1
|
Esnault S, Dill-McFarland KA, Altman MC, Rosenkranz MA, Jarjour NN, Busse WW. Identification of bronchial epithelial genes associated with type 2 eosinophilic inflammation in asthma. J Allergy Clin Immunol 2025; 155:1510-1520. [PMID: 39793714 PMCID: PMC12058426 DOI: 10.1016/j.jaci.2024.12.1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Airway inflammation plays a critical role in asthma pathogenesis and pathophysiology, but the molecular pathways contributing to airway inflammation are not fully known, particularly type 2 (T2) inflammation characterized by both eosinophilia and higher fractional exhaled nitric oxide (Feno) levels. OBJECTIVE We sought to identify genes whose level of expression in epithelial brushing samples were associated with both bronchoalveolar lavage (BAL) eosinophilia and generation of Feno. METHODS We performed segmental allergen bronchoprovocation (SBP-Ag) in participants with asthma, then RNA sequencing analyses of BAL cells and brushing samples before and 48 hours after SBP-Ag to identify regulation of eosinophil recruitment and Feno changes. RESULTS Allergen bronchoprovocation increased Feno levels, which correlated with eosinophilia. Thirteen genes were identified in brushing samples, whose expression changed in response to SBP-Ag and correlated with both airway eosinophilia and Feno levels after SBP-Ag. Among these 13 genes, epithelial cell product CDH26/cadherin-26 contributed to the amplification of T2 inflammation, as reflected by eosinophilia and Feno, and causal mediation analyses with pro-T2 and proeosinophilic cytokine mediators in BAL fluids. Among the genes associated with reduced eosinophilia and Feno, HEY2 is known to enhance cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition, as well as to reduce apoptosis. CONCLUSION This unbiased RNA sequencing analysis in participants with allergic asthma revealed several epithelial cell genes, particularly CDH26, that may be critical for the development or augmentation of T2 inflammation in asthma.
Collapse
Affiliation(s)
- Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis; University of Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, France
| | | | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash; Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wis; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wis
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis.
| |
Collapse
|
2
|
Tomasso MR, Mehetre PD, Nagarajan P, Ravi R, Byrnett J, Brinckman E, Magliozzi J, Goode BL, Padrick SB. Cdc42EP3-bound septin scaffolds promote actin polymerization. J Biol Chem 2025; 301:108325. [PMID: 39971161 PMCID: PMC11952830 DOI: 10.1016/j.jbc.2025.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Septins are cytoskeletal filament-forming proteins that typically associate with membranes and perform critical functions in a variety of cellular processes. Septins often colocalize with actin and microtubule structures, yet our understanding of all the ways that septins contribute mechanistically to actin- and microtubule-based functions is incomplete. The Cdc42 effector protein Cdc42EP3 (also known as BORG2) promotes septin localization to actin structures in vivo, but little else is known about how Cdc42EP3 influences the interactions of septins and F-actin. Here, using purified components, we show that Cdc42EP3 binds directly to septins, actin filaments, and actin monomers. Moreover, septin-bound Cdc42EP3 accelerates actin filament polymerization. Thus, Cdc42EP3 is not merely a factor that crosslinks septins and F-actin, but one that promotes the formation of actin polymers along septin scaffolds.
