1
|
Serio C, Brown RP, Clauss M, Meloro C. Three-dimensional geometric morphometric analyses of humerus ecomorphology: New perspectives for paleohabitat reconstruction in carnivorans and ungulates. Anat Rec (Hoboken) 2025; 308:946-974. [PMID: 39126145 PMCID: PMC11791394 DOI: 10.1002/ar.25553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Long bone ecomorphology has proven effective for paleohabitat reconstructions across a wide range of mammalian clades. Still, there is no comprehensive framework to allow interpretation of long bone morphological variation within and between different monophyletic groups. Here, we investigated the use of humerus morphometry to classify living members of the orders Carnivora and ungulates based on their preferred habitats. Using geometric morphometrics, we extracted three different kinds of humerus shape data describing interspecific variation with and without accounting for evolutionary allometry and phylogenetic signal. The traditional a priori categorization of species in open, mixed, and closed habitats was employed in combination with selected subsets of shape variables to identify the best-predictive models for habitat adaptation. These were identified based on the statistical performance of phylogenetic and non-phylogenetic discriminant analyses and then applied to predict habitats on a subsample of fossil species. Size-free shape data combined with phylogenetic discriminant analyses showed the highest rate of accuracy in habitat classification for a combined sample of carnivorans and ungulates. Conversely, when the two groups were investigated separately, traditional shape data analyzed with phylogenetic discriminant function analyses provided models with the greatest predictive power. By combining carnivorans and ungulates within the same methodological framework we identified common adaptive features in closed habitat-adapted species that show compressed epiphyses, while open habitat-adapted species have expanded epiphyses. These morphologies evolved to allow significant degree of direction switches during locomotion in closed habitats compared to open habitat-adapted species whose forelimb joints evolved to stabilize articulations for increasing speed.
Collapse
Affiliation(s)
- Carmela Serio
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
| | - Richard P. Brown
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
2
|
Chatters JC, Potter BA, Fiedel SJ, Morrow JE, Jass CN, Wooller MJ. Mammoth featured heavily in Western Clovis diet. SCIENCE ADVANCES 2024; 10:eadr3814. [PMID: 39630905 PMCID: PMC11616702 DOI: 10.1126/sciadv.adr3814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Ancient Native American ancestors (Clovis) have been interpreted as either specialized megafauna hunters or generalist foragers. Supporting data are typically indirect (toolkits, associated fauna) or speculative (models, actualistic experiments). Here, we present stable isotope analyses of the only known Clovis individual, the 18-month-old Anzick child, to directly infer maternal protein diet. Using comparative fauna from this region and period, we find that mammoth was the largest contributor to Clovis diet, followed by elk and bison/camel, while the contribution of small mammals was negligible, broadly consistent with the Clovis zooarchaeological record. When compared with second-order consumers, the Anzick-1 maternal diet is closest to that of scimitar cat, a mammoth specialist. Our findings are consistent with the Clovis megafaunal specialist model, using sophisticated technology and high residential mobility to subsist on the highest ranked prey, an adaptation allowing them to rapidly expand across the Americas south of the Pleistocene ice sheets.
Collapse
Affiliation(s)
- James C. Chatters
- Applied Paleoscience, Bothell, WA, USA
- McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | - Matthew J. Wooller
- University of Alaska Fairbanks, Fairbanks, AK, USA
- Alaska Stable Isotope Facility, Fairbanks, AK, USA
| |
Collapse
|
3
|
Deutsch AR, Berger A, Martens LL, Witt BR, Smith RLJ, Hartstone-Rose A. Myological and osteological approaches to gape and bite force reconstruction in Smilodon fatalis. Anat Rec (Hoboken) 2024. [PMID: 38943271 DOI: 10.1002/ar.25529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
Masticatory gape and bite force are important behavioral and ecological variables. While much has been written about the highly derived masticatory anatomy of Smilodon fatalis, there remains a great deal of debate about their masticatory behaviors. To that end, we establish osteological proxies for masticatory adductor fascicle length (FL) based on extant felids and apply these along with previously validated techniques to S. fatalis to provide estimates of fascicle lengths, maximum osteological gapes, and bite force. While the best correlated FL proxies in extant felids do not predict particularly long fascicles, these proxies may be of value for less morphologically distinct felids. A slightly less well correlated proxy predicts a temporalis FL 15% longer than that of Panthera tigris. While angular maximum bony gape is significantly larger in S. fatalis than it is in extant felids, linear gape at the canine tip and carnassial notch were not significantly different from those of extant felids. Finally, we produce anatomical bite force estimates of 1283.74 N at the canine and 4671.41 N at the carnassial, which are similar in magnitude to estimates not of the largest felids but of the much smaller P. onca, with S. fatalis producing slightly less force at the canines and more at the carnassials. These estimates align with previous predictions that S. fatalis may have killed large prey with canine shearing bites produced, in part, by force contributions of the postcranial muscles.
