1
|
Tsutaya T, Sawafuji R, Taurozzi AJ, Fagernäs Z, Patramanis I, Troché G, Mackie M, Gakuhari T, Oota H, Tsai CH, Olsen JV, Kaifu Y, Chang CH, Cappellini E, Welker F. A male Denisovan mandible from Pleistocene Taiwan. Science 2025; 388:176-180. [PMID: 40208980 DOI: 10.1126/science.ads3888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/26/2025] [Indexed: 04/12/2025]
Abstract
Denisovans are an extinct hominin group defined by ancient genomes of Middle to Late Pleistocene fossils from southern Siberia. Although genomic evidence suggests their widespread distribution throughout eastern Asia and possibly Oceania, so far only a few fossils from the Altai and Tibet are confidently identified molecularly as Denisovan. We identified a hominin mandible (Penghu 1) from Taiwan (10,000 to 70,000 years ago or 130,000 to 190,000 years ago) as belonging to a male Denisovan by applying ancient protein analysis. We retrieved 4241 amino acid residues and identified two Denisovan-specific variants. The increased fossil sample of Denisovans demonstrates their wider distribution, including warm and humid regions, as well as their shared distinct robust dentognathic traits that markedly contrast with their sister group, Neanderthals.
Collapse
Affiliation(s)
- Takumi Tsutaya
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Rikai Sawafuji
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | | | - Zandra Fagernäs
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Gaudry Troché
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Meaghan Mackie
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- School of Archaeology, University College Dublin, Dublin, Ireland
- Archaeobiomics, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Takashi Gakuhari
- Kitasato University School of Medicine, Kanagawa, Japan
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Ishikawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Ishikawa, Japan
| | - Hiroki Oota
- Kitasato University School of Medicine, Kanagawa, Japan
- Graduate School of Science, The University of Tokyo
| | - Cheng-Hsiu Tsai
- Department of Life Science and Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Geology, National Museum of Nature and Science, Tsukuba, Japan
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Yousuke Kaifu
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Chun-Hsiang Chang
- Center of Science, National Museum of Natural Science, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | | | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Patin E, Quintana-Murci L. Tracing the Evolution of Human Immunity Through Ancient DNA. Annu Rev Immunol 2025; 43:57-82. [PMID: 39705165 DOI: 10.1146/annurev-immunol-082323-024638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Infections have imposed strong selection pressures throughout human evolution, making the study of natural selection's effects on immunity genes highly complementary to disease-focused research. This review discusses how ancient DNA studies, which have revolutionized evolutionary genetics, increase our understanding of the evolution of human immunity. These studies have shown that interbreeding between modern humans and Neanderthals or Denisovans has influenced present-day immune responses, particularly to viruses. Additionally, ancient genomics enables the tracking of how human immunity has evolved across cultural transitions, highlighting strong selection since the Bronze Age in Europe (<4,500 years) and potential genetic adaptations to epidemics raging during the Middle Ages and the European colonization of the Americas. Furthermore, ancient genomic studies suggest that the genetic risk for noninfectious immune disorders has gradually increased over millennia because alleles associated with increased risk for autoimmunity and inflammation once conferred resistance to infections. The challenge now is to extend these findings to diverse, non-European populations and to provide a more global understanding of the evolution of human immunity.
Collapse
Affiliation(s)
- Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Human Evolutionary Genetics Unit, Paris, France;
| | - Lluis Quintana-Murci
- Human Genomics and Evolution, Collège de France, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Human Evolutionary Genetics Unit, Paris, France;
| |
Collapse
|
3
|
Larena M, Chowdhury AE, Kels MJT, Tätte K, Metspalu M, Schlebusch CM, Garcia-Bertrand R, Herrera RJ. Genetic Origins of the Kiritimati Population from Central-Eastern Micronesia. Genome Biol Evol 2025; 17:evaf046. [PMID: 40065639 PMCID: PMC11937891 DOI: 10.1093/gbe/evaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
The migration of Austronesian-speaking populations through Oceania has intrigued researchers for decades. The Kiribati islands, situated along the boundaries of Micronesia and Polynesia, provide a crucial link in this migration. We analyzed the genome-wide data of the Kiritimati population of Kiribati to uncover their genetic origins and connections with other Oceanian groups. Our study reveals that the Kiritimati population primarily exhibits Remote Oceanian-related ancestry associated with ancient Lapita and present-day Polynesian populations. In addition, our identity-by-descent analysis identifies populations from the coastal southern Philippines as their closest relatives in Island Southeast Asia. The genetic links between Kiritimati, ancient Lapita, and modern Polynesians underscore the shared ancestry and continuous gene flow across these regions. This genetic continuity and ongoing links are supported by linguistic and cultural evidence, illustrating a complex history of migration and admixture in Oceania.
Collapse
Affiliation(s)
- Maximilian Larena
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala SE-752 36, Sweden
| | - Afifa Enam Chowdhury
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala SE-752 36, Sweden
| | - Ma Junaliah Tuazon Kels
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala SE-752 36, Sweden
| | - Kai Tätte
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala SE-752 36, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- SciLife Lab, Uppsala, Sweden
| | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| |
Collapse
|
4
|
Tagore D, Akey JM. Archaic hominin admixture and its consequences for modern humans. Curr Opin Genet Dev 2025; 90:102280. [PMID: 39577372 PMCID: PMC11770379 DOI: 10.1016/j.gde.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
As anatomically modern humans dispersed out of Africa, they encountered and mated with now extinct hominins, including Neanderthals and Denisovans. It is now well established that all non-African individuals derive approximately 2% of their genome from Neanderthal ancestors and individuals of Melanesian and Australian aboriginal ancestry inherited an additional 2%-5% of their genomes from Denisovan ancestors. Attention has started to shift from documenting amounts of archaic admixture and identifying introgressed segments to understanding their molecular, phenotypic, and evolutionary consequences and refining models of human history. Here, we review recent insights into admixture between modern and archaic humans, emphasizing methodological innovations and the functional and phenotypic effects Neanderthal and Denisovan sequences have in contemporary individuals.