Collapse
Affiliation(s)
- Meagan R Tomasso
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Prajakta D Mehetre
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Priyashree Nagarajan
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Roshni Ravi
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jennifer Byrnett
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Eric Brinckman
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Joseph Magliozzi
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Cohen D, Fernandez D, Lázaro-Diéguez F, Überheide B, Müsch A. Borg5 restricts contractility and motility in epithelial MDCK cells. J Cell Sci 2024; 137:jcs261705. [PMID: 39503295 PMCID: PMC11698036 DOI: 10.1242/jcs.261705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The Borg (or Cdc42EP) family consists of septin-binding proteins that are known to promote septin-dependent stress fibers and acto-myosin contractility. We show here that epithelial Borg5 (also known as Cdc42EP1) instead limits contractility, cell-cell adhesion tension and motility, as is required for the acquisition of columnar, isotropic cell morphology in mature MDCK monolayers. Borg5 depletion inhibited the development of the lateral F-actin cortex and stimulated microtubule-dependent leading-edge lamellae as well as radial stress fibers and, independently of the basal F-actin phenotype, caused anisotropy of apical surfaces within compacted monolayers. We determined that Borg5 limits colocalization of septin proteins with microtubules, and that like septin 2, Borg5 interacts with the rod-domain of myosin IIA (herein referring to the MYH9 heavy chain). The interaction of myosin IIA with Borg5 was reduced in the presence of septins. Because septins also mediate myosin activation, we propose that Borg5 limits contractility in MDCK cells in part by counteracting septin-associated myosin activity.
Collapse
Affiliation(s)
- David Cohen
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dawn Fernandez
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Beatrix Überheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Müsch
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Jędrzejczak P, Saramowicz K, Kuś J, Barczuk J, Rozpędek-Kamińska W, Siwecka N, Galita G, Wiese W, Majsterek I. SEPT9_i1 and Septin Dynamics in Oncogenesis and Cancer Treatment. Biomolecules 2024; 14:1194. [PMID: 39334960 PMCID: PMC11430720 DOI: 10.3390/biom14091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite significant advancements in the field of oncology, cancers still pose one of the greatest challenges of modern healthcare. Given the cytoskeleton's pivotal role in regulating mechanisms critical to cancer development, further studies of the cytoskeletal elements could yield new practical applications. Septins represent a group of relatively well-conserved GTP-binding proteins that constitute the fourth component of the cytoskeleton. Septin 9 (SEPT9) has been linked to a diverse spectrum of malignancies and appears to be the most notable septin member in that category. SEPT9 constitutes a biomarker of colorectal cancer (CRC) and has been positively correlated with a high clinical stage in breast cancer, cervical cancer, and head and neck squamous cell carcinoma. SEPT9_i1 represents the most extensively studied isoform of SEPT9, which substantially contributes to carcinogenesis, metastasis, and treatment resistance. Nevertheless, the mechanistic basis of SEPT9_i1 oncogenicity remains to be fully elucidated. In this review, we highlight SEPT9's and SEPT9_i1's structures and interactions with Hypoxia Inducible Factor α (HIF-1 α) and C-Jun N-Terminal Kinase (JNK), as well as discuss SEPT9_i1's contribution to aneuploidy, cell invasiveness, and taxane resistance-key phenomena in the progression of malignancies. Finally, we emphasize forchlorfenuron and other septin inhibitors as potential chemotherapeutics and migrastatics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (P.J.); (K.S.); (J.K.); (J.B.); (W.R.-K.); (N.S.); (G.G.); (W.W.)
| |
Collapse
|
5
|
Fu S, Li H, Wu Y, Wang J. Nano-/micro-scaled hydroxyapatite ceramic construction and the regulation of immune-associated osteogenic differentiation. J Biomed Mater Res A 2024; 112:193-209. [PMID: 37680167 DOI: 10.1002/jbm.a.37606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Hydroxyapatite (HA) bioceramic is a promising substitute for bone defects, and the surface properties are major factors that influence bioactivity and osteoinductivity. In this study, two kinds of HA bioceramics with nanoscale (n-HA) and microscale (m-HA) surface topography were designed to mimic the natural bone, thus enhancing the stimulation of osteogenic differentiation and revealing the potential mechanism. Compared to m-HA, n-HA owned a larger surface roughness, a stronger wettability, and reduced hardness and indentation modulus. Based on these properties, n-HA could maintain the conformation of vitronectin better than m-HA, which may contribute to higher cellular activities and a stronger promotion of osteogenic differentiation of mesenchymal stem cells (MSCs). Further RNA sequencing analysis compared the molecular expression between n-HA and m-HA. Six hundred twenty-seven differentially expressed genes were identified in MSCs, and 17 upregulated genes and 610 downregulated genes were included when n-HA compared to m-HA. The GO cluster analysis and enriched Kyoto encyclopedia of genes and genome signaling pathways revealed a close correlation with the immune process in both upregulated (chemokine signaling pathway and cytokine-cytokine receptor interaction) and downregulated pathways (osteoclasts differentiation). It suggested that the nanoscale surface topography of HA enhanced the osteoinductivity of MSCs and could not be separated from its regulation of immune function and the retention of adsorbed protein conformation.
