1
|
Fish LA, Ewing MD, Rich KA, Xi C, Chen I, Jaime D, Madigan LA, Wang X, Shahtout JL, Feder RE, Funai K, Christian JL, Wharton KA, Rich MM, Arnold WD, Fallon JR. MuSK Regulates Neuromuscular Junction Nav1.4 Localization and Excitability. J Neurosci 2025; 45:e1279232025. [PMID: 39880682 PMCID: PMC11984086 DOI: 10.1523/jneurosci.1279-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the NMJ transduces nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires cholinergic signaling, which generates endplate potentials (EPPs), and excitation, the amplification of an EPP by postsynaptic voltage-gated sodium channels (Nav1.4) to generate the MFAP. Compared to the cholinergic component, the signaling pathways that organize Nav1.4 are poorly characterized. Muscle-specific kinase (MuSK), in addition to its Ig1 domain-dependent role as the main organizer of acetylcholine receptors (AChRs), also binds BMPs via its Ig3 domain and shapes BMP-induced signaling. Using mice lacking the MuSK Ig3 domain ("ΔIg3-MuSK"), we probed the role of this domain at the NMJ. NMJs formed in ΔIg3-MuSK animals with pre- and postsynaptic specializations aligned at all ages examined. However, the ΔIg3-MuSK postsynaptic apparatus was fragmented from an early age. Synaptic electrophysiology showed that spontaneous and nerve-evoked acetylcholine release, AChR density, and endplate currents were comparable at WT and ΔIg3-MuSK NMJs. However, single fiber electromyography revealed that nerve-evoked MFAPs in ΔIg3-MuSK muscle were abnormal, exhibiting jitter and blocking. Nerve-evoked compound muscle action potentials and muscle force were also diminished. Finally, Nav1.4 levels were reduced at ΔIg3-MuSK NMJs, but not extrasynaptically, indicating that the observed excitability defects result from impaired synaptic localization of this ion channel. We propose distinct, domain-specific roles for MuSK at the NMJ: the Ig1 domain mediates agrin-LRP4-mediated AChR localization, while the Ig3 domain maintains postsynaptic Nav1.4 density, conferring the muscle excitability required to amplify cholinergic signals and trigger action potentials.
Collapse
Affiliation(s)
- Lauren A Fish
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Madison D Ewing
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Kelly A Rich
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio 43210
| | - Chengjie Xi
- Biotechnology Graduate Program, Brown University, Brown University, Providence, Rhode Island 02912
| | - Isabella Chen
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Diego Jaime
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Laura A Madigan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Xueyong Wang
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio 45435
| | - Justin L Shahtout
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah 84112
| | - Rita E Feder
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah 84112
| | - Jan L Christian
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio 45435
| | - William D Arnold
- NextGen Precision Health Institute, University of Missouri, Columbia, Missouri 65211
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, Missouri 65212
- Department of Neurology, Neuromuscular Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Justin R Fallon
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
2
|
Perez RM, Campbell J, Goswami-Sewell D, Venkatraman R, Gomez CC, Bagnetto C, Lee A, Mattos MF, Hoon M, Zuniga-Sanchez E. Ankyrins are essential for synaptic integrity of photoreceptors in the mouse outer retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637690. [PMID: 39990488 PMCID: PMC11844522 DOI: 10.1101/2025.02.11.637690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The mammalian visual system consists of two distinct pathways: rod- and cone-driven vision. The rod pathway is responsible for dim light vision whereas the cone pathway mediates daylight vision and color perception. The distinct processing of visual information begins at the first synapse of rod and cone photoreceptors. The unique composition and organization of the rod and cone synapse is what allows information to be parsed into the different visual pathways. Although this is a critical process for vision, little is known about the key molecules responsible for establishing and maintaining the distinct synaptic architecture of the rod and cone synapse. In the present study, we uncovered a new role for Ankyrins in maintaining the synaptic integrity of the rod and cone synapse. Loss of Ankyrin-B and Ankyrin-G results in connectivity defects between photoreceptors and their synaptic partners. Ultrastructure analysis of the rod and cone synapse revealed impaired synaptic innervation, abnormal terminal morphology, and disruption of synaptic connections. Consistent with these findings, functional studies revealed impaired in vivo retinal responses in animals with loss of Ankyrin-B and Ankyrin-G. Taken together, our data supports a new role for Ankyrins in maintaining synaptic integrity and organization of photoreceptor synapses in the mouse outer retina. SIGNFICANCE STATEMENT The first synapse in the outer retina begins to process visual information into two distinct pathways. This is largely attributed to the different composition and organization of the rod and cone synapse. Although the structural integrity of the rod and cone synapse is critical for normal vision, little is known about the key molecules responsible for maintaining the unique structure of the different photoreceptor synapses. In this study, we demonstrate a new function for the cytoskeletal scaffolding proteins, Ankryin-B and Ankyrin-G in the mouse outer retina. We found Ankyrin-B and Ankyrin-G are both required for proper retinal connectivity, where loss of these molecules leads to synaptic defects and impaired retinal responses.
