1
|
Sánchez-León E, Bhalla K, Hu G, Lee CWJ, Lagace M, Jung WH, Kronstad JW. The HOPS and vCLAMP protein Vam6 connects polyphosphate with mitochondrial function and oxidative stress resistance in Cryptococcus neoformans. mBio 2025; 16:e0032825. [PMID: 39998208 PMCID: PMC11980578 DOI: 10.1128/mbio.00328-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Cryptococcus neoformans is considered one of the most dangerous fungal threats to human health, and the World Health Organization recently ranked it in the critical priority group for perceived public health importance. Proliferation of C. neoformans within mammalian hosts is supported by its ability to overcome nutritional limitations and endure stress conditions induced by the host immune response. Previously, we reported that the Vam6/Vps39/TRAP1-domain protein Vam6 was crucial for vacuolar morphology, iron acquisition, and virulence. However, the molecular mechanisms underlying the pleiotropic phenotypes resulting from loss of Vam6 remain poorly understood. In this study, we determined that Vam6 has roles in the HOPS complex for endomembrane trafficking to the vacuole and in the vCLAMP membrane contact site between the vacuole and mitochondria. Importantly, both of these roles regulate polyphosphate (polyP) metabolism, as demonstrated by a defect in trafficking of the VTC complex subunit Vtc2 for polyphosphate synthesis and by an influence on mitochondrial functions. In the latter case, Vam6 was required for polyP accumulation in response to electron transport chain inhibition and for overcoming oxidative stress. Overall, this work establishes connections between endomembrane trafficking, mitochondrial functions, and polyP homeostasis in C. neoformans.IMPORTANCEA detailed understanding of stress resistance by fungal pathogens of humans may provide new opportunities to improve antifungal therapy and combat life-threatening diseases. Here, we used a vam6 deletion mutant to investigate the role of the homotypic fusion and vacuole protein sorting (HOPS) complex in mitochondrial functions and polyphosphate homeostasis in Cryptococcus neoformans, an important fungal pathogen of immunocompromised people including those suffering from HIV/AIDS. Specifically, we made use of mutants defective in late endocytic trafficking steps to establish connections to oxidative stress and membrane trafficking with mitochondria. In particular, we found that mutants lacking the Vam6 protein had altered mitochondrial function, and that the mutants were perturbed for additional mitochondria and vacuole-related phenotypes (e.g., membrane composition, polyphosphate accumulation, and drug sensitivity). Overall, our study establishes connections between endomembrane trafficking components, mitochondrial functions, and polyphosphate homeostasis in an important fungal pathogen of humans.
Collapse
Affiliation(s)
- Eddy Sánchez-León
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Kabir Bhalla
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Guanggan Hu
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Christopher W. J. Lee
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Melissa Lagace
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Chen L, Banfield DK. Unremodeled GPI-anchored proteins at the plasma membrane trigger aberrant endocytosis. Life Sci Alliance 2025; 8:e202402941. [PMID: 39578075 PMCID: PMC11584325 DOI: 10.26508/lsa.202402941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
The plasma membrane has a complex organization that includes the polarized distribution of membrane proteins and lipids. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are ubiquitously expressed in eukaryotes and represent a functionally diverse, extensively remodeled, ER-derived group of proteins critical for the organization and function of the plasma membrane. Little is known about how the transport of incompletely remodeled GPI-APs to the plasma membrane affects cell function. Here, we investigated how failure to remodel mannose 2 (Man2) of the GPI moiety impacted endocytic activity on the plasma membrane. We find that Man2 unremodeled GPI-APs increased membrane disorder and generated a stress response that triggered abnormal ubiquitin- and clathrin-dependent endocytosis. The resulting stress-induced endocytosis disrupted the trafficking repertoire of a subset of plasma membrane proteins, which were redirected, via the multivesicular body, to numerous small vacuoles for degradation. Our findings highlight the critical importance of GPI-AP Man2 remodeling for maintaining the integrity and homeostasis of the plasma membrane.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, SAR of China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, SAR of China
| |
Collapse
|
3
|
Hong J, Li T, Chao Y, Xu Y, Zhu Z, Zhou Z, Gu W, Qu Q, Li D. Molecular basis of the inositol deacylase PGAP1 involved in quality control of GPI-AP biogenesis. Nat Commun 2024; 15:8. [PMID: 38167496 PMCID: PMC10761859 DOI: 10.1038/s41467-023-44568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The secretion and quality control of glycosylphosphatidylinositol-anchored proteins (GPI-APs) necessitates post-attachment remodeling initiated by the evolutionarily conserved PGAP1, which deacylates the inositol in nascent GPI-APs. Impairment of PGAP1 activity leads to developmental diseases in humans and fatality and infertility in animals. Here, we present three PGAP1 structures (2.66-2.84 Å), revealing its 10-transmembrane architecture and product-enzyme interaction details. PGAP1 holds GPI-AP acyl chains in an optimally organized, guitar-shaped cavity with apparent energetic penalties from hydrophobic-hydrophilic mismatches. However, abundant glycan-mediated interactions in the lumen counterbalance these repulsions, likely conferring substrate fidelity and preventing off-target hydrolysis of bulk membrane lipids. Structural and biochemical analyses uncover a serine hydrolase-type catalysis with atypical features and imply mechanisms for substrate entrance and product release involving a drawing compass movement of GPI-APs. Our findings advance the mechanistic understanding of GPI-AP remodeling.