Collapse
Affiliation(s)
- Debashree Tagore
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton 08540, USA. https://twitter.com/@TagoreDebashree
| | - Joshua M Akey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton 08540, USA.
| |
Collapse
|
5
|
Ongaro L, Huerta-Sanchez E. A history of multiple Denisovan introgression events in modern humans. Nat Genet 2024; 56:2612-2622. [PMID: 39501127 DOI: 10.1038/s41588-024-01960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/25/2024] [Indexed: 12/12/2024]
Abstract
The identification of a new hominin group in the Altai mountains called Denisovans was one of the most exciting discoveries in human evolution in the last decade. Unlike Neanderthal remains, the Denisovan fossil record consists of only a finger bone, jawbone, teeth and skull fragments. Leveraging the surviving Denisovan segments in modern human genomes has uncovered evidence of at least three introgression events from distinct Denisovan populations into modern humans in the past. Each of them presents different levels of relatedness to the sequenced Altai Denisovan, indicating a complex relationship between these sister lineages. Here we review the evidence suggesting that several Denisovan populations, who likely had an extensive geographical range, were adapted to distinct environments and introgressed into modern humans multiple times. We further discuss how archaic variants have been affected by demographic history, negative and positive selection and close by proposing possible new lines of future research.
Collapse
Affiliation(s)
- Linda Ongaro
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Emilia Huerta-Sanchez
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Witt KE, Villanea FA. Computational Genomics and Its Applications to Anthropological Questions. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70010. [PMID: 40071816 PMCID: PMC11898561 DOI: 10.1002/ajpa.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 03/15/2025]
Abstract
The advent of affordable genome sequencing and the development of new computational tools have established a new era of genomic knowledge. Sequenced human genomes number in the tens of thousands, including thousands of ancient human genomes. The abundance of data has been met with new analysis tools that can be used to understand populations' demographic and evolutionary histories. Thus, a variety of computational methods now exist that can be leveraged to answer anthropological questions. This includes novel likelihood and Bayesian methods, machine learning techniques, and a vast array of population simulators. These computational tools provide powerful insights gained from genomic datasets, although they are generally inaccessible to those with less computational experience. Here, we outline the theoretical workings behind computational genomics methods, limitations and other considerations when applying these computational methods, and examples of how computational methods have already been applied to anthropological questions. We hope this review will empower other anthropologists to utilize these powerful tools in their own research.
Collapse
Affiliation(s)
- Kelsey E. Witt
- Department of Genetics and Biochemistry and Center for Human GeneticsClemson UniversityClemsonSouth CarolinaUSA
| | | |
Collapse
|
7
|
Xia H, Zhang D, Wang J, Fagernäs Z, Li T, Li Y, Yao J, Lin D, Troché G, Smith GM, Chen X, Cheng T, Shen X, Han Y, Olsen JV, Shen Z, Pei Z, Hublin JJ, Chen F, Welker F. Middle and Late Pleistocene Denisovan subsistence at Baishiya Karst Cave. Nature 2024; 632:108-113. [PMID: 38961285 PMCID: PMC11291277 DOI: 10.1038/s41586-024-07612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
Genetic and fragmented palaeoanthropological data suggest that Denisovans were once widely distributed across eastern Eurasia1-3. Despite limited archaeological evidence, this indicates that Denisovans were capable of adapting to a highly diverse range of environments. Here we integrate zooarchaeological and proteomic analyses of the late Middle to Late Pleistocene faunal assemblage from Baishiya Karst Cave on the Tibetan Plateau, where a Denisovan mandible and Denisovan sedimentary mitochondrial DNA were found3,4. Using zooarchaeology by mass spectrometry, we identify a new hominin rib specimen that dates to approximately 48-32 thousand years ago (layer 3). Shotgun proteomic analysis taxonomically assigns this specimen to the Denisovan lineage, extending their presence at Baishiya Karst Cave well into the Late Pleistocene. Throughout the stratigraphic sequence, the faunal assemblage is dominated by Caprinae, together with megaherbivores, carnivores, small mammals and birds. The high proportion of anthropogenic modifications on the bone surfaces suggests that Denisovans were the primary agent of faunal accumulation. The chaîne opératoire of carcass processing indicates that animal taxa were exploited for their meat, marrow and hides, while bone was also used as raw material for the production of tools. Our results shed light on the behaviour of Denisovans and their adaptations to the diverse and fluctuating environments of the late Middle and Late Pleistocene of eastern Eurasia.
Collapse
Affiliation(s)
- Huan Xia
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
- Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing, China
- College of Ecology, Lanzhou University, Lanzhou, China
| | - Dongju Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China.
- Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing, China.
| | - Jian Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
- School of Earth Sciences, Lanzhou University, Lanzhou, China
| | - Zandra Fagernäs
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ting Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Yuanxin Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Juanting Yao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Dongpeng Lin
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Gaudry Troché
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Geoff M Smith
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Department of Archaeology, University of Reading, Reading, UK
| | - Xiaoshan Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Ting Cheng
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Xuke Shen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Yuanyuan Han
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
- Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing, China
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Zhongwei Shen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Zhiqi Pei
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
- Gansu Provincial Museum, Lanzhou, China
| | - Jean-Jacques Hublin
- Chaire de Paléoanthropologie, CIRB, Collège de France, Université PSL, CNRS, Paris, France
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fahu Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Key Scientific Research Base of Bioarchaeology in Cold and Arid Regions (National Cultural Heritage Administration), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China.
- Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Yermakovich D, André M, Brucato N, Kariwiga J, Leavesley M, Pankratov V, Mondal M, Ricaut FX, Dannemann M. Denisovan admixture facilitated environmental adaptation in Papua New Guinean populations. Proc Natl Acad Sci U S A 2024; 121:e2405889121. [PMID: 38889149 PMCID: PMC11214076 DOI: 10.1073/pnas.2405889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Neandertals and Denisovans, having inhabited distinct regions in Eurasia and possibly Oceania for over 200,000 y, experienced ample time to adapt to diverse environmental challenges these regions presented. Among present-day human populations, Papua New Guineans (PNG) stand out as one of the few carrying substantial amounts of both Neandertal and Denisovan DNA, a result of past admixture events with these archaic human groups. This study investigates the distribution of introgressed Denisovan and Neandertal DNA within two distinct PNG populations, residing in the highlands of Mt Wilhelm and the lowlands of Daru Island. These locations exhibit unique environmental features, some of which may parallel the challenges that archaic humans once confronted and adapted to. Our results show that PNG highlanders carry higher levels of Denisovan DNA compared to PNG lowlanders. Among the Denisovan-like haplotypes with higher frequencies in highlander populations, those exhibiting the greatest frequency difference compared to lowlander populations also demonstrate more pronounced differences in population frequencies than frequency-matched nonarchaic variants. Two of the five most highly differentiated of those haplotypes reside in genomic areas linked to brain development genes. Conversely, Denisovan-like haplotypes more frequent in lowlanders overlap with genes associated with immune response processes. Our findings suggest that Denisovan DNA has provided genetic variation associated with brain biology and immune response to PNG genomes, some of which might have facilitated adaptive processes to environmental challenges.