Collapse
Affiliation(s)
- Shijia Fu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Huishan Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yue Wu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
6
|
Zhovmer AS, Manning A, Smith C, Nguyen A, Prince O, Sáez PJ, Ma X, Tsygankov D, Cartagena-Rivera AX, Singh NA, Singh RK, Tabdanov ED. Septins provide microenvironment sensing and cortical actomyosin partitioning in motile amoeboid T lymphocytes. SCIENCE ADVANCES 2024; 10:eadi1788. [PMID: 38170778 DOI: 10.1126/sciadv.adi1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The all-terrain motility of lymphocytes in tissues and tissue-like gels is best described as amoeboid motility. For amoeboid motility, lymphocytes do not require specific biochemical or structural modifications to the surrounding extracellular matrix. Instead, they rely on changing shape and steric interactions with the microenvironment. However, the exact mechanism of amoeboid motility remains elusive. Here, we report that septins participate in amoeboid motility of T cells, enabling the formation of F-actin and α-actinin-rich cortical rings at the sites of cell cortex-indenting collisions with the extracellular matrix. Cortical rings compartmentalize cells into chains of spherical segments that are spatially conformed to the available lumens, forming transient "hourglass"-shaped steric locks onto the surrounding collagen fibers. The steric lock facilitates pressure-driven peristaltic propulsion of cytosolic content by individually contracting cell segments. Our results suggest that septins provide microenvironment-guided partitioning of actomyosin contractility and steric pivots required for amoeboid motility of T cells in tissue-like microenvironments.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Olivia Prince
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, and Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xuefei Ma
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Niloy A Singh
- Department of Hematology Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Rakesh K Singh
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey-Hummelstown, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
7
|
Nakazawa K, Chauvin B, Mangenot S, Bertin A. Reconstituted in vitro systems to reveal the roles and functions of septins. J Cell Sci 2023; 136:jcs259448. [PMID: 37815088 DOI: 10.1242/jcs.259448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.
Collapse
Affiliation(s)
- Koyomi Nakazawa
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Brieuc Chauvin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Stéphanie Mangenot
- Laboratoire Matière et Systèmes Complexes , Université de Paris Cité, CNRS UMR 7057, 45 Rue des Saint Pères, 75006 Paris, France
| | - Aurélie Bertin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| |
Collapse
|
8
|
Zhovmer AS, Manning A, Smith C, Wang J, Ma X, Tsygankov D, Dokholyan NV, Cartagena-Rivera AX, Singh RK, Tabdanov ED. Septins Enable T Cell Contact Guidance via Amoeboid-Mesenchymal Switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559597. [PMID: 37808814 PMCID: PMC10557721 DOI: 10.1101/2023.09.26.559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lymphocytes exit circulation and enter in-tissue guided migration toward sites of tissue pathologies, damage, infection, or inflammation. By continuously sensing and adapting to the guiding chemo-mechano-structural properties of the tissues, lymphocytes dynamically alternate and combine their amoeboid (non-adhesive) and mesenchymal (adhesive) migration modes. However, which mechanisms guide and balance different migration modes are largely unclear. Here we report that suppression of septins GTPase activity induces an abrupt amoeboid-to-mesenchymal transition of T cell migration mode, characterized by a distinct, highly deformable integrin-dependent immune cell contact guidance. Surprisingly, the T cell actomyosin cortex contractility becomes diminished, dispensable and antagonistic to mesenchymal-like migration mode. Instead, mesenchymal-like T cells rely on microtubule stabilization and their non-canonical dynein motor activity for high fidelity contact guidance. Our results establish septin's GTPase activity as an important on/off switch for integrin-dependent migration of T lymphocytes, enabling their dynein-driven fluid-like mesenchymal propulsion along the complex adhesion cues.