Collapse
Affiliation(s)
- Jingjing Hong
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Tingting Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yulin Chao
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Yidan Xu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zhini Zhu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Zixuan Zhou
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Weijie Gu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Qianhui Qu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Nweke AB, Nagasato D, Matsuoka K. Secreted arabinogalactan protein from salt-adapted tobacco BY-2 cells appears to be glycosylphosphatidyl inositol-anchored and associated with lipophilic moieties. Biosci Biotechnol Biochem 2023; 87:1274-1284. [PMID: 37573142 DOI: 10.1093/bbb/zbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Arabinogalactan proteins (AGPs) are plant extracellular proteoglycans associated with the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. This moiety is thought to be cleaved by phospholipase for secretion. Salt-adapted tobacco BY-2 cells were reported to secrete large amounts of AGPs into the medium. To investigate this mechanism, we expressed a fusion protein of tobacco sweet potato sporamin and AGP (SPO-AGP) in BY-2 cells and analyzed its fate after salt-adapting the cells. A two-phase separation analysis using Triton X-114 indicated that a significant proportion of SPO-AGP in the medium was recovered in the detergent phase, suggesting that this protein is GPI-anchored. Differential ultracentrifugation and a gradient density fractionation implicated extracellular vesicles or particles with SPO-AGP in the medium. Endogenous AGP secreted from salt-adapted and nontransgenic BY-2 cells behaved similarly to SPO-AGP. These results suggest that a part of the secreted AGPs from salt-adapted tobacco BY-2 cells are GPI-anchored and associated with particles or vesicles.
Collapse
Affiliation(s)
- Arinze Boniface Nweke
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Nagasato
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Chen X, Liang Y. Vtc4 Promotes the Entry of Phagophores into Vacuoles in the Saccharomyces cerevisiae Snf7 Mutant Cell. J Fungi (Basel) 2023; 9:1003. [PMID: 37888259 PMCID: PMC10607680 DOI: 10.3390/jof9101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Endocytosis and autophagy are the main pathways to deliver cargoes in vesicles and autophagosomes, respectively, to vacuoles/lysosomes in eukaryotes. Multiple positive regulators but few negative ones are reported to regulate the entry of vesicles and autophagosomes into vacuoles/lysosomes. In yeast, the Rab5 GTPase Vps21 and the ESCRT (endosomal sorting complex required for transport) are positive regulators in endocytosis and autophagy. During autophagy, Vps21 regulates the ESCRT to phagophores (unclosed autophagosomes) to close them. Phagophores accumulate on vacuolar membranes in both vps21∆ and ESCRT mutant cells under a short duration of nitrogen starvation. The vacuolar transport chaperon (VTC) complex proteins are recently found to be negative regulators in endocytosis and autophagy. Phagophores in vps21∆ cells are promoted to enter vacuoles when the VTC complex proteins are absent. Phagophores are easily observed inside vacuoles when any of these VTC complex proteins (Vtc1, 2, 4, 5) are removed. However, it is unknown whether the removal of VTC complex proteins will also promote the entry of phagophores into vacuoles in ESCRT mutant cells under the same conditions. Snf7 is a core subunit of ESCRT subcomplex III (ESCRT-III), and phagophores accumulate in snf7∆ cells under a short duration of nitrogen starvation. We used green fluorescence protein (GFP) labeled Atg8 to display phagophores and FM4-64-stained or Vph1-GFP-labeled membrane structures to show vacuoles, then examined fluorescence localization and GFP-Atg8 degradation in snf7∆ and snf7∆vtc4∆ cells. Results showed that Vtc4 depletion promoted the entry of phagophores in snf7∆ cells into vacuoles as it did for vps21∆ cells, although the promotion level was more obvious in vps21∆ cells. This observation indicates that the VTC complex proteins may have a widespread role in negatively regulating cargos to enter vacuoles in yeast.