Collapse
Affiliation(s)
- Danat Yermakovich
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Mathilde André
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Nicolas Brucato
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Toulouse Institut National Polytechnique, Université Toulouse 3–Paul Sabatier, cedex 9, Toulouse31062, France
| | - Jason Kariwiga
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
- School of Social Science, University of Queensland, St. Lucia, QLD4072, Australia
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
- The Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage & College of Arts, Society and Education, James Cook University, Cairns, QLD4870, Australia
| | - Vasili Pankratov
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Mayukh Mondal
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel24118, Germany
| | - François-Xavier Ricaut
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Toulouse Institut National Polytechnique, Université Toulouse 3–Paul Sabatier, cedex 9, Toulouse31062, France
| | - Michael Dannemann
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| |
Collapse
|
9
|
Liu X, Koyama S, Tomizuka K, Takata S, Ishikawa Y, Ito S, Kosugi S, Suzuki K, Hikino K, Koido M, Koike Y, Horikoshi M, Gakuhari T, Ikegawa S, Matsuda K, Momozawa Y, Ito K, Kamatani Y, Terao C. Decoding triancestral origins, archaic introgression, and natural selection in the Japanese population by whole-genome sequencing. SCIENCE ADVANCES 2024; 10:eadi8419. [PMID: 38630824 PMCID: PMC11023554 DOI: 10.1126/sciadv.adi8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
We generated Japanese Encyclopedia of Whole-Genome/Exome Sequencing Library (JEWEL), a high-depth whole-genome sequencing dataset comprising 3256 individuals from across Japan. Analysis of JEWEL revealed genetic characteristics of the Japanese population that were not discernible using microarray data. First, rare variant-based analysis revealed an unprecedented fine-scale genetic structure. Together with population genetics analysis, the present-day Japanese can be decomposed into three ancestral components. Second, we identified unreported loss-of-function (LoF) variants and observed that for specific genes, LoF variants appeared to be restricted to a more limited set of transcripts than would be expected by chance, with PTPRD as a notable example. Third, we identified 44 archaic segments linked to complex traits, including a Denisovan-derived segment at NKX6-1 associated with type 2 diabetes. Most of these segments are specific to East Asians. Fourth, we identified candidate genetic loci under recent natural selection. Overall, our work provided insights into genetic characteristics of the Japanese population.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sadaaki Takata
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuji Ito
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Department of Orthopedic Surgery, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shunichi Kosugi
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kunihiko Suzuki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinao Koike
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
| | - Kochi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
10
|
Martin JM, Leece AB, Baker SE, Herries AIR, Strait DS. A lineage perspective on hominin taxonomy and evolution. Evol Anthropol 2024; 33:e22018. [PMID: 38217397 DOI: 10.1002/evan.22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
An uncritical reliance on the phylogenetic species concept has led paleoanthropologists to become increasingly typological in their delimitation of new species in the hominin fossil record. As a practical matter, this approach identifies species as diagnosably distinct groups of fossils that share a unique suite of morphological characters but, ontologically, a species is a metapopulation lineage segment that extends from initial divergence to eventual extinction or subsequent speciation. Working from first principles of species concept theory, it is clear that a reliance on morphological diagnosabilty will systematically overestimate species diversity in the fossil record; because morphology can evolve within a lineage segment, it follows that early and late populations of the same species can be diagnosably distinct from each other. We suggest that a combination of morphology and chronology provides a more robust test of the single-species null hypothesis than morphology alone.
Collapse
Affiliation(s)
- Jesse M Martin
- Palaeoanthropology Lab, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
| | - A B Leece
- Palaeoanthropology Lab, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
- Geoarchaeology and Archaeometry Research Group, Southern Cross Geoscience, Southern Cross University, Lismore, New South Wales, Australia
| | - Stephanie E Baker
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
| | - Andy I R Herries
- Palaeoanthropology Lab, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
| | - David S Strait
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Zeberg H, Jakobsson M, Pääbo S. The genetic changes that shaped Neandertals, Denisovans, and modern humans. Cell 2024; 187:1047-1058. [PMID: 38367615 DOI: 10.1016/j.cell.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 02/19/2024]
Abstract
Modern human ancestors diverged from the ancestors of Neandertals and Denisovans about 600,000 years ago. Until about 40,000 years ago, these three groups existed in parallel, occasionally met, and exchanged genes. A critical question is why modern humans, and not the other two groups, survived, became numerous, and developed complex cultures. Here, we discuss genetic differences among the groups and some of their functional consequences. As more present-day genome sequences become available from diverse groups, we predict that very few, if any, differences will distinguish all modern humans from all Neandertals and Denisovans. We propose that the genetic basis of what constitutes a modern human is best thought of as a combination of genetic features, where perhaps none of them is present in each and every present-day individual.
Collapse
Affiliation(s)
- Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden.
| | - Mattias Jakobsson
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Okinawa Institute of Science and Technology, Onnason 904-0495, Okinawa, Japan.