Collapse
Affiliation(s)
- Ashley R Deutsch
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Arin Berger
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lara L Martens
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Benjamin R Witt
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rachel L J Smith
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Moretti JA, Flores D, Bell CJ, Godwin W, Hartstone-Rose A, Lewis PJ. The scimitar-cat Homotherium from the submerged continental shelf of the Gulf Coast of Texas. Anat Rec (Hoboken) 2024. [PMID: 38654480 DOI: 10.1002/ar.25461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
The machairodontine felid Homotherium achieved a global geographic distribution throughout much of the Pleistocene. Accordingly, that large carnivore is important for understanding patterns of community composition. We report on a new record of Homotherium based on a fragmentary premaxilla-maxilla discovered on McFaddin Beach, Texas, along the Gulf of Mexico. Skeletal remains of extinct, Pleistocene vertebrates accumulate on McFaddin Beach. Those fossils appear to originate from submerged deposits on the continental shelf in the Gulf of Mexico, an area that was subaerially exposed in the Late Pleistocene during glacial intervals. Marine erosion and transport altered the externally visible morphology of the current specimen, obscuring and/or damaging taxonomically informative details of the preserved dentition. However, high-resolution X-ray computed tomography revealed diagnostic portions of the unerupted crown of an upper canine within its alveolus. The serrated edges of the canine combined with the position of the incisors demonstrate that the specimen from McFaddin Beach represents a species of Homotherium. That specimen is the latest in a larger sample of Homotherium in Texas that spans most of the Pliocene-Pleistocene. This is the first occurrence of Homotherium from the continental shelf of the Gulf Coast. That landscape may have formed a broad subtropical Gulf Coast corridor that facilitated the dispersal of Neotropical taxa along the coast between Texas and Florida. The associated fauna from McFaddin Beach contains Neotropical mammals common to southern Texas and Florida and indicates that Homotherium was a member of the fauna inhabiting the Gulf Coast corridor during the Late Pleistocene.
Collapse
Affiliation(s)
- John A Moretti
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Deanna Flores
- Department of Earth Sciences, University of Oregon, Eugene, Oregon, USA
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | - Christopher J Bell
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Will Godwin
- Sam Houston State Natural History Collections, Sam Houston State University, Huntsville, Texas, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Patrick J Lewis
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| |
Collapse
|
5
|
Svenning JC, Lemoine RT, Bergman J, Buitenwerf R, Le Roux E, Lundgren E, Mungi N, Pedersen RØ. The late-Quaternary megafauna extinctions: Patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. CAMBRIDGE PRISMS. EXTINCTION 2024; 2:e5. [PMID: 40078803 PMCID: PMC11895740 DOI: 10.1017/ext.2024.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2025]
Abstract
Across the last ~50,000 years (the late Quaternary) terrestrial vertebrate faunas have experienced severe losses of large species (megafauna), with most extinctions occurring in the Late Pleistocene and Early to Middle Holocene. Debate on the causes has been ongoing for over 200 years, intensifying from the 1960s onward. Here, we outline criteria that any causal hypothesis needs to account for. Importantly, this extinction event is unique relative to other Cenozoic (the last 66 million years) extinctions in its strong size bias. For example, only 11 out of 57 species of megaherbivores (body mass ≥1,000 kg) survived to the present. In addition to mammalian megafauna, certain other groups also experienced substantial extinctions, mainly large non-mammalian vertebrates and smaller but megafauna-associated taxa. Further, extinction severity and dates varied among continents, but severely affected all biomes, from the Arctic to the tropics. We synthesise the evidence for and against climatic or modern human (Homo sapiens) causation, the only existing tenable hypotheses. Our review shows that there is little support for any major influence of climate, neither in global extinction patterns nor in fine-scale spatiotemporal and mechanistic evidence. Conversely, there is strong and increasing support for human pressures as the key driver of these extinctions, with emerging evidence for an initial onset linked to pre-sapiens hominins prior to the Late Pleistocene. Subsequently, we synthesize the evidence for ecosystem consequences of megafauna extinctions and discuss the implications for conservation and restoration. A broad range of evidence indicates that the megafauna extinctions have elicited profound changes to ecosystem structure and functioning. The late-Quaternary megafauna extinctions thereby represent an early, large-scale human-driven environmental transformation, constituting a progenitor of the Anthropocene, where humans are now a major player in planetary functioning. Finally, we conclude that megafauna restoration via trophic rewilding can be expected to have positive effects on biodiversity across varied Anthropocene settings.