Collapse
|
3
|
Espino CM, Nagaraja C, Ortiz S, Dayton JR, Murali AR, Ma Y, Mann EL, Garlapalli S, Wohlgemuth RP, Brashear SE, Smith LR, Wilkinson KA, Griffith TN. Differential encoding of mammalian proprioception by voltage-gated sodium channels. SCIENCE ADVANCES 2025; 11:eads6660. [PMID: 39772670 PMCID: PMC11708877 DOI: 10.1126/sciadv.ads6660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Animals requiring purposeful movement for survival are endowed with mechanoreceptors, called proprioceptors, that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we identified nonredundant roles for two voltage-gated sodium channels (NaVs), NaV1.1 and NaV1.6, in mammalian proprioception. Deletion of NaV1.6 in somatosensory neurons (NaV1.6cKO mice) causes severe motor deficits accompanied by loss of proprioceptive transmission, which contrasts with our previous findings using similar mouse models to target NaV1.1 (NaV1.1cKO). In NaV1.6cKO animals, we observed impairments in proprioceptor end-organ structure and a marked reduction in skeletal muscle myofiber size that were absent in NaV1.1cKO mice. We attribute the differential contributions of NaV1.1 and NaV1.6 to distinct cellular localization patterns. Collectively, we provide evidence that NaVs uniquely shape neural signaling within a somatosensory modality.
Collapse
Affiliation(s)
- Cyrrus M. Espino
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Chetan Nagaraja
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Jacquelyn R. Dayton
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Akash R. Murali
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Yanki Ma
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Emari L. Mann
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Postbaccalaureate Research Education Program at UC Davis, University of California, Davis, Davis, CA, USA
| | - Snigdha Garlapalli
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Psychology, University of California, Davis, Davis, CA, USA
| | - Ross P. Wohlgemuth
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Sarah E. Brashear
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Lucas R. Smith
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | | | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
4
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
5
|
Espino CM, Nagaraja C, Ortiz S, Dayton JR, Murali AR, Ma Y, Mann EL, Garlapalli S, Wohlgemuth RP, Brashear SE, Smith LR, Wilkinson KA, Griffith TN. Differential encoding of mammalian proprioception by voltage-gated sodium channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609982. [PMID: 39253497 PMCID: PMC11383322 DOI: 10.1101/2024.08.27.609982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Animals that require purposeful movement for survival are endowed with mechanosensory neurons called proprioceptors that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we have identified distinct and nonredundant roles for two voltage-gated sodium channels (NaVs), NaV1.1 and NaV1.6, in mammalian proprioception. Deletion of NaV1.6 in somatosensory neurons (NaV1.6cKO mice) causes severe motor deficits accompanied by complete loss of proprioceptive transmission, which contrasts with our previous findings using similar mouse models to target NaV1.1 (NaV1.1cKO). In NaV1.6cKO animals, loss of proprioceptive feedback caused non-cell-autonomous impairments in proprioceptor end-organs and skeletal muscle that were absent in NaV1.1cKO mice. We attribute the differential contribution of NaV1.1 and NaV1.6 in proprioceptor function to distinct cellular localization patterns. Collectively, these data provide the first evidence that NaV subtypes uniquely shape neurotransmission within a somatosensory modality.