| |
Collapse
|
12
|
Peyrégne S, Slon V, Kelso J. More than a decade of genetic research on the Denisovans. Nat Rev Genet 2024; 25:83-103. [PMID: 37723347 DOI: 10.1038/s41576-023-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
Denisovans, a group of now extinct humans who lived in Eastern Eurasia in the Middle and Late Pleistocene, were first identified from DNA sequences just over a decade ago. Only ten fragmentary remains from two sites have been attributed to Denisovans based entirely on molecular information. Nevertheless, there has been great interest in using genetic data to understand Denisovans and their place in human history. From the reconstruction of a single high-quality genome, it has been possible to infer their population history, including events of admixture with other human groups. Additionally, the identification of Denisovan DNA in the genomes of present-day individuals has provided insights into the timing and routes of dispersal of ancient modern humans into Asia and Oceania, as well as the contributions of archaic DNA to the physiology of present-day people. In this Review, we synthesize more than a decade of research on Denisovans, reconcile controversies and summarize insights into their population history and phenotype. We also highlight how our growing knowledge about Denisovans has provided insights into our own evolutionary history.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Viviane Slon
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
13
|
Wroblewski TH, Witt KE, Lee SB, Malhi RS, Peede D, Huerta-Sánchez E, Villanea FA, Claw KG. Pharmacogenetic Variation in Neanderthals and Denisovans and Implications for Human Health and Response to Medications. Genome Biol Evol 2023; 15:evad222. [PMID: 38051947 PMCID: PMC10727477 DOI: 10.1093/gbe/evad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Modern humans carry both Neanderthal and Denisovan (archaic) genome elements that are part of the human gene pool and affect the life and health of living individuals. The impact of archaic DNA may be particularly evident in pharmacogenes-genes responsible for the processing of exogenous substances such as food, pollutants, and medications-as these can relate to changing environmental effects, and beneficial variants may have been retained as modern humans encountered new environments. However, the health implications and contribution of archaic ancestry in pharmacogenes of modern humans remain understudied. Here, we explore 11 key cytochrome P450 genes (CYP450) involved in 75% of all drug metabolizing reactions in three Neanderthal and one Denisovan individuals and examine archaic introgression in modern human populations. We infer the metabolizing efficiency of these 11 CYP450 genes in archaic individuals and find important predicted phenotypic differences relative to modern human variants. We identify several single nucleotide variants shared between archaic and modern humans in each gene, including some potentially function-altering mutations in archaic CYP450 genes, which may result in altered metabolism in living people carrying these variants. We also identified several variants in the archaic CYP450 genes that are novel and unique to archaic humans as well as one gene, CYP2B6, that shows evidence for a gene duplication found only in Neanderthals and modern Africans. Finally, we highlight CYP2A6, CYP2C9, and CYP2J2, genes which show evidence for archaic introgression into modern humans and posit evolutionary hypotheses that explain their allele frequencies in modern populations.
Collapse
Affiliation(s)
- Tadeusz H Wroblewski
- Department of Biomedical Informatics, Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelsey E Witt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, South Carolina, USA
| | - Seung-been Lee
- Precision Medicine Institute, Macrogen Inc., Seoul, Republic of Korea
| | - Ripan S Malhi
- Department of Anthropology and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Illinois, USA
| | - David Peede
- Department of Ecology, Evolution, and Organismal Biology and Center for Computational and Molecular Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Emilia Huerta-Sánchez
- Department of Ecology, Evolution, and Organismal Biology and Center for Computational and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | | | - Katrina G Claw
- Department of Biomedical Informatics, Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet 2023; 24:687-711. [PMID: 36737647 PMCID: PMC9897628 DOI: 10.1038/s41576-022-00568-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Our ancestors acquired morphological, cognitive and metabolic modifications that enabled humans to colonize diverse habitats, develop extraordinary technologies and reshape the biosphere. Understanding the genetic, developmental and molecular bases for these changes will provide insights into how we became human. Connecting human-specific genetic changes to species differences has been challenging owing to an abundance of low-effect size genetic changes, limited descriptions of phenotypic differences across development at the level of cell types and lack of experimental models. Emerging approaches for single-cell sequencing, genetic manipulation and stem cell culture now support descriptive and functional studies in defined cell types with a human or ape genetic background. In this Review, we describe how the sequencing of genomes from modern and archaic hominins, great apes and other primates is revealing human-specific genetic changes and how new molecular and cellular approaches - including cell atlases and organoids - are enabling exploration of the candidate causal factors that underlie human-specific traits.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Ruan J, Timmermann A, Raia P, Yun KS, Zeller E, Mondanaro A, Di Febbraro M, Lemmon D, Castiglione S, Melchionna M. Climate shifts orchestrated hominin interbreeding events across Eurasia. Science 2023; 381:699-704. [PMID: 37561879 DOI: 10.1126/science.add4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/19/2023] [Indexed: 08/12/2023]
Abstract
When, where, and how often hominin interbreeding happened is largely unknown. We study the potential for Neanderthal-Denisovan admixture using species distribution models that integrate extensive fossil, archaeological, and genetic data with transient coupled general circulation model simulations of global climate and biomes. Our Pleistocene hindcast of past hominins' habitat suitability reveals pronounced climate-driven zonal shifts in the main overlap region of Denisovans and Neanderthals in central Eurasia. These shifts, which influenced the timing and intensity of potential interbreeding events, can be attributed to the response of climate and vegetation to past variations in atmospheric carbon dioxide and Northern Hemisphere ice-sheet volume. Therefore, glacial-interglacial climate swings likely played an important role in favoring gene flow between archaic humans.