Collapse
Affiliation(s)
- Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rhys T. Lemoine
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Juraj Bergman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Robert Buitenwerf
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Elizabeth Le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Erick Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ninad Mungi
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rasmus Ø. Pedersen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Rodríguez J, Hölzchen E, Caso-Alonso AI, Berndt JO, Hertler C, Timm IJ, Mateos A. Computer simulation of scavenging by hominins and giant hyenas in the late Early Pleistocene. Sci Rep 2023; 13:14283. [PMID: 37770511 PMCID: PMC10539305 DOI: 10.1038/s41598-023-39776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 09/30/2023] Open
Abstract
Consumption of animal-sourced food is an important factor in broadening the diet of early hominins, promoting brain and body growth, and increasing behavioural complexity. However, whether early hominins obtained animal food by scavenging or hunting large mammals remains debated. Sabre-toothed felids have been proposed to facilitate the expansion of early Homo out of Africa into Europe 1.4-0.8 Ma by creating a niche for scavengers in Eurasia as the carcasses abandoned by these felids still contained abundant edible resources. In contrast, it has been argued that the niche for a large scavenger was already occupied in Eurasia by the giant hyena, preventing hominins from utilising this resource. This study shows that sabre-toothed felids generated carcasses rich in edible resources and that hominins were capable of competing with giant hyenas for this resource. The simulation experiments showed that maintaining an optimum group size is essential for the success of the hominin scavenging strategy. Early hominins could outcompete giant hyenas only if they could successfully dispute carcasses with them. Thus, in the presence of a strong competitor, passive scavenging is essentially the same as confrontational scavenging.
Collapse
Affiliation(s)
- Jesús Rodríguez
- National Research Center On Human Evolution (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain
| | - Ericson Hölzchen
- Chair for Business Informatics 1, Trier University, Behringstraße 21, 54296, Trier, Germany
- German Research Center for Artificial Intelligence (DFKI). Smart Data and Knowledge Services - Cognitive Social Simulation, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Ana Isabel Caso-Alonso
- Facultad de Ciencias. Edificio de Biología, Universidad Autónoma de Madrid. C/ Darwin, 2. Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jan Ole Berndt
- German Research Center for Artificial Intelligence (DFKI). Smart Data and Knowledge Services - Cognitive Social Simulation, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Christine Hertler
- The Role of Culture in Early Expansion of Humans (ROCEEH), Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- The Role of Culture in Early Expansion of Humans (ROCEEH), Heidelberg Academy of Sciences, Karlstraße 4, 69117, Heidelberg, Germany
| | - Ingo J Timm
- Chair for Business Informatics 1, Trier University, Behringstraße 21, 54296, Trier, Germany
- German Research Center for Artificial Intelligence (DFKI). Smart Data and Knowledge Services - Cognitive Social Simulation, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Ana Mateos
- National Research Center On Human Evolution (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain.