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jian Wang
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuefei Ma
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, The Pennsylvania State University Hershey-Hummelstown, PA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Rakesh K Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
9
|
Okletey J, Angelis D, Jones TM, Montagna C, Spiliotis ET. An oncogenic isoform of septin 9 promotes the formation of juxtanuclear invadopodia by reducing nuclear deformability. Cell Rep 2023; 42:112893. [PMID: 37516960 PMCID: PMC10530659 DOI: 10.1016/j.celrep.2023.112893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/17/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known. Here, we report that the oncogenic septin 9 isoform 1 (SEPT9_i1) is a component of breast cancer invadopodia. SEPT9_i1 depletion diminishes invadopodium formation and the clustering of the invadopodium precursor components TKS5 and cortactin. This phenotype is characterized by deformed nuclei and nuclear envelopes with folds and grooves. We show that SEPT9_i1 localizes to the nuclear envelope and juxtanuclear invadopodia. Moreover, exogenous lamin A rescues nuclear morphology and juxtanuclear TKS5 clusters. Importantly, SEPT9_i1 is required for the amplification of juxtanuclear invadopodia, which is induced by the epidermal growth factor. We posit that nuclei of low deformability favor the formation of juxtanuclear invadopodia in a SEPT9_i1-dependent manner, which functions as a tunable mechanism for overcoming ECM impenetrability.
Collapse
Affiliation(s)
- Joshua Okletey
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Dimitrios Angelis
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Tia M Jones
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Cristina Montagna
- Department of Radiology and Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Tomasso MR, Padrick SB. BORG family proteins in physiology and human disease. Cytoskeleton (Hoboken) 2023; 80:182-198. [PMID: 37403807 DOI: 10.1002/cm.21768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
The binder of rho GTPases (BORG)/Cdc42 effector proteins (Cdc42EP) family is composed of five Rho GTPase binding proteins whose functions and mechanism of actions are of emerging interest. Here, we review recent findings pertaining to the family as a whole and consider how these change our understanding of cellular organization. Recent studies have implicated BORGs in both fundamental physiology and in human diseases, mainly cancers. An emerging pattern suggests that BORG family members cancer-promoting properties are related to their ability to regulate the cytoskeleton, with many impacting the organization of acto-myosin stress fibers. This is consistent with the broader literature indicating that BORG family members are regulators of both the septin and actin cytoskeleton networks. The exact mechanism through which BORGs modify the cytoskeleton is not clear, but we consider here a few data-supported and speculative possibilities. Finally, we delve into how the Rho GTPase Cdc42 modifies BORG function in cells. This remains open-ended as Cdc42's effects on BORGs appear cell type- and cell state-dependent. Collectively, these data point to the importance of the BORG family and suggest broader themes in their function and regulation.
