imaging of molecular clustering combined with local membrane order, and we demonstrate that mesoscopic domains enriched in nanoclusters of GPI-APs are maintained by cortical actin activity and transbilayer interactions and exhibit significant lipid order, consistent with predictions of the active composite model.
Collapse
|
14
|
Vanslembrouck B, Chen JH, Larabell C, van Hengel J. Microscopic Visualization of Cell-Cell Adhesion Complexes at Micro and Nanoscale. Front Cell Dev Biol 2022; 10:819534. [PMID: 35517500 PMCID: PMC9065677 DOI: 10.3389/fcell.2022.819534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Considerable progress has been made in our knowledge of the morphological and functional varieties of anchoring junctions. Cell-cell adhesion contacts consist of discrete junctional structures responsible for the mechanical coupling of cytoskeletons and allow the transmission of mechanical signals across the cell collective. The three main adhesion complexes are adherens junctions, tight junctions, and desmosomes. Microscopy has played a fundamental role in understanding these adhesion complexes on different levels in both physiological and pathological conditions. In this review, we discuss the main light and electron microscopy techniques used to unravel the structure and composition of the three cell-cell contacts in epithelial and endothelial cells. It functions as a guide to pick the appropriate imaging technique(s) for the adhesion complexes of interest. We also point out the latest techniques that have emerged. At the end, we discuss the problems investigators encounter during their cell-cell adhesion research using microscopic techniques.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| | - Jian-hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| |
Collapse
|
15
|
Mechanical transmission enables EMT cancer cells to drive epithelial cancer cell migration to guide tumor spheroid disaggregation. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2031-2049. [PMID: 35366152 DOI: 10.1007/s11427-021-2054-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Cell phenotype heterogeneity within tumor tissue, especially which due to the emergence of epithelial-mesenchymal transition (EMT) in cancer cells, is associated with cancer invasion and metastasis. However, our understanding of the cellular mechanism(s) underlying the cooperation between EMT cell and epithelial cancer cell migration remains incomplete. Herein, heterotypic tumor spheroids containing both epithelial and EMT cancer cells were generated in vitro. We observed that EMT cells dominated the peripheral region of the self-organized heterotypic tumor spheroid. Furthermore, our results demonstrated that EMT cells could serve as leader cells to improve the collective migration efficiency of epithelial cancer cells and promote dispersion and invasion of the tumor spheroids, which was regulated by the force transition between EMT cells and epithelial cancer cells. Mechanistically, our data further suggest that force transmission is mediated by heterophilic N-cadherin/E-cadherin adhesion complexes between EMT and epithelial cancer cells. Impairment of N-cadherin/E-cadherin adhesion complex formation abrogated the ability of EMT cells to guide epithelial cancer cell migration and blocked the dispersion of tumor spheroids. Together, our data provide new insight into the mechanical interaction between epithelial and EMT cancer cells through heterophilic cadherin adhesion, which enables cooperative tumor cell migration, highlighting the role of EMT cells in tumor invasion.
Collapse
|
16
|
Yang YA, Nguyen E, Sankara Narayana GHN, Heuzé M, Fu C, Yu H, Mège RM, Ladoux B, Sheetz MP. Local contractions regulate E-cadherin rigidity sensing. SCIENCE ADVANCES 2022; 8:eabk0387. [PMID: 35089785 PMCID: PMC8797795 DOI: 10.1126/sciadv.abk0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
E-cadherin is a major cell-cell adhesion molecule involved in mechanotransduction at cell-cell contacts in tissues. Because epithelial cells respond to rigidity and tension in tissue through E-cadherin, there must be active processes that test and respond to the mechanical properties of these adhesive contacts. Using submicrometer, E-cadherin-coated polydimethylsiloxane pillars, we find that cells generate local contractions between E-cadherin adhesions and pull to a constant distance for a constant duration, irrespective of pillar rigidity. These cadherin contractions require nonmuscle myosin IIB, tropomyosin 2.1, α-catenin, and binding of vinculin to α-catenin. Cells spread to different areas on soft and rigid surfaces with contractions, but spread equally on soft and rigid without. We further observe that cadherin contractions enable cells to test myosin IIA-mediated tension of neighboring cells and sort out myosin IIA-depleted cells. Thus, we suggest that epithelial cells test and respond to the mechanical characteristics of neighboring cells through cadherin contractions.
Collapse
Affiliation(s)
- Yi-An Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Emmanuelle Nguyen
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | | | - Melina Heuzé
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physiology, Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, Singapore 117593, Singapore
- Institute of Bioengineering and Bioimaging, A*STAR, Singapore 138669, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Corresponding author. (M.P.S.); (B.L.)
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Corresponding author. (M.P.S.); (B.L.)
| |
Collapse
|
17
|
Arslan FN, Eckert J, Schmidt T, Heisenberg CP. Holding it together: when cadherin meets cadherin. Biophys J 2021; 120:4182-4192. [PMID: 33794149 PMCID: PMC8516678 DOI: 10.1016/j.bpj.2021.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular adhesion is the key to multicellularity, and its malfunction plays an important role in various developmental and disease-related processes. Although it has been intensively studied by both biologists and physicists, a commonly accepted definition of cell-cell adhesion is still being debated. Cell-cell adhesion has been described at the molecular scale as a function of adhesion receptors controlling binding affinity, at the cellular scale as resistance to detachment forces or modulation of surface tension, and at the tissue scale as a regulator of cellular rearrangements and morphogenesis. In this review, we aim to summarize and discuss recent advances in the molecular, cellular, and theoretical description of cell-cell adhesion, ranging from biomimetic models to the complexity of cells and tissues in an organismal context. In particular, we will focus on cadherin-mediated cell-cell adhesion and the role of adhesion signaling and mechanosensation therein, two processes central for understanding the biological and physical basis of cell-cell adhesion.
Collapse
Affiliation(s)
- Feyza Nur Arslan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Eckert
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, the Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
18
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules 2021; 11:824. [PMID: 34073044 PMCID: PMC8228498 DOI: 10.3390/biom11060824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Among oral tissues, the periodontium is permanently subjected to mechanical forces resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements induce a series of subsequent signaling processes, which are embedded in the biological concept of cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix (ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical environmental information into the cell's inner milieu can lead to and promote serious diseases, such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and regeneration is highly dependent on the proper integration and regulation of mechanobiological signals in the context of cell behavior. Recent experimental findings have increased the understanding of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskeleton. Regarding periodontal MT research, this review offers insights into the current trends and open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases, perspectives on future applications of mechanobiological principles are discussed.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
- Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| |
Collapse
|