| |
Collapse
|
7
|
Jiangzuo Q, Werdelin L, Sanisidro O, Yang R, Fu J, Li S, Wang S, Deng T. Origin of adaptations to open environments and social behaviour in sabretoothed cats from the northeastern border of the Tibetan Plateau. Proc Biol Sci 2023; 290:20230019. [PMID: 37072045 PMCID: PMC10113030 DOI: 10.1098/rspb.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
The iconic sabretooth Homotherium is thought to have hunted cooperatively, but the origin of this behaviour and correlated morphological adaptations are largely unexplored. Here we report the most primitive species of Amphimachairodus (Amphimachairodus hezhengensis sp. nov.), a member of Machairodontini basal to Homotherium, from the Linxia Basin, northeastern border of the Tibetan Plateau (9.8-8.7 Ma). The long snout, laterally oriented and posteriorly located orbit of Amphimachairodus suggest a better ability to observe the surrounding environment, rather than targeting single prey, pointing to an adaptation to the open environment or social behaviour. A pathological forepaw of Amphimachairodus provides direct evidence of partner care. Our analyses of trait evolutionary rates support that traits correlated with killing behaviour and open environment adaptation evolved prior to other traits, suggesting that changes in hunting behaviour may be the major evolutionary driver in the early evolution of the lineage. A. hezhengensis represents one of the most important transitions in the evolution of Machairodontini, leading to adaptation in open environments and contributing to their further dispersal and radiation worldwide. This rapid morphological change is likely to be correlated with increasingly arid environments caused by the rise of the Tibetan Plateau, and competition from abundant large carnivores in this area.
Collapse
Affiliation(s)
- Qigao Jiangzuo
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, People's Republic of China
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100871, People's Republic of China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
- Division of Paleontology, American Museum of Natural History, New York, NY 10024-5102, USA
| | - Lars Werdelin
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, S-104 05 Stockholm, Sweden
| | - Oscar Sanisidro
- Departamento de Ciencias de la Vida, Universidad de Alcalá, GloCEE -Global Change Ecology and Evolution Research Group, Alcalá de Henares 28801, Spain
| | - Rong Yang
- Hezheng Paleozoological Museum, Hezheng 731200, People's Republic of China
| | - Jiao Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100871, People's Republic of China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shijie Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100871, People's Republic of China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shiqi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100871, People's Republic of China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
| | - Tao Deng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100871, People's Republic of China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
| |
Collapse
|
8
|
Smith FA, Elliott Smith EA, Hedberg CP, Lyons SK, Pardi MI, Tomé CP. After the mammoths: The ecological legacy of late Pleistocene megafauna extinctions. CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e9. [PMID: 40078685 PMCID: PMC11895754 DOI: 10.1017/ext.2023.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2025]
Abstract
The significant extinctions in Earth history have largely been unpredictable in terms of what species perish and what traits make species susceptible. The extinctions occurring during the late Pleistocene are unusual in this regard, because they were strongly size-selective and targeted exclusively large-bodied animals (i.e., megafauna, >1 ton) and disproportionately, large-bodied herbivores. Because these animals are also at particular risk today, the aftermath of the late Pleistocene extinctions can provide insights into how the loss or decline of contemporary large-bodied animals may influence ecosystems. Here, we review the ecological consequences of the late Pleistocene extinctions on major aspects of the environment, on communities and ecosystems, as well as on the diet, distribution and behavior of surviving mammals. We find the consequences of the loss of megafauna were pervasive and left legacies detectable in all parts of the Earth system. Furthermore, we find that the ecological roles that extinct and modern megafauna play in the Earth system are not replicated by smaller-bodied animals. Our review highlights the important perspectives that paleoecology can provide for modern conservation efforts.
Collapse
Affiliation(s)
- Felisa A. Smith
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Emma A. Elliott Smith
- Department of Anthropology, United States National Museum of Natural History, Washington, DC, USA
| | - Carson P. Hedberg
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - S. Kathleen Lyons
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Melissa I. Pardi
- Research and Collections Center, Illinois State Museum, Springfield, IL, USA
| | | |
Collapse
|
9
|
Late Pleistocene megafauna extinction leads to missing pieces of ecological space in a North American mammal community. Proc Natl Acad Sci U S A 2022; 119:e2115015119. [PMID: 36122233 PMCID: PMC9522422 DOI: 10.1073/pnas.2115015119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conservation status of large-bodied mammals is dire. Their decline has serious consequences because they have unique ecological roles not replicated by smaller-bodied animals. Here, we use the fossil record of the megafauna extinction at the terminal Pleistocene to explore the consequences of past biodiversity loss. We characterize the isotopic and body-size niche of a mammal community in Texas before and after the event to assess the influence on the ecology and ecological interactions of surviving species (>1 kg). Preextinction, a variety of C4 grazers, C3 browsers, and mixed feeders existed, similar to modern African savannas, with likely specialization among the two sabertooth species for juvenile grazers. Postextinction, body size and isotopic niche space were lost, and the δ13C and δ15N values of some survivors shifted. We see mesocarnivore release within the Felidae: the jaguar, now an apex carnivore, moved into the specialized isotopic niche previously occupied by extinct cats. Puma, previously absent, became common and lynx shifted toward consuming more C4-based resources. Lagomorphs were the only herbivores to shift toward C4 resources. Body size changes from the Pleistocene to Holocene were species-specific, with some animals (deer, hare) becoming significantly larger and others smaller (bison, rabbits) or exhibiting no change to climate shifts or biodiversity loss. Overall, the Holocene body-size-isotopic niche was drastically reduced and considerable ecological complexity lost. We conclude biodiversity loss led to reorganization of survivors and many "missing pieces" within our community; without intervention, the loss of Earth's remaining ecosystems that support megafauna will likely suffer the same fate.