Collapse
Affiliation(s)
- Meagan R Tomasso
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Okletey J, Angelis D, Jones TM, Montagna C, Spiliotis ET. An oncogenic isoform of septin 9 promotes the formation of juxtanuclear invadopodia by reducing nuclear deformability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545473. [PMID: 37398172 PMCID: PMC10312791 DOI: 10.1101/2023.06.18.545473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known. Here, we report that the oncogenic septin 9 isoform 1 (SEPT9_i1) is a component of breast cancer invadopodia. SEPT9_i1 depletion diminishes invadopodia formation and the clustering of invadopodia precursor components TKS5 and cortactin. This phenotype is characterized by deformed nuclei, and nuclear envelopes with folds and grooves. We show that SEPT9_i1 localizes to the nuclear envelope and juxtanuclear invadopodia. Moreover, exogenous lamin A rescues nuclear morphology and juxtanuclear TKS5 clusters. Importantly, SEPT9_i1 is required for the amplification of juxtanuclear invadopodia, which is induced by the epidermal growth factor. We posit that nuclei of low deformability favor the formation of juxtanuclear invadopodia in a SEPT9_i1-dependent manner, which functions as a tunable mechanism for overcoming ECM impenetrability. Highlights The oncogenic SEPT9_i1 is enriched in breast cancer invadopodia in 2D and 3D ECMSEPT9_i1 promotes invadopodia precursor clustering and invadopodia elongationSEPT9_i1 localizes to the nuclear envelope and reduces nuclear deformabilitySEPT9_i1 is required for EGF-induced amplification of juxtanuclear invadopodia. eTOC Blurb Invadopodia promote the invasion of metastatic cancers. The nucleus is a mechanosensory organelle that determines migratory strategies, but how it crosstalks with invadopodia is unknown. Okletey et al show that the oncogenic isoform SEPT9_i1 promotes nuclear envelope stability and the formation of invadopodia at juxtanuclear areas of the plasma membrane.
Collapse
|
12
|
K S V Castro D, V D Rosa H, Mendonça DC, Cavini IA, P U Araujo A, Garratt RC. Dissecting the binding interface of the septin polymerization enhancer Borg BD3. J Mol Biol 2023; 435:168132. [PMID: 37121395 DOI: 10.1016/j.jmb.2023.168132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The molecular basis for septin filament assembly has begun to emerge over recent years. These filaments are essential for many septin functions which depend on their association with biological membranes or components of the cytoskeleton. Much less is known about how septins specifically interact with their binding partners. Here we describe the essential role played by the C-terminal domains in both septin polymerization and their association with the BD3 motif of the Borg family of Cdc42 effector proteins. We provide a detailed description, at the molecular level, of a previously reported interaction between BD3 and the NC-interface between SEPT6 and SEPT7. Upon ternary complex formation, the heterodimeric coiled coil formed by the C-terminal domains of the septins becomes stabilized and filament formation is promoted under conditions of ionic strength/protein concentration which are not normally permissible, likely by favouring hexamers over smaller oligomeric states. This demonstrates that binding partners, such as Borg's, have the potential to control filament assembly/disassembly in vivo in a way which can be emulated in vitro by altering the ionic strength. Experimentally validated models indicate that the BD3 peptide lies antiparallel to the coiled coil and is stabilized by a mixture of polar and apolar contacts. At its center, an LGPS motif, common to all human Borg sequences, interacts with charged residues from both helices of the coiled coil (K368 from SEPT7 and the conserved E354 from SEPT6) suggesting a universal mechanism which governs Borg-septin interactions.