Collapse
Affiliation(s)
- Cyrrus M. Espino
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Chetan Nagaraja
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Jacquelyn R. Dayton
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Akash R. Murali
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Yanki Ma
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Emari L. Mann
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Postbaccalaureate Research Education Program at UC Davis, University of California, Davis, Davis, CA, USA
| | - Snigdha Garlapalli
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Psychology, University of California, Davis, Davis, CA, USA
| | - Ross P. Wohlgemuth
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Sarah E. Brashear
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Lucas R. Smith
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | | | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
6
|
Butenko O, Jensen SM, Fillié-Grijpma YE, Verpalen R, Verschuuren JJ, van der Maarel SM, Huijbers MG, Plomp JJ. Change of voltage-gated sodium channel repertoire in skeletal muscle of a MuSK myasthenia gravis mouse model. Eur J Neurosci 2024; 59:3292-3308. [PMID: 38650308 DOI: 10.1111/ejn.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by μ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (μ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, μ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of μ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed μ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.
Collapse
Affiliation(s)
- Olena Butenko
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stine Marie Jensen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Robyn Verpalen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Sert O, Ding X, Zhang C, Mi R, Hoke A, Rasband MN. Postsynaptic β1 spectrin maintains Na + channels at the neuromuscular junction. J Physiol 2024; 602:1127-1145. [PMID: 38441922 PMCID: PMC10942750 DOI: 10.1113/jp285894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/16/2024] Open
Abstract
Spectrins function together with actin as obligatory subunits of the submembranous cytoskeleton. Spectrins maintain cell shape, resist mechanical forces, and stabilize ion channel and transporter protein complexes through binding to scaffolding proteins. Recently, pathogenic variants of SPTBN4 (β4 spectrin) were reported to cause both neuropathy and myopathy. Although the role of β4 spectrin in neurons is mostly understood, its function in skeletal muscle, another excitable tissue subject to large forces, is unknown. Here, using a muscle specific β4 spectrin conditional knockout mouse, we show that β4 spectrin does not contribute to muscle function. In addition, we show β4 spectrin is not present in muscle, indicating the previously reported myopathy associated with pathogenic SPTBN4 variants is neurogenic in origin. More broadly, we show that α2, β1 and β2 spectrins are found in skeletal muscle, with α2 and β1 spectrins being enriched at the postsynaptic neuromuscular junction (NMJ). Surprisingly, using muscle specific conditional knockout mice, we show that loss of α2 and β2 spectrins had no effect on muscle health, function or the enrichment of β1 spectrin at the NMJ. Muscle specific deletion of β1 spectrin also had no effect on muscle health, but, with increasing age, resulted in the loss of clustered NMJ Na+ channels. Together, our results suggest that muscle β1 spectrin functions independently of an associated α spectrin to maintain Na+ channel clustering at the postsynaptic NMJ. Furthermore, despite repeated exposure to strong forces and in contrast to neurons, muscles do not require spectrin cytoskeletons to maintain cell shape or integrity. KEY POINTS: The myopathy found in pathogenic human SPTBN4 variants (where SPTBN4 is the gene encoding β4 spectrin) is neurogenic in origin. β1 spectrin plays essential roles in maintaining the density of neuromuscular junction Nav1.4 Na+ channels. By contrast to the canonical view of spectrin organization and function, we show that β1 spectrin can function independently of an associated α spectrin. Despite the large mechanical forces experienced by muscle, we show that spectrins are not required for muscle cell integrity. This is in stark contrast to red blood cells and the axons of neurons.