Collapse
|
10
|
Domínguez-Rodrigo M, Egeland CP, Cobo-Sánchez L, Baquedano E, Hulbert RC. Sabertooth carcass consumption behavior and the dynamics of Pleistocene large carnivoran guilds. Sci Rep 2022; 12:6045. [PMID: 35501323 PMCID: PMC9061710 DOI: 10.1038/s41598-022-09480-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractApex predators play an important role in the top-down regulation of ecological communities. Their hunting and feeding behaviors influence, respectively, prey demography and the availability of resources to other consumers. Among the most iconic—and enigmatic—terrestrial predators of the late Cenozoic are the Machairodontinae, a diverse group of big cats whose hypertrophied upper canines have earned them the moniker “sabertooths.” Many aspects of these animals’ paleobiology, especially their prey preferences and carcass consumption behavior, remain unsettled. While skeletal anatomy, dental morphology and wear, and isotopic profiles provide important insights, the most direct way to resolve these issues is through the fossil remains of sabertooth prey. Here, we report on a taphonomic analysis of an early Pleistocene faunal assemblage from Haile 21A (Florida, USA) that preserves feeding damage from the lion-sized sabertooth Xenosmilus hodsonae. Patterns of tooth-marking and bone damage indicate that Xenosmilus fully defleshed the carcasses of their prey and even engaged in some minor bone consumption. This has important implications for Pleistocene carnivoran guild dynamics, including the carcass foraging behavior of the first stone-tool-using hominins.
Collapse
|
11
|
Palmqvist P, Rodríguez-Gómez G, Bermúdez de Castro JM, García-Aguilar JM, Espigares MP, Figueirido B, Ros-Montoya S, Granados A, Serrano FJ, Martínez-Navarro B, Guerra-Merchán A. Insights on the Early Pleistocene Hominin Population of the Guadix-Baza Depression (SE Spain) and a Review on the Ecology of the First Peopling of Europe. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.881651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chronology and environmental context of the first hominin dispersal in Europe have been subject to debate and controversy. The oldest settlements in Eurasia (e.g., Dmanisi, ∼1.8 Ma) suggest a scenario in which the Caucasus and southern Asia were occupied ∼0.4 Ma before the first peopling of Europe. Barranco León (BL) and Fuente Nueva 3 (FN3), two Early Pleistocene archeological localities dated to ∼1.4 Ma in Orce (Guadix-Baza Depression, SE Spain), provide the oldest evidence of hominin presence in Western Europe. At these sites, huge assemblages of large mammals with evidence of butchery and marrow processing have been unearthed associated to abundant Oldowan tools and a deciduous tooth of Homo sp. in the case of BL. Here, we: (i) review the Early Pleistocene archeological sites of Europe; (ii) discuss on the subsistence strategies of these hominins, including new estimates of resource abundance for the populations of Atapuerca and Orce; (iii) use cartographic data of the sedimentary deposits for reconstructing the landscape habitable in Guadix-Baza; and (iv) calculate the size of the hominin population using an estimate of population density based on resource abundance. Our results indicate that Guadix-Baza could be home for a small hominin population of 350–280 individuals. This basin is surrounded by the highest mountainous reliefs of the Alpine-Betic orogen and shows a limited number of connecting corridors with the surrounding areas, which could have limited gene flow with other hominin populations. Isolation would eventually lead to bottlenecks, genetic drift and inbreeding depression, conditions documented in the wild dog population of the basin, which probably compromised the viability of the hominin population in the medium to long term. This explains the discontinuous nature of the archeological record in Guadix-Baza, a situation that can also be extrapolated to the scarcity of hominin settlements for these ancient chronologies in Europe.
Collapse
|