Collapse
Affiliation(s)
- Danielle K S V Castro
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Higor V D Rosa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Deborah C Mendonça
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Ana P U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
| |
Collapse
|
13
|
Martins CS, Taveneau C, Castro-Linares G, Baibakov M, Buzhinsky N, Eroles M, Milanović V, Omi S, Pedelacq JD, Iv F, Bouillard L, Llewellyn A, Gomes M, Belhabib M, Kuzmić M, Verdier-Pinard P, Lee S, Badache A, Kumar S, Chandre C, Brasselet S, Rico F, Rossier O, Koenderink GH, Wenger J, Cabantous S, Mavrakis M. Human septins organize as octamer-based filaments and mediate actin-membrane anchoring in cells. J Cell Biol 2023; 222:213778. [PMID: 36562751 PMCID: PMC9802686 DOI: 10.1083/jcb.202203016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Septins are cytoskeletal proteins conserved from algae and protists to mammals. A unique feature of septins is their presence as heteromeric complexes that polymerize into filaments in solution and on lipid membranes. Although animal septins associate extensively with actin-based structures in cells, whether septins organize as filaments in cells and if septin organization impacts septin function is not known. Customizing a tripartite split-GFP complementation assay, we show that all septins decorating actin stress fibers are octamer-containing filaments. Depleting octamers or preventing septins from polymerizing leads to a loss of stress fibers and reduced cell stiffness. Super-resolution microscopy revealed septin fibers with widths compatible with their organization as paired septin filaments. Nanometer-resolved distance measurements and single-protein tracking further showed that septin filaments are membrane bound and largely immobilized. Finally, reconstitution assays showed that septin filaments mediate actin-membrane anchoring. We propose that septin organization as octamer-based filaments is essential for septin function in anchoring and stabilizing actin filaments at the plasma membrane.
Collapse
Affiliation(s)
- Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France.,Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Cyntia Taveneau
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Mikhail Baibakov
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Nicolas Buzhinsky
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Mar Eroles
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Violeta Milanović
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Francois Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Léa Bouillard
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Alexander Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mira Kuzmić
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Stacey Lee
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Sophie Brasselet
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Felix Rico
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Jerome Wenger
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| |
Collapse
|
14
|
Kho M, Hladyshau S, Tsygankov D, Nie S. Coordinated regulation of Cdc42ep1, actin, and septin filaments during neural crest cell migration. Front Cell Dev Biol 2023; 11:1106595. [PMID: 36923257 PMCID: PMC10009165 DOI: 10.3389/fcell.2023.1106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
The septin cytoskeleton has been demonstrated to interact with other cytoskeletal components to regulate various cellular processes, including cell migration. However, the mechanisms of how septin regulates cell migration are not fully understood. In this study, we use the highly migratory neural crest cells of frog embryos to examine the role of septin filaments in cell migration. We found that septin filaments are required for the proper migration of neural crest cells by controlling both the speed and the direction of cell migration. We further determined that septin filaments regulate these features of cell migration by interacting with actin stress fibers. In neural crest cells, septin filaments co-align with actin stress fibers, and the loss of septin filaments leads to impaired stability and contractility of actin stress fibers. In addition, we showed that a partial loss of septin filaments leads to drastic changes in the orientations of newly formed actin stress fibers, suggesting that septin filaments help maintain the persistent orientation of actin stress fibers during directed cell migration. Lastly, our study revealed that these activities of septin filaments depend on Cdc42ep1, which colocalizes with septin filaments in the center of neural crest cells. Cdc42ep1 interacts with septin filaments in a reciprocal manner, with septin filaments recruiting Cdc42ep1 to the cell center and Cdc42ep1 supporting the formation of septin filaments.
Collapse
Affiliation(s)
- Mary Kho
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Siarhei Hladyshau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Shuyi Nie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
15
|
Benoit B, Poüs C, Baillet A. Septins as membrane influencers: direct play or in association with other cytoskeleton partners. Front Cell Dev Biol 2023; 11:1112319. [PMID: 36875762 PMCID: PMC9982393 DOI: 10.3389/fcell.2023.1112319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
The cytoskeleton comprises three polymerizing structures that have been studied for a long time, actin microfilaments, microtubules and intermediate filaments, plus more recently investigated dynamic assemblies like septins or the endocytic-sorting complex required for transport (ESCRT) complex. These filament-forming proteins control several cell functions through crosstalks with each other and with membranes. In this review, we report recent works that address how septins bind to membranes, and influence their shaping, organization, properties and functions, either by binding to them directly or indirectly through other cytoskeleton elements.