Collapse
Affiliation(s)
- Ozlem Sert
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Chuansheng Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Ruifa Mi
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Ahmet Hoke
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| |
Collapse
|
8
|
Fish LA, Ewing MD, Jaime D, Rich KA, Xi C, Wang X, Feder RE, Wharton KA, Rich MM, Arnold WD, Fallon JR. The MuSK-BMP pathway regulates synaptic Nav1.4 localization and muscle excitability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563837. [PMID: 37961580 PMCID: PMC10634800 DOI: 10.1101/2023.10.24.563837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly considered, the function of the NMJ is to transduce a nerve action potential into a muscle fiber action potential (MFAP). Efficient information transfer requires both cholinergic signaling, responsible for the generation of endplate potentials (EPPs), and excitation, the activation of postsynaptic voltage-gated sodium channels (Nav1.4) to trigger MFAPs. In contrast to the cholinergic apparatus, the signaling pathways that organize Nav1.4 and muscle fiber excitability are poorly characterized. Muscle-specific kinase (MuSK), in addition to its Ig1 domain-dependent role as an agrin-LRP4 receptor, is also a BMP co-receptor that binds BMPs via its Ig3 domain and shapes BMP-induced signaling and transcriptional output. Here we probed the function of the MuSK-BMP pathway at the NMJ using mice lacking the MuSK Ig3 domain ('ΔIg3-MuSK'). Synapses formed normally in ΔIg3-MuSK animals, but the postsynaptic apparatus was fragmented from the first weeks of life. Anatomical denervation was not observed at any age examined. Moreover, spontaneous and nerve-evoked acetylcholine release, AChR density, and endplate currents were comparable to WT. However, trains of nerve-evoked MFAPs in ΔIg3-MuSK muscle were abnormal as revealed by increased jitter and blocking in single fiber electromyography. Further, nerve-evoked compound muscle action potentials (CMAPs), as well as twitch and tetanic muscle torque force production, were also diminished. Finally, Nav1.4 levels were reduced at ΔIg3-MuSK synapses but not at the extrajunctional sarcolemma, indicating that the observed excitability defects are the result of impaired localization of this voltage-gated ion channel at the NMJ. We propose that MuSK plays two distinct roles at the NMJ: as an agrin-LRP4 receptor necessary for establishing and maintaining cholinergic signaling, and as a BMP co-receptor required for maintaining proper Nav1.4 density, nerve-evoked muscle excitability and force production. The MuSK-BMP pathway thus emerges as a target for modulating excitability and functional innervation, which are defective in conditions such as congenital myasthenic syndromes and aging.
Collapse
Affiliation(s)
- L. A. Fish
- Neuroscience Graduate Program, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - M. D. Ewing
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - D. Jaime
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912
| | - K. A. Rich
- Neuroscience Graduate Program, Ohio State University, Columbus, OH 43210
| | - C. Xi
- Biotechnology Graduate Program, Brown University, Brown University, Providence, RI 02912
| | - X. Wang
- Department of Neuroscience Cell Biology and Physiology, Wright State University, Dayton, OH 45435
| | - R. E. Feder
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - K. A. Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912
| | - M. M. Rich
- Department of Neuroscience Cell Biology and Physiology, Wright State University, Dayton, OH 45435
| | - W. D. Arnold
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 62511
| | - J. R. Fallon
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
- Department of Neuroscience, Brown University, Providence, RI 02912
| |
Collapse
|
9
|
Arnold WD, Clark BC. Neuromuscular junction transmission failure in aging and sarcopenia: The nexus of the neurological and muscular systems. Ageing Res Rev 2023; 89:101966. [PMID: 37270145 PMCID: PMC10847753 DOI: 10.1016/j.arr.2023.101966] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Sarcopenia, or age-related decline in muscle form and function, exerts high personal, societal, and economic burdens when untreated. Integrity and function of the neuromuscular junction (NMJ), as the nexus between the nervous and muscular systems, is critical for input and dependable neural control of muscle force generation. As such, the NMJ has long been a site of keen interest in the context of skeletal muscle function deficits during aging and in the context of sarcopenia. Historically, changes of NMJ morphology during aging have been investigated extensively but primarily in aged rodent models. Aged rodents have consistently shown features of NMJ endplate fragmentation and denervation. Yet, the presence of NMJ changes in older humans remains controversial, and conflicting findings have been reported. This