Collapse
Affiliation(s)
| | - Yongheng Liang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
6
|
Cheatham AM, Sharma NR, Satpute-Krishnan P. Competition for calnexin binding regulates secretion and turnover of misfolded GPI-anchored proteins. J Cell Biol 2023; 222:e202108160. [PMID: 37702712 PMCID: PMC10499038 DOI: 10.1083/jcb.202108160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/19/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
In mammalian cells, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are cleared out of the ER to the Golgi via a constitutive and a stress-inducible pathway called RESET. From the Golgi, misfolded GPI-APs transiently access the cell surface prior to rapid internalization for lysosomal degradation. What regulates the release of misfolded GPI-APs for RESET during steady-state conditions and how this release is accelerated during ER stress is unknown. Using mutants of prion protein or CD59 as model misfolded GPI-APs, we demonstrate that inducing calnexin degradation or upregulating calnexin-binding glycoprotein expression triggers the release of misfolded GPI-APs for RESET. Conversely, blocking protein synthesis dramatically inhibits the dissociation of misfolded GPI-APs from calnexin and subsequent turnover. We demonstrate an inverse correlation between newly synthesized calnexin substrates and RESET substrates that coimmunoprecipitate with calnexin. These findings implicate competition by newly synthesized substrates for association with calnexin as a key factor in regulating the release of misfolded GPI-APs from calnexin for turnover via the RESET pathway.
Collapse
Affiliation(s)
- Amber M. Cheatham
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nishi Raj Sharma
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Prasanna Satpute-Krishnan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
7
|
Lemus L, Hegde RS, Goder V. New frontiers in quality control: the case of GPI-anchored proteins. Nat Rev Mol Cell Biol 2023; 24:599-600. [PMID: 37231113 DOI: 10.1038/s41580-023-00616-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Leticia Lemus
- Department of Genetics, University of Seville, Seville, Spain.
| | - Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Veit Goder
- Department of Genetics, University of Seville, Seville, Spain.
| |
Collapse
|
8
|
Kalli S, Vallieres C, Violet J, Sanders JW, Chapman J, Vincken JP, Avery SV, Araya-Cloutier C. Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids. Microbiol Spectr 2023; 11:e0132723. [PMID: 37428107 PMCID: PMC10433819 DOI: 10.1128/spectrum.01327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023] Open
Abstract
Prenylated isoflavonoids are phytochemicals with promising antifungal properties. Recently, it was shown that glabridin and wighteone disrupted the plasma membrane (PM) of the food spoilage yeast Zygosaccharomyces parabailii in distinct ways, which led us to investigate further their modes of action (MoA). Transcriptomic profiling with Z. parabailii showed that genes encoding transmembrane ATPase transporters, including Yor1, and genes homologous to the pleiotropic drug resistance (PDR) subfamily in Saccharomyces cerevisiae were upregulated in response to both compounds. Gene functions involved in fatty acid and lipid metabolism, proteostasis, and DNA replication processes were overrepresented among genes upregulated by glabridin and/or wighteone. Chemogenomic analysis using the genome-wide deletant collection for S. cerevisiae further suggested an important role for PM lipids and PM proteins. Deletants of gene functions involved in biosynthesis of very-long-chain fatty acids (constituents of PM sphingolipids) and ergosterol were hypersensitive to both compounds. Using lipid biosynthesis inhibitors, we corroborated roles for sphingolipids and ergosterol in prenylated isoflavonoid action. The PM ABC transporter Yor1 and Lem3-dependent flippases conferred sensitivity and resistance, respectively, to the compounds, suggesting an important role for PM phospholipid asymmetry in their MoAs. Impaired tryptophan availability, likely linked to perturbation of the PM tryptophan permease Tat2, was evident in response to glabridin. Finally, substantial evidence highlighted a role of the endoplasmic reticulum (ER) in cellular responses to wighteone, including gene functions associated with ER membrane stress or with phospholipid biosynthesis, the primary lipid of the ER membrane. IMPORTANCE Preservatives, such as sorbic acid and benzoic acid, inhibit the growth of undesirable yeast and molds in foods. Unfortunately, preservative tolerance and resistance in food spoilage yeast, such as Zygosaccharomyces parabailii, is a growing challenge in the food industry, which can compromise food safety and increase food waste. Prenylated isoflavonoids are the main defense phytochemicals in the Fabaceae family. Glabridin and wighteone belong to this group of compounds and have shown potent antifungal activity against food spoilage yeasts. The present study demonstrated the mode of action of these compounds against food spoilage yeasts by using advanced molecular tools. Overall, the cellular actions of these two prenylated isoflavonoids share similarities (at the level of the plasma membrane) but also differences. Tryptophan import was specifically affected by glabridin, whereas endoplasmic reticulum membrane stress was specifically induced by wighteone. Understanding the mode of action of these novel antifungal agents is essential for their application in food preservation.
