1
|
Ahrentløv N, Kubrak O, Lassen M, Malita A, Koyama T, Frederiksen AS, Sigvardsen CM, John A, Madsen PEH, Halberg KV, Nagy S, Imig C, Richter EA, Texada MJ, Rewitz K. Protein-responsive gut hormone tachykinin directs food choice and impacts lifespan. Nat Metab 2025:10.1038/s42255-025-01267-0. [PMID: 40229448 DOI: 10.1038/s42255-025-01267-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2025] [Indexed: 04/16/2025]
Abstract
Animals select food based on hungers that reflect dynamic macronutrient needs, but the hormonal mechanisms underlying nutrient-specific appetite regulation remain poorly defined. Here, we identify tachykinin (Tk) as a protein-responsive gut hormone in Drosophila and female mice, regulated by conserved environmental and nutrient-sensing mechanisms. Protein intake activates Tk-expressing enteroendocrine cells (EECs), driving the release of gut Tk through mechanisms involving target of rapamycin (TOR) and transient receptor potential A1 (TrpA1). In flies, we delineate a pathway by which gut Tk controls selective appetite and sleep after protein ingestion, mediated by glucagon-like adipokinetic hormone (AKH) signalling to neurons and adipose tissue. This mechanism suppresses protein appetite, promotes sugar hunger and modulates wakefulness to align behaviour with nutritional needs. Inhibiting protein-responsive gut Tk prolongs lifespan through AKH, revealing a role for nutrient-dependent gut hormone signalling in longevity. Our results provide a framework for understanding EEC-derived nutrient-specific satiety signals and the role of gut hormones in regulating food choice, sleep and lifespan.
Collapse
Affiliation(s)
- Nadja Ahrentløv
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olga Kubrak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amalie S Frederiksen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Casper M Sigvardsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alphy John
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cordelia Imig
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation, Hellerup, Denmark
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Ding G, Li Y, Cheng C, Tan K, Deng Y, Pang H, Wang Z, Dang P, Wu X, Rushworth E, Yuan Y, Yang Z, Song W. A tumor-secreted protein utilizes glucagon release to cause host wasting. Cell Discov 2025; 11:11. [PMID: 39924534 PMCID: PMC11808122 DOI: 10.1038/s41421-024-00762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025] Open
Abstract
Tumor‒host interaction plays a critical role in malignant tumor-induced organ wasting across multiple species. Despite known regulation of regional wasting of individual peripheral organs by tumors, whether and how tumors utilize critical host catabolic hormone(s) to simultaneously induce systemic host wasting, is largely unknown. Using the conserved yki3SA-tumor model in Drosophila, we discovered that tumors increase the production of adipokinetic hormone (Akh), a glucagon-like catabolic hormone, to cause systemic host wasting, including muscle dysfunction, lipid loss, hyperglycemia, and ovary atrophy. We next integrated RNAi screening and Gal4-LexA dual expression system to show that yki3SA-gut tumors secrete Pvf1 to remotely activate its receptor Pvr in Akh-producing cells (APCs), ultimately promoting Akh production. The underlying molecular mechanisms involved the Pvf1-Pvr axis that triggers Mmp2-dependent ECM remodeling of APCs and enhances innervation from the excitatory cholinergic neurons. Interestingly, we also confirmed the similar mechanisms governing tumor-induced glucagon release and organ wasting in mammals. Blockade of either glucagon or PDGFR (homolog of Pvr) action efficiently ameliorated organ wasting in the presence of malignant tumors. Therefore, our results demonstrate that tumors remotely promote neural-associated Akh/glucagon production via Pvf1-Pvr axis to cause systemic host wasting.
Collapse
Affiliation(s)
- Guangming Ding
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yingge Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yifei Deng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Huiwen Pang
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhongyuan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peixuan Dang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xing Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Elisabeth Rushworth
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Zhang Y, Qian M, Shao C, Fu L, Wu L, Qian R, Xu M, Lu J, Xu G, Yang G. Functional characterization of β-adrenergic-like octopamine receptors in planthopper reproduction and feeding. Int J Biol Macromol 2025; 288:138722. [PMID: 39672417 DOI: 10.1016/j.ijbiomac.2024.138722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
As an essential biogenic amine in invertebrates, octopamine (OA) regulates multiple physiological and behavioral processes via binding to octopamine receptors (OARs). The small brown planthopper Laodelphax striatellus is an important agricultural pest. However, little is known about OARs in L. striatellus. Herein, three β-adrenergic-like OARs (LsOA2s) were cloned, including LsOA2B1, LsOA2B2, and LsOA2B3. LsOA2s were expressed at the highest levels in egg stage and brain. Knockdown of LsOA2s significantly decreased the transcript levels of vitellogenin (LsVg) and Vg receptor (LsVgR), and reduced LsVg protein levels. LsOA2B2 knockdown shortened the oviposition period and inhibited the fecundity, while silencing LsOA2B1 and LsOA2B3 did not affect the reproduction performance including the preoviposition period, oviposition period, and fecundity. Ovary dissection indicated that LsOA2B2 knockdown decreased the ovary area and detained eggs. In addition, LsOA2s silencing prolonged the hatching period and reduced the hatching rate, and shortened the egg length on the fifth day of development. LsOA2B2 silencing also reduced egg width. Furthermore, LsOA2s knockdown decreased honeydew excretions of adults. Overall, these results provide evidence that LsOA2s play important roles in the reproduction and feeding behaviors of L. striatellus, and offer a reference for the exploration of potential molecular targets to control planthoppers.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Mingshi Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chenjia Shao
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Liran Fu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Liang Wu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Ruhao Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Meiqi Xu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jing Lu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Gang Xu
- College of Plant Protection, Yangzhou University, Yangzhou, China.