review article describes the physiological processes involved in NMJ transmission, discusses the evidence that supports NMJ transmission failure as a possible contributor to sarcopenia, and speculates on the potential of targeting these defects for therapeutic development. The technical approaches that are available for assessment of NMJ transmission, whether each approach has been applied in the context of aging and sarcopenia, and the associated findings are summarized. Like morphological studies, age-related NMJ transmission deficits have primarily been studied in rodents. In preclinical studies, isolated synaptic electrophysiology recordings of endplate currents or potentials have been mostly used, and paradoxically, have shown enhancement, rather than failure, with aging. Yet, in vivo assessment of single muscle fiber action potential generation using single fiber electromyography and nerve-stimulated muscle force measurements show evidence of NMJ failure in aged mice and rats. Together these findings suggest that endplate response enhancement may be a compensatory response to post-synaptic mechanisms of NMJ transmission failure in aged rodents. Possible, but underexplored, mechanisms of this failure are discussed including the simplification of post-synaptic folding and altered voltage-gated sodium channel clustering or function. In humans, there is limited clinical data that has selectively investigated single synaptic function in the context of aging. If sarcopenic older adults turn out to exhibit notable impairments in NMJ transmission (this has yet to be examined but based on available evidence appears to be plausible) then these NMJ transmission defects present a well-defined biological mechanism and offer a well-defined pathway for clinical implementation. Investigation of small molecules that are currently available clinically or being testing clinically in other disorders may provide a rapid route for development of interventions for older adults impacted by sarcopenia.
Collapse
Affiliation(s)
- W David Arnold
- NextGen Precision Health, University of Missouri System, Columbia, MO, USA; Department of Physical Medicine and Rehabilitation University of Missouri, Columbia, MO, USA.
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI) Ohio University, Athens, OH, USA; Department of Biomedical Sciences, Ohio University, Athens, OH, USA.
| |
Collapse
|
10
|
Abstract
The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.
Collapse
Affiliation(s)
- Sharon R. Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,CONTACT Matthew N. Rasband Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX77030, USA
| |
Collapse
|
11
|
Teliska LH, Dalla Costa I, Sert O, Twiss JL, Rasband MN. Axon Initial Segments Are Required for Efficient Motor Neuron Axon Regeneration and Functional Recovery of Synapses. J Neurosci 2022; 42:8054-8065. [PMID: 36096668 PMCID: PMC9636994 DOI: 10.1523/jneurosci.1261-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
The axon initial segment (AIS) generates action potentials and maintains neuronal polarity by regulating the differential trafficking and distribution of proteins, transport vesicles, and organelles. Injury and disease can disrupt the AIS, and the subsequent loss of clustered ion channels and polarity mechanisms may alter neuronal excitability and function. However, the impact of AIS disruption on axon regeneration after injury is unknown. We generated male and female mice with AIS-deficient multipolar motor neurons by deleting AnkyrinG, the master scaffolding protein required for AIS assembly and maintenance. We found that after nerve crush, neuromuscular junction reinnervation was significantly delayed in AIS-deficient motor neurons compared with control mice. In contrast, loss of AnkyrinG from pseudo-unipolar sensory neurons did not impair axon regeneration into the intraepidermal nerve fiber layer. Even after AIS-deficient motor neurons reinnervated the neuromuscular junction, they failed to functionally recover because of reduced synaptic vesicle protein 2 at presynaptic terminals. In addition, mRNA trafficking was disrupted in AIS-deficient axons. Our results show that, after nerve injury, an intact AIS is essential for efficient regeneration and functional recovery of axons in multipolar motor neurons. Our results also suggest that loss of polarity in AIS-deficient motor neurons impairs the delivery of axonal proteins, mRNAs, and other cargoes necessary for regeneration. Thus, therapeutic strategies for axon regeneration must consider preservation or reassembly of the AIS.SIGNIFICANCE STATEMENT Disruption of the axon initial segment is a common event after nervous system injury. For multipolar motor neurons, we show that axon initial segments are essential for axon regeneration and functional recovery after injury. Our results may help explain injuries where axon regeneration fails, and suggest strategies to promote more efficient axon regeneration.