Collapse
Affiliation(s)
- Sylvia Kalli
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Cindy Vallieres
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Joseph Violet
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - John Chapman
- Unilever Foods Innovation Centre, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
9
|
Li J, Li S, Yu S, Yang J, Ke J, Li H, Chen H, Lu M, Sy MS, Gao Z, Li C. Persistent ER stress causes GPI anchor deficit to convert a GPI-anchored prion protein into pro-PrP via the ATF6-miR449c-5p-PIGV axis. J Biol Chem 2023; 299:104982. [PMID: 37390992 PMCID: PMC10388210 DOI: 10.1016/j.jbc.2023.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response are cells' survival strategies to thwart disruption of proteostasis. Tumor cells are continuously being challenged by ER stress. The prion protein, PrP, normally a glycosylphosphatidylinositol (GPI)-anchored protein exists as a pro-PrP retaining its GPI-peptide signal sequence in human pancreatic ductal cell adenocarcinoma (PDAC). Higher abundance of pro-PrP indicates poorer prognosis in PDAC patients. The reason why PDAC cells express pro-PrP is unknown. Here, we report that persistent ER stress causes conversion of GPI-anchored PrP to pro-PrP via a conserved ATF6-miRNA449c-5p-PIGV axis. Mouse neurons and AsPC-1, a PDAC cell line, express GPI-anchored PrP. However, continuous culture of these cells with the ER stress inducers thapsigargin or brefeldin A results in the conversion of a GPI-anchored PrP to pro-PrP. Such a conversion is reversible; removal of the inducers allows the cells to re-express a GPI-anchored PrP. Mechanistically, persistent ER stress increases the abundance of an active ATF6, which increases the level of miRNA449c-5p (miR449c-5p). By binding the mRNA of PIGV at its 3'-UTRs, miR449c-5p suppresses the level of PIGV, a mannosyltransferase pivotal in the synthesis of the GPI anchor. Reduction of PIGV leads to disruption of the GPI anchor assembly, causing pro-PrP accumulation and enhancing cancer cell migration and invasion. The importance of ATF6-miR449c-5p-PIGV axis is recapitulated in PDAC biopsies as the higher levels of ATF6 and miR449c-5p and lower levels of PIGV are markers of poorer outcome for patients with PDAC. Drugs targeting this axis may prevent PDAC progression.
Collapse
Affiliation(s)
- JingFeng Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - SaSa Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - ShuPei Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Jie Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - JingRu Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Heng Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - MingJian Lu
- Department of Interventional Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - ZhenXing Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| | - Chaoyang Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| |
Collapse
|
10
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
11
|
Wu Z, Xu H, Wang P, Liu L, Cai J, Chen Y, Zhao X, You X, Liu J, Guo X, Xie T, Feng J, Zhou F, Li R, Xie Z, Xue Y, Fu C, Liang Y. The entry of unclosed autophagosomes into vacuoles and its physiological relevance. PLoS Genet 2022; 18:e1010431. [PMID: 36227834 PMCID: PMC9562215 DOI: 10.1371/journal.pgen.1010431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/04/2022] Open
Abstract
It is widely stated in the literature that closed mature autophagosomes (APs) fuse with lysosomes/vacuoles during macroautophagy/autophagy. Previously, we showed that unclosed APs accumulated as clusters outside vacuoles in Vps21/Rab5 and ESCRT mutants after a short period of nitrogen starvation. However, the fate of such unclosed APs remains unclear. In this study, we used a combination of cellular and biochemical approaches to show that unclosed double-membrane APs entered vacuoles and formed unclosed single-membrane autophagic bodies after prolonged nitrogen starvation or rapamycin treatment. Vacuolar hydrolases, vacuolar transport chaperon (VTC) proteins, Ypt7, and Vam3 were all involved in the entry of unclosed double-membrane APs into vacuoles in Vps21-mutant cells. Overexpression of the vacuolar hydrolases, Pep4 or Prb1, or depletion of most VTC proteins promoted the entry of unclosed APs into vacuoles in Vps21-mutant cells, whereas depletion of Pep4 and/or Prb1 delayed the entry into vacuoles. In contrast to the complete infertility of diploid cells of typical autophagy mutants, diploid cells of Vps21 mutant progressed through meiosis to sporulation, benefiting from the entry of unclosed APs into vacuoles after prolonged nitrogen starvation. Overall, these data represent a new observation that unclosed double-membrane APs can enter vacuoles after prolonged autophagy induction, most likely as a survival strategy.