Collapse
Affiliation(s)
- Béatrice Benoit
- INSERM UMR-S 1193, UFR de Pharmacie, University Paris-Saclay, Orsay, France
| | - Christian Poüs
- INSERM UMR-S 1193, UFR de Pharmacie, University Paris-Saclay, Orsay, France.,Laboratoire de Biochimie-Hormonologie, Hôpital Antoine Béclère, AP-HP, Hôpitaux Universitaires Paris-Saclay, Clamart, France
| | - Anita Baillet
- INSERM UMR-S 1193, UFR de Pharmacie, University Paris-Saclay, Orsay, France
| |
Collapse
|
16
|
Baillet A, McMurray MA, Oakes PW. Meeting report - the ever-fascinating world of septins. J Cell Sci 2021; 134:jcs259552. [PMID: 34910818 PMCID: PMC10658896 DOI: 10.1242/jcs.259552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Septins are GTP-binding proteins that assemble into hetero-oligomers. They can interact with each other end-to-end to form filaments, making them the fourth element of the cytoskeleton. To update the current knowledge on the ever-increasing implications of these fascinating proteins in cellular functions, a hundred expert scientists from across the globe gathered from 12 to 15 October 2021 in Berlin for the first hybrid-format (on site and virtual) EMBO workshop Molecular and Cell Biology of Septins.
Collapse
Affiliation(s)
- Anita Baillet
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Michael A. McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick W. Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153USA
| |
Collapse
|
17
|
Neubauer K, Zieger B. Role of Septins in Endothelial Cells and Platelets. Front Cell Dev Biol 2021; 9:768409. [PMID: 34858990 PMCID: PMC8632023 DOI: 10.3389/fcell.2021.768409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Septins are conserved cytoskeletal GTP-binding proteins identified in almost all eukaryotes except higher plants. Mammalian septins comprise 13 family members with either ubiquitous or organ- and tissue-specific expression patterns. They form filamentous oligomers and complexes with other proteins to serve as diffusions barrier and/or multi-molecular scaffolds to function in a physiologically regulated manner. Diverse septins are highly expressed in endothelial cells and platelets, which play an important role in hemostasis, a process to prevent blood loss after vascular injury. Endothelial septins are involved in cellular processes such as exocytosis and in processes concerning organismal level, like angiogenesis. Septins are additionally found in endothelial cell-cell junctions where their presence is required to maintain the integrity of the barrier function of vascular endothelial monolayers. In platelets, septins are important for activation, degranulation, adhesion, and aggregation. They have been identified as mediators of distinct platelet functions and being essential in primary and secondary hemostatic processes. Septin-knockout mouse studies show the relevance of septins in several aspects of hemostasis. This is in line with reports that dysregulation of septins is clinically relevant in human bleeding disorders. The precise function of septins in the biology of endothelial cells and platelets remains poorly understood. The following mini-review highlights the current knowledge about the role of septin cytoskeleton in regulating critical functions in these two cell types.
Collapse
Affiliation(s)
- Katharina Neubauer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Russo G, Krauss M. Septin Remodeling During Mammalian Cytokinesis. Front Cell Dev Biol 2021; 9:768309. [PMID: 34805175 PMCID: PMC8600141 DOI: 10.3389/fcell.2021.768309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Cytokinesis mediates the final separation of a mother cell into two daughter cells. Septins are recruited to the cleavage furrow at an early stage. During cytokinetic progression the septin cytoskeleton is constantly rearranged, ultimately leading to a concentration of septins within the intercellular bridge (ICB), and to the formation of two rings adjacent to the midbody that aid ESCRT-dependent abscission. The molecular mechanisms underlying this behavior are poorly understood. Based on observations that septins can associate with actin, microtubules and associated motors, we review here established roles of septins in mammalian cytokinesis, and discuss, how septins may support cytokinetic progression by exerting their functions at particular sites. Finally, we discuss how this might be assisted by phosphoinositide-metabolizing enzymes.
Collapse
Affiliation(s)
- Giulia Russo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|