Collapse
Affiliation(s)
- Jiaoyang Ruan
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Pasquale Raia
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| | - Kyung-Sook Yun
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Elke Zeller
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Department of Climate System, Pusan National University, Busan, South Korea
| | | | - Mirko Di Febbraro
- Department of Biosciences and Territory, University of Molise, C. da Fonte Lappone, Pesche, Italy
| | - Danielle Lemmon
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Silvia Castiglione
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| | - Marina Melchionna
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
16
|
Ågren R, Patil S, Zhou X, Sahlholm K, Pääbo S, Zeberg H. Major Genetic Risk Factors for Dupuytren's Disease Are Inherited From Neandertals. Mol Biol Evol 2023; 40:msad130. [PMID: 37315093 DOI: 10.1093/molbev/msad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Dupuytren's disease is characterized by fingers becoming permanently bent in a flexed position. Whereas people of African ancestry are rarely afflicted by Dupuytren's disease, up to ∼30% of men over 60 years suffer from this condition in northern Europe. Here, we meta-analyze 3 biobanks comprising 7,871 cases and 645,880 controls and find 61 genome-wide significant variants associated with Dupuytren's disease. We show that 3 of the 61 loci harbor alleles of Neandertal origin, including the second and third most strongly associated ones (P = 6.4 × 10-132 and P = 9.2 × 10-69, respectively). For the most strongly associated Neandertal variant, we identify EPDR1 as the causal gene. Dupuytren's disease is an example of how admixture with Neandertals has shaped regional differences in disease prevalence.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Snehal Patil
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kristoffer Sahlholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
17
|
He G, Wang M, Miao L, Chen J, Zhao J, Sun Q, Duan S, Wang Z, Xu X, Sun Y, Liu Y, Liu J, Wang Z, Wei L, Liu C, Ye J, Wang L. Multiple founding paternal lineages inferred from the newly-developed 639-plex Y-SNP panel suggested the complex admixture and migration history of Chinese people. Hum Genomics 2023; 17:29. [PMID: 36973821 PMCID: PMC10045532 DOI: 10.1186/s40246-023-00476-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Non-recombining regions of the Y-chromosome recorded the evolutionary traces of male human populations and are inherited haplotype-dependently and male-specifically. Recent whole Y-chromosome sequencing studies have identified previously unrecognized population divergence, expansion and admixture processes, which promotes a better understanding and application of the observed patterns of Y-chromosome genetic diversity. RESULTS Here, we developed one highest-resolution Y-chromosome single nucleotide polymorphism (Y-SNP) panel targeted for uniparental genealogy reconstruction and paternal biogeographical ancestry inference, which included 639 phylogenetically informative SNPs. We genotyped these loci in 1033 Chinese male individuals from 33 ethnolinguistically diverse populations and identified 256 terminal Y-chromosomal lineages with frequency ranging from 0.0010 (singleton) to 0.0687. We identified six dominant common founding lineages associated with different ethnolinguistic backgrounds, which included O2a2b1a1a1a1a1a1a1-M6539, O2a1b1a1a1a1a1a1-F17, O2a2b1a1a1a1a1b1a1b-MF15397, O2a2b2a1b1-A16609, O1b1a1a1a1b2a1a1-F2517, and O2a2b1a1a1a1a1a1-F155. The AMOVA and nucleotide diversity estimates revealed considerable differences and high genetic diversity among ethnolinguistically different populations. We constructed one representative phylogenetic tree among 33 studied populations based on the haplogroup frequency spectrum and sequence variations. Clustering patterns in principal component analysis and multidimensional scaling results showed a genetic differentiation between Tai-Kadai-speaking Li, Mongolic-speaking Mongolian, and other Sinitic-speaking Han Chinese populations. Phylogenetic topology inferred from the BEAST and Network relationships reconstructed from the popART further showed the founding lineages from culturally/linguistically diverse populations, such as C2a/C2b was dominant in Mongolian people and O1a/O1b was dominant in island Li people. We also identified many lineages shared by more than two ethnolinguistically different populations with a high proportion, suggesting their extensive admixture and migration history. CONCLUSIONS Our findings indicated that our developed high-resolution Y-SNP panel included major dominant Y-lineages of Chinese populations from different ethnic groups and geographical regions, which can be used as the primary and powerful tool for forensic practice. We should emphasize the necessity and importance of whole sequencing of more ethnolinguistically different populations, which can help identify more unrecognized population-specific variations for the promotion of Y-chromosome-based forensic applications.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Mengge Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Miao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Jing Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Jie Zhao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiaofei Xu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian Ye
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| | - Le Wang
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| |
Collapse
|
18
|
Pop E, Hilgen S, Adhityatama S, Berghuis H, Veldkamp T, Vonhof H, Sutisna I, Alink G, Noerwidi S, Roebroeks W, Joordens J. Reconstructing the provenance of the hominin fossils from Trinil (Java, Indonesia) through an integrated analysis of the historical and recent excavations. J Hum Evol 2023; 176:103312. [PMID: 36745959 DOI: 10.1016/j.jhevol.2022.103312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 02/06/2023]
Abstract
In the early 1890s at Trinil, Eugène Dubois found a hominin skullcap (Trinil 2) and femur (Trinil 3, Femur I), situated at the same level ca. 10-15 m apart. He interpreted them as representing one species, Pithecanthropus erectus (now Homo erectus) which he inferred to be a transitional form between apes and humans. Ever since, this interpretation has been questioned-as the skullcap looked archaic and the femur surprisingly modern. From the 1950s onward, chemical and morphological analyses rekindled the debate. Concurrently, (bio)stratigraphic arguments gained importance, raising the stakes by extrapolating the consequences of potential mixing of hominin remains to the homogeneity of the complete Trinil fossil assemblage. However, conclusive evidence on the provenance and age of the hominin fossils remains absent. New Trinil fieldwork yielded unmanned aerial vehicle imagery, digital elevation models, and stratigraphic observations that have been integrated here with an analysis of the historical excavation documentation. Using a geographic information system and sightline analysis, the position of the historical excavation pits and the hominin fossils therein were reconstructed, and the historical stratigraphy was connected to that of new sections and test pits. This study documents five strata situated at low water level at the excavation site. Cutting into a lahar breccia are two similarly oriented, but asynchronous pre-terrace fluvial channels whose highly fossiliferous infills are identified as the primary targets of the historical excavations (Bone-Bearing Channel 1, 830-773 ka; Bone-Bearing Channel 2, 560-380 ka), providing evidence for a mixed faunal assemblage and yielding most of the hominin fossils. These channels were incised by younger terrace-related fluvial channels (terminal Middle or Late Pleistocene) that directly intersect the historical excavations and the reconstructed discovery location of Femur I, thereby providing an explanation for the relatively modern morphology of this 'bone of contention'. The paleoanthropological implications are discussed in light of the current framework of human evolution in Southeast Asia.