Collapse
Affiliation(s)
- Zulin Wu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Haiqian Xu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Pei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Cai
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Yun Chen
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Xiaomin Zhao
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Xia You
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Junze Liu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Guo
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Tingting Xie
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Jiajie Feng
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Rui Li
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YX); (CF); (YL)
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- * E-mail: (YX); (CF); (YL)
| | - Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
- * E-mail: (YX); (CF); (YL)
| |
Collapse
|
12
|
Rodriguez-Gallardo S, Sabido-Bozo S, Ikeda A, Araki M, Okazaki K, Nakano M, Aguilera-Romero A, Cortes-Gomez A, Lopez S, Waga M, Nakano A, Kurokawa K, Muñiz M, Funato K. Quality-controlled ceramide-based GPI-anchored protein sorting into selective ER exit sites. Cell Rep 2022; 39:110768. [PMID: 35508142 DOI: 10.1016/j.celrep.2022.110768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) exit the endoplasmic reticulum (ER) through a specialized export pathway in the yeast Saccharomyces cerevisiae. We have recently shown that a very-long acyl chain (C26) ceramide present in the ER membrane drives clustering and sorting of GPI-APs into selective ER exit sites (ERES). Now, we show that this lipid-based ER sorting also involves the C26 ceramide as a lipid moiety of GPI-APs, which is incorporated into the GPI anchor through a lipid-remodeling process after protein attachment in the ER. Moreover, we also show that a GPI-AP with a C26 ceramide moiety is monitored by the GPI-glycan remodelase Ted1, which, in turn, is required for receptor-mediated export of GPI-APs. Therefore, our study reveals a quality-control system that ensures lipid-based sorting of GPI-APs into selective ERESs for differential ER export, highlighting the physiological need for this specific export pathway.
Collapse
Affiliation(s)
- Sofia Rodriguez-Gallardo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Atsuko Ikeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Kouta Okazaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Sergio Lopez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Miho Waga
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan.
| | - Manuel Muñiz
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain.
| | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
13
|
Abstract
Endosomal sorting complex required for transport (ESCRT) proteins can promote extreme membrane deformations, including scission and sealing. New work uncovers a link between these proteins and the early secretory pathway that is functionally important for programmed autophagy during Drosophila development.
Collapse
Affiliation(s)
- Leticia Lemus
- Department of Genetics, University of Seville, Av. Reina Mercedes 6, 41012 Seville, Spain.
| | - Veit Goder
- Department of Genetics, University of Seville, Av. Reina Mercedes 6, 41012 Seville, Spain.
| |
Collapse
|
14
|
Klemm RW. Protein sorting: A new quality control pathway for GPI-anchored proteins. Curr Biol 2021; 31:R1084-R1087. [PMID: 34582816 DOI: 10.1016/j.cub.2021.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins are a class of lipid-anchored membrane proteins found at the surface of all eukaryotic cells. New work provides genome-wide insights into mechanisms that mediate quality control of the folding of this important protein family.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
15
|
Lemus L, Goder V. Pep4-dependent microautophagy is required for post-ER degradation of GPI-anchored proteins. Autophagy 2021; 18:223-225. [PMID: 34491884 DOI: 10.1080/15548627.2021.1971929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Clearance of misfolded proteins from the secretory pathway often occurs soon after their biosynthesis by endoplasmic reticulum (ER)-associated protein degradation (ERAD). However, certain types of misfolded proteins are not ERAD substrates and exit the ER. They are then scrutinized by ill-defined post-ER quality control (post-ERQC) mechanisms and are frequently routed to the vacuole/lysosome for degradation. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) constitute a class of proteins of the secretory pathway that mostly depends on post-ERQC. How misfolded GPI-APs are detected, transported to the vacuole/lysosome and taken up by this organelle was poorly defined. Originating from the intriguing observation that several misfolded GPI-APs accumulate in the yeast vacuolar membrane in the absence of the major vacuolar protease Pep4, we designed an unbiased genome-wide screen in yeast and followed the trafficking of the misfolded fluorescent GPI-AP Gas1* from the ER to the vacuolar lumen. Our results reveal that post-ERQC of GPI-APs is linked with a novel type of microautophagy.
Collapse
Affiliation(s)
- Leticia Lemus
- Department of Genetics, University of Seville, Seville, Spain
| | - Veit Goder
- Department of Genetics, University of Seville, Seville, Spain
| |
Collapse
|