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Meschi E, Duquenoy L, Otto N, Dempsey G, Waddell S. Compensatory enhancement of input maintains aversive dopaminergic reinforcement in hungry Drosophila. Neuron 2024; 112:2315-2332.e8. [PMID: 38795709 DOI: 10.1016/j.neuron.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Hungry animals need compensatory mechanisms to maintain flexible brain function, while modulation reconfigures circuits to prioritize resource seeking. In Drosophila, hunger inhibits aversively reinforcing dopaminergic neurons (DANs) to permit the expression of food-seeking memories. Multitasking the reinforcement system for motivation potentially undermines aversive learning. We find that chronic hunger mildly enhances aversive learning and that satiated-baseline and hunger-enhanced learning require endocrine adipokinetic hormone (AKH) signaling. Circulating AKH influences aversive learning via its receptor in four neurons in the ventral brain, two of which are octopaminergic. Connectomics revealed AKH receptor-expressing neurons to be upstream of several classes of ascending neurons, many of which are presynaptic to aversively reinforcing DANs. Octopaminergic modulation of and output from at least one of these ascending pathways is required for shock- and bitter-taste-reinforced aversive learning. We propose that coordinated enhancement of input compensates for hunger-directed inhibition of aversive DANs to preserve reinforcement when required.
Collapse
Affiliation(s)
- Eleonora Meschi
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lucille Duquenoy
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Nils Otto
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Georgia Dempsey
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Scott Waddell
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
5
|
Wegener C, Amatobi KM, Ozbek-Unal AG, Fekete A. Circadian Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874889 DOI: 10.1007/5584_2024_810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
To ensure optimum health and performance, lipid metabolism needs to be temporally aligned to other body processes and to daily changes in the environment. Central and peripheral circadian clocks and environmental signals such as light provide internal and external time cues to the body. Importantly, each of the key organs involved in insect lipid metabolism contains a molecular clockwork which ticks with a varying degree of autonomy from the central clock in the brain. In this chapter, we review our current knowledge about peripheral clocks in the insect fat body, gut and oenocytes, and light- and circadian-driven diel patterns in lipid metabolites and lipid-related transcripts. In addition, we highlight selected neuroendocrine signaling pathways that are or may be involved in the temporal coordination and control of lipid metabolism.
Collapse
Affiliation(s)
- Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Kelechi M Amatobi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayten Gizem Ozbek-Unal
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
7
|
Gáliková M, Klepsatel P. Ion transport peptide regulates energy intake, expenditure, and metabolic homeostasis in Drosophila. Genetics 2022; 222:iyac150. [PMID: 36190340 PMCID: PMC9713441 DOI: 10.1093/genetics/iyac150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
In mammals, energy homeostasis is regulated by the antagonistic action of hormones insulin and glucagon. However, in contrast to the highly conserved insulin, glucagon is absent in most invertebrates. Although there are several endocrine regulators of energy expenditure and catabolism (such as the adipokinetic hormone), no single invertebrate hormone with all of the functions of glucagon has been described so far. Here, we used genetic gain- and loss-of-function experiments to show that the Drosophila gene Ion transport peptide (ITP) codes for a novel catabolic regulator that increases energy expenditure, lowers fat and glycogen reserves, and increases glucose and trehalose. Intriguingly, Ion transport peptide has additional functions reminiscent of glucagon, such as inhibition of feeding and transit of the meal throughout the digestive tract. Furthermore, Ion transport peptide interacts with the well-known signaling via the Adipokinetic hormone; Ion transport peptide promotes the pathway by stimulating Adipokinetic hormone secretion and transcription of the receptor AkhR. The genetic manipulations of Ion transport peptide on standard and Adipokinetic hormone-deficient backgrounds showed that the Adipokinetic hormone peptide mediates the hyperglycemic and hypertrehalosemic effects of Ion transport peptide, while the other metabolic functions of Ion transport peptide seem to be Adipokinetic hormone independent. In addition, Ion transport peptide is necessary for critical processes such as development, starvation-induced foraging, reproduction, and average lifespan. Altogether, our work describes a novel master regulator of fly physiology with functions closely resembling mammalian glucagon.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, 845 06 Bratislava, Slovakia
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, 845 06 Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| |
Collapse
|
8
|
Malita A, Kubrak O, Koyama T, Ahrentløv N, Texada MJ, Nagy S, Halberg KV, Rewitz K. A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat Metab 2022; 4:1532-1550. [PMID: 36344765 PMCID: PMC9684077 DOI: 10.1038/s42255-022-00672-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones. Gut-derived NPF acts on glucagon-like adipokinetic hormone (AKH) signalling to induce sugar satiety and increase consumption of protein-rich food, and on adipose tissue to promote storage of ingested nutrients. Suppression of NPF-mediated gut signalling leads to overconsumption of dietary sugar while simultaneously decreasing intake of protein-rich yeast. Furthermore, gut-derived NPF has a female-specific function in promoting consumption of protein-containing food in mated females. Together, our findings suggest that gut NPF-to-AKH signalling modulates specific appetites and regulates food choice to ensure homeostatic consumption of nutrients, providing insight into the hormonal mechanisms that underlie nutrient-specific hungers.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olga Kubrak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadja Ahrentløv
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|