Collapse
Affiliation(s)
- Eduard Pop
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, the Netherlands; Faculty of Archaeology, Leiden University, P.O. Box 9514, 2300 RA, Leiden, the Netherlands.
| | - Sander Hilgen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, the Netherlands; Faculty of Science, Vrije Universiteit, de Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Shinatria Adhityatama
- Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast Campus, 58 Parklands Drive, Southport, Qld, 4222, Australia
| | - Harold Berghuis
- Faculty of Archaeology, Leiden University, P.O. Box 9514, 2300 RA, Leiden, the Netherlands
| | - Tom Veldkamp
- Faculty ITC, University of Twente, P.O. Box 217, 7500 AE, Enschede, the Netherlands
| | - Hubert Vonhof
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Indra Sutisna
- Geological Museum, Jl. Diponegoro 57, Bandung, Jawa Barat, 40122, Bandung, Indonesia
| | - Gerrit Alink
- Faculty of Archaeology, Leiden University, P.O. Box 9514, 2300 RA, Leiden, the Netherlands
| | - Sofwan Noerwidi
- Pusat Riset Arkeometri, Organisasi Riset Arkeologi, Bahasa, dan Sastra, Badan Riset dan Inovasi Nasional (OR ARBASTRA - BRIN), Jl. Condet Pejaten 4, Ps. Minggu, Jakarta Selatan, DKI Jakarta, 12510, Indonesia
| | - Wil Roebroeks
- Faculty of Archaeology, Leiden University, P.O. Box 9514, 2300 RA, Leiden, the Netherlands
| | - Josephine Joordens
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, the Netherlands; Faculty of Archaeology, Leiden University, P.O. Box 9514, 2300 RA, Leiden, the Netherlands; Faculty of Science, Vrije Universiteit, de Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, the Netherlands
| |
Collapse
|
19
|
Zhang X, Kim B, Singh A, Sankararaman S, Durvasula A, Lohmueller KE. MaLAdapt Reveals Novel Targets of Adaptive Introgression From Neanderthals and Denisovans in Worldwide Human Populations. Mol Biol Evol 2023; 40:msad001. [PMID: 36617238 PMCID: PMC9887621 DOI: 10.1093/molbev/msad001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Adaptive introgression (AI) facilitates local adaptation in a wide range of species. Many state-of-the-art methods detect AI with ad-hoc approaches that identify summary statistic outliers or intersect scans for positive selection with scans for introgressed genomic regions. Although widely used, approaches intersecting outliers are vulnerable to a high false-negative rate as the power of different methods varies, especially for complex introgression events. Moreover, population genetic processes unrelated to AI, such as background selection or heterosis, may create similar genomic signals to AI, compromising the reliability of methods that rely on neutral null distributions. In recent years, machine learning (ML) methods have been increasingly applied to population genetic questions. Here, we present a ML-based method called MaLAdapt for identifying AI loci from genome-wide sequencing data. Using an Extra-Trees Classifier algorithm, our method combines information from a large number of biologically meaningful summary statistics to capture a powerful composite signature of AI across the genome. In contrast to existing methods, MaLAdapt is especially well-powered to detect AI with mild beneficial effects, including selection on standing archaic variation, and is robust to non-AI selective sweeps, heterosis from deleterious mutations, and demographic misspecification. Furthermore, MaLAdapt outperforms existing methods for detecting AI based on the analysis of simulated data and the validation of empirical signals through visual inspection of haplotype patterns. We apply MaLAdapt to the 1000 Genomes Project human genomic data and discover novel AI candidate regions in non-African populations, including genes that are enriched in functionally important biological pathways regulating metabolism and immune responses.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA
| | - Armaan Singh
- Department of Computer Science, UCLA, Los Angeles, CA
| | - Sriram Sankararaman
- Department of Computer Science, UCLA, Los Angeles, CA
- Department of Computational Medicine, UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Arun Durvasula
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
20
|
Taufik L, Teixeira JC, Llamas B, Sudoyo H, Tobler R, Purnomo GA. Human Genetic Research in Wallacea and Sahul: Recent Findings and Future Prospects. Genes (Basel) 2022; 13:genes13122373. [PMID: 36553640 PMCID: PMC9778601 DOI: 10.3390/genes13122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Genomic sequence data from worldwide human populations have provided a range of novel insights into our shared ancestry and the historical migrations that have shaped our global genetic diversity. However, a comprehensive understanding of these fundamental questions has been impeded by the lack of inclusion of many Indigenous populations in genomic surveys, including those from the Wallacean archipelago (which comprises islands of present-day Indonesia located east and west of Wallace's and Lydekker's Lines, respectively) and the former continent of Sahul (which once combined New Guinea and Australia during lower sea levels in the Pleistocene). Notably, these regions have been important areas of human evolution throughout the Late Pleistocene, as documented by diverse fossil and archaeological records which attest to the regional presence of multiple hominin species prior to the arrival of anatomically modern human (AMH) migrants. In this review, we collate and discuss key findings from the past decade of population genetic and phylogeographic literature focussed on the hominin history in Wallacea and Sahul. Specifically, we examine the evidence for the timing and direction of the ancient AMH migratory movements and subsequent hominin mixing events, emphasising several novel but consistent results that have important implications for addressing these questions. Finally, we suggest potentially lucrative directions for future genetic research in this key region of human evolution.
Collapse
Affiliation(s)
- Leonard Taufik
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
- Correspondence: (L.T.); (G.A.P.)
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
- Centre for Interdisciplinary Studies, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 2601, Australia
- Indigenous Genomics Research Group, Telethon Kids Institute, Adelaide, SA 5001, Australia
| | - Herawati Sudoyo
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
| | - Gludhug A. Purnomo
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (L.T.); (G.A.P.)
| |
Collapse
|
21
|
Vespasiani DM, Jacobs GS, Cook LE, Brucato N, Leavesley M, Kinipi C, Ricaut FX, Cox MP, Gallego Romero I. Denisovan introgression has shaped the immune system of present-day Papuans. PLoS Genet 2022; 18:e1010470. [PMID: 36480515 PMCID: PMC9731433 DOI: 10.1371/journal.pgen.1010470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022] Open
Abstract
Modern humans have admixed with multiple archaic hominins. Papuans, in particular, owe up to 5% of their genome to Denisovans, a sister group to Neanderthals whose remains have only been identified in Siberia and Tibet. Unfortunately, the biological and evolutionary significance of these introgression events remain poorly understood. Here we investigate the function of both Denisovan and Neanderthal alleles characterised within a set of 56 genomes from Papuan individuals. By comparing the distribution of archaic and non-archaic variants we assess the consequences of archaic admixture across a multitude of different cell types and functional elements. We observe an enrichment of archaic alleles within cis-regulatory elements and transcribed regions of the genome, with Denisovan variants strongly affecting elements active within immune-related cells. We identify 16,048 and 10,032 high-confidence Denisovan and Neanderthal variants that fall within annotated cis-regulatory elements and with the potential to alter the affinity of multiple transcription factors to their cognate DNA motifs, highlighting a likely mechanism by which introgressed DNA can impact phenotypes. Lastly, we experimentally validate these predictions by testing the regulatory potential of five Denisovan variants segregating within Papuan individuals, and find that two are associated with a significant reduction of transcriptional activity in plasmid reporter assays. Together, these data provide support for a widespread contribution of archaic DNA in shaping the present levels of modern human genetic diversity, with different archaic ancestries potentially affecting multiple phenotypic traits within non-Africans.
Collapse
Affiliation(s)
- Davide M. Vespasiani
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Guy S. Jacobs
- Department of Archaeology, University of Cambridge, Cambridge, Uniteed Kingdom
| | - Laura E. Cook
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Nicolas Brucato
- Laboratoire de Evolution et Diversite Biologique, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Matthew Leavesley
- School of Humanities and Social Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
- College of Arts, Society and Education, James Cook University, Cairns, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, Australia
| | - Christopher Kinipi
- School of Humanities and Social Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - François-Xavier Ricaut
- Laboratoire de Evolution et Diversite Biologique, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Murray P. Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Irene Gallego Romero
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Australia
- School of Biosciences, University of Melbourne, Parkville, Australia
- Center for Stem Cell Systems, University of Melbourne, Parkville, Australia
- Center for Genomics, Evolution and Medicine, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
22
|
Harvati K, Reyes-Centeno H. Evolution of Homo in the Middle and Late Pleistocene. J Hum Evol 2022; 173:103279. [PMID: 36375244 PMCID: PMC9703123 DOI: 10.1016/j.jhevol.2022.103279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
The Middle and Late Pleistocene is arguably the most interesting period in human evolution. This broad period witnessed the evolution of our own lineage, as well as that of our sister taxon, the Neanderthals, and related Denisovans. It is exceptionally rich in both fossil and archaeological remains, and uniquely benefits from insights gained through molecular approaches, such as paleogenetics and paleoproteomics, that are currently not widely applicable in earlier contexts. This wealth of information paints a highly complex picture, often described as 'the Muddle in the Middle,' defying the common adage that 'more evidence is needed' to resolve it. Here we review competing phylogenetic scenarios and the historical and theoretical developments that shaped our approaches to the fossil record, as well as some of the many remaining open questions associated with this period. We propose that advancing our understanding of this critical time requires more than the addition of data and will necessitate a major shift in our conceptual and theoretical framework.
Collapse
Affiliation(s)
- Katerina Harvati
- Paleoanthropology, Institute for Archaeological Sciences and Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Rümelinstrasse 19-23, Tübingen 72070, Germany; DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Rümelinstrasse 19-23, Tübingen 72070, Germany.
| | - Hugo Reyes-Centeno
- Department of Anthropology, University of Kentucky, 211 Lafferty Hall, Lexington, KY 40506, USA; William S. Webb Museum of Anthropology, University of Kentucky, 1020 Export St, Lexington, KY 40504, USA
| |
Collapse
|
23
|
Rodriguez JJRB, Cuales JMD, Herrera MJB, Zubiri LAM, Muallil RN, Ishmael AI, Jimenez EB, Stoneking M, De Ungria MCA. Ethical challenges in genetic research among Philippine Indigenous Peoples: Insights from fieldwork in Zamboanga and the Sulu Archipelago. Front Genet 2022; 13:901515. [PMID: 36324515 PMCID: PMC9619191 DOI: 10.3389/fgene.2022.901515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/21/2022] [Indexed: 09/07/2024] Open
Abstract
The Philippines, with the recent discovery of an archaic hominin in Luzon and an extensive ethnolinguistic diversity of more than 100 Indigenous peoples, is crucial to understanding human evolution and population history in Island Southeast Asia. Advances in DNA sequencing technologies enable the rapid generation of genomic data to robustly address questions about origins, relatedness, and population movements. With the increased genetic sampling in the country, especially by international scientists, it is vital to revisit ethical rules and guidelines relevant to conducting research among Indigenous peoples. Our team led fieldwork expeditions between 2019 and February 2020 in Zamboanga and the Sulu Archipelago, a chain of islands connecting the Mindanao and Borneo landmasses. The trips concluded with a collection of 2,149 DNA samples from 104 field sites. We present our fieldwork experience among the mostly sea-oriented Sama-Bajaw and Tausug-speaking communities and propose recommendations to address the ethical challenges of conducting such research. This work contributes toward building an enabling research environment in the Philippines that respects the rights and autonomy of Indigenous peoples, who are the rightful owners of their DNA and all genetic information contained therein.
Collapse
Affiliation(s)
- Jae Joseph Russell B. Rodriguez
- DNA Analysis Laboratory, Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- Genetic and Molecular Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - John Meldwin D. Cuales
- DNA Analysis Laboratory, Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | | | | | - Richard N. Muallil
- Office of Continuing Education and Extension Services, Mindanao State University—Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Altan I. Ishmael
- Sama Studies Center, Mindanao State University—Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Edlyn B. Jimenez
- National Institutes of Health, University of the Philippines Manila, Manila City, Philippines
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - Maria Corazon A. De Ungria
- DNA Analysis Laboratory, Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- Program on Biodiversity, Ethnicity, and Forensics, Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| |
Collapse
|
24
|
A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos. Nat Commun 2022; 13:2557. [PMID: 35581187 PMCID: PMC9114389 DOI: 10.1038/s41467-022-29923-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The Pleistocene presence of the genus Homo in continental Southeast Asia is primarily evidenced by a sparse stone tool record and rare human remains. Here we report a Middle Pleistocene hominin specimen from Laos, with the discovery of a molar from the Tam Ngu Hao 2 (Cobra Cave) limestone cave in the Annamite Mountains. The age of the fossil-bearing breccia ranges between 164–131 kyr, based on the Bayesian modelling of luminescence dating of the sedimentary matrix from which it was recovered, U-series dating of an overlying flowstone, and U-series–ESR dating of associated faunal teeth. Analyses of the internal structure of the molar in tandem with palaeoproteomic analyses of the enamel indicate that the tooth derives from a young, likely female, Homo individual. The close morphological affinities with the Xiahe specimen from China indicate that they belong to the same taxon and that Tam Ngu Hao 2 most likely represents a Denisovan. Evidence for the presence of Homo during the Middle Pleistocene is limited in continental Southeast Asia. Here, the authors report a hominin molar from Tam Ngu Hao 2 (Cobra Cave), dated to 164–131 kyr. They use morphological and paleoproteomic analysis to show that it likely belonged to a female Denisovan.
Collapse
|
25
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|
26
|
Witt KE, Villanea F, Loughran E, Zhang X, Huerta-Sanchez E. Apportioning archaic variants among modern populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200411. [PMID: 35430882 PMCID: PMC9014186 DOI: 10.1098/rstb.2020.0411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The apportionment of human genetic diversity within and between populations has been measured to understand human relatedness and demographic history. Likewise, the distribution of archaic ancestry in modern populations can be leveraged to better understand the interaction between our species and its archaic relatives. Resolving the interactions between modern and archaic human populations can be difficult, as archaic variants in modern populations have been shaped by genetic drift, bottlenecks and gene flow. Here, we investigate the distribution of archaic variation in Eurasian populations. We find that archaic ancestry coverage at the individual- and population-level present distinct patterns in modern human populations: South Asians have nearly twice the number of population-unique archaic alleles compared with Europeans or East Asians, indicating that these populations experienced differing demographic and archaic admixture events. We confirm previous observations that East Asian individuals have more Neanderthal ancestry than European individuals, but surprisingly, when we compare the number of single nucleotide polymorphisms with archaic alleles found across a population, Europeans have more Neanderthal ancestry than East Asians. We compare these results to simulated models and conclude that these patterns are consistent with multiple admixture events between modern humans and Neanderthals. This article is part of the theme issue ‘Celebrating 50 years since Lewontin's apportionment of human diversity’.
Collapse
Affiliation(s)
- Kelsey E. Witt
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Fernando Villanea
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | - Elle Loughran
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Republic of Ireland
| | - Xinjun Zhang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Emilia Huerta-Sanchez
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
27
|
Zhang P, Zhang X, Zhang X, Gao X, Huerta-Sanchez E, Zwyns N. Denisovans and Homo sapiens on the Tibetan Plateau: dispersals and adaptations. Trends Ecol Evol 2022; 37:257-267. [PMID: 34863581 PMCID: PMC9140327 DOI: 10.1016/j.tree.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Recent archaeological discoveries suggest that both archaic Denisovans and Homo sapiens occupied the Tibetan Plateau earlier than expected. Genetic studies show that a pulse of Denisovan introgression was involved in the adaptation of Tibetan populations to high-altitude hypoxia. These findings challenge the traditional view that the plateau was one of the last places on earth colonized by H. sapiens and warrant a reappraisal of the population history of this highland. Here, we integrate archaeological and genomic evidence relevant to human dispersal, settlement, and adaptation in the region. We propose two testable models to address the peopling of the plateau in the broader context of H. sapiens dispersal and their encounters with Denisovans in Asia.
Collapse
Affiliation(s)
- Peiqi Zhang
- Department of Anthropology, University of California, Davis, CA 95616, USA.
| | - Xinjun Zhang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Xiaoling Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 10044, China
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 10044, China
| | - Emilia Huerta-Sanchez
- Department of Ecology and Evolutionary Biology and Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Nicolas Zwyns
- Department of Anthropology, University of California, Davis, CA 95616, USA; Department of Human Evolution, Max Planck Insititute for Evolutionary Anthropology, Leipzig 04103, Germany
| |
Collapse
|
28
|
Villanea FA, Witt KE. Underrepresented Populations at the Archaic Introgression Frontier. Front Genet 2022; 13:821170. [PMID: 35281795 PMCID: PMC8914065 DOI: 10.3389/fgene.2022.821170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fernando A Villanea
- Department of Anthropology, College of Arts and Sciences, University of Colorado Boulder, Boulder, CO, United States
- *Correspondence: Fernando A Villanea,
| | - Kelsey E. Witt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| |
Collapse
|
29
|
Göllner T, Larena M, Kutanan W, Lukas H, Fieder M, Schaschl H. Unveiling the Genetic History of the Maniq, a primary hunter-gatherer society. Genome Biol Evol 2022; 14:6526392. [PMID: 35143674 PMCID: PMC9005329 DOI: 10.1093/gbe/evac021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Maniq of southern Thailand is one of the last remaining practicing hunter-gatherer communities in the world. However, our knowledge on their genetic origins and demographic history is still largely limited. We present here the genotype data covering ∼2.3 million single nucleotide polymorphisms of 11 unrelated Maniq individuals. Our analyses reveal the Maniq to be closely related to the Semang populations of Malaysia (Malay Negritos), who altogether carry an Andamanese-related ancestry linked to the ancient Hòabìnhian hunter-gatherers of Mainland Southeast Asia (MSEA). Moreover, the Maniq possess ∼35% East Asian-related ancestry, likely brought about by recent admixture with surrounding agriculturist communities in the region. In addition, the Maniq exhibit one of the highest levels of genetic differentiation found among living human populations, indicative of their small population size and historical practice of endogamy. Similar to other hunter-gatherer populations of MSEA, we also find the Maniq to possess low levels of Neanderthal ancestry and undetectable levels of Denisovan ancestry. Altogether, we reveal the Maniq to be a Semang group that experienced intense genetic drift and exhibits signs of ancient Hòabìnhian ancestry.
Collapse
Affiliation(s)
- Tobias Göllner
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Maximilian Larena
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen, Uppsala, 18C, 75236, Sweden
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Helmut Lukas
- Institute for Social Anthropology, Austrian Academy of Sciences, Vienna, Austria
| | - Martin Fieder
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Helmut Schaschl
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Hoh BP, Deng L, Xu S. The Peopling and Migration History of the Natives in Peninsular Malaysia and Borneo: A Glimpse on the Studies Over the Past 100 years. Front Genet 2022; 13:767018. [PMID: 35154269 PMCID: PMC8829068 DOI: 10.3389/fgene.2022.767018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/07/2022] [Indexed: 12/05/2022] Open
Abstract
Southeast Asia (SEA) has one of the longest records of modern human habitation out-of-Africa. Located at the crossroad of the mainland and islands of SEA, Peninsular Malaysia is an important piece of puzzle to the map of peopling and migration history in Asia, a question that is of interest to many anthropologists, archeologists, and population geneticists. This review aims to revisit our understanding to the population genetics of the natives from Peninsular Malaysia and Borneo over the past century based on the chronology of the technology advancement: 1) Anthropological and Physical Characterization; 2) Blood Group Markers; 3) Protein Markers; 4) Mitochondrial and Autosomal DNA Markers; and 5