Collapse
Affiliation(s)
- Lindsay H Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Ozlem Sert
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
12
|
Zou S, Pan BX. Post-synaptic specialization of the neuromuscular junction: junctional folds formation, function, and disorders. Cell Biosci 2022; 12:93. [PMID: 35718785 PMCID: PMC9208267 DOI: 10.1186/s13578-022-00829-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/05/2022] [Indexed: 11/14/2022] Open
Abstract
Post-synaptic specialization is critical to the neurotransmitter release and action potential conduction. The neuromuscular junctions (NMJs) are the synapses between the motor neurons and muscle cells and have a more specialized post-synaptic membrane than synapses in the central nervous system (CNS). The sarcolemma within NMJ folded to form some invagination portions called junctional folds (JFs), and they have important roles in maintaining the post-synaptic membrane structure. The NMJ formation and the acetylcholine receptor (AChR) clustering signal pathway have been extensively studied and reviewed. Although it has been suggested that JFs are related to maintaining the safety factor of neurotransmitter release, the formation mechanism and function of JFs are still unclear. This review will focus on the JFs about evolution, formation, function, and disorders. Anticipate understanding of where they are coming from and where we will study in the future.
Collapse
Affiliation(s)
- Suqi Zou
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| |
Collapse
|
13
|
Nicole S, Lory P. New Challenges Resulting From the Loss of Function of Na v1.4 in Neuromuscular Diseases. Front Pharmacol 2021; 12:751095. [PMID: 34671263 PMCID: PMC8521073 DOI: 10.3389/fphar.2021.751095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated sodium channel Nav1.4 is a major actor in the excitability of skeletal myofibers, driving the muscle force in response to nerve stimulation. Supporting further this key role, mutations in SCN4A, the gene encoding the pore-forming α subunit of Nav1.4, are responsible for a clinical spectrum of human diseases ranging from muscle stiffness (sodium channel myotonia, SCM) to muscle weakness. For years, only dominantly-inherited diseases resulting from Nav1.4 gain of function (GoF) were known, i.e., non-dystrophic myotonia (delayed muscle relaxation due to myofiber hyperexcitability), paramyotonia congenita and hyperkalemic or hypokalemic periodic paralyses (episodic flaccid muscle weakness due to transient myofiber hypoexcitability). These last 5 years, SCN4A mutations inducing Nav1.4 loss of function (LoF) were identified as the cause of dominantly and recessively-inherited disorders with muscle weakness: periodic paralyses with hypokalemic attacks, congenital myasthenic syndromes and congenital myopathies. We propose to name this clinical spectrum sodium channel weakness (SCW) as the mirror of SCM. Nav1.4 LoF as a cause of permanent muscle weakness was quite unexpected as the Na+ current density in the sarcolemma is large, securing the ability to generate and propagate muscle action potentials. The properties of SCN4A LoF mutations are well documented at the channel level in cellular electrophysiological studies However, much less is known about the functional consequences of Nav1.4 LoF in skeletal myofibers with no available pertinent cell or animal models. Regarding the therapeutic issues for Nav1.4 channelopathies, former efforts were aimed at developing subtype-selective Nav channel antagonists to block myofiber hyperexcitability. Non-selective, Nav channel blockers are clinically efficient in SCM and paramyotonia congenita, whereas patient education and carbonic anhydrase inhibitors are helpful to prevent attacks in periodic paralyses. Developing therapeutic tools able to counteract Nav1.4 LoF in skeletal muscles is then a new challenge in the field of Nav channelopathies. Here, we review the current knowledge regarding Nav1.4 LoF and discuss the possible therapeutic strategies to be developed in order to improve muscle force in SCW.
Collapse
Affiliation(s)
- Sophie Nicole
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| |
Collapse
|
14
|
Membrane excitability: Ankyrins keep neuromuscular junctions firing. Curr Biol 2021; 31:R1061-R1063. [PMID: 34520721 DOI: 10.1016/j.cub.2021.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated sodium channels are clustered and immobilized at high densities in electrically excitable cells. A new study shows that ankyrins are essential to tether sodium channels and prevent synaptic fatigue at the neuromuscular junction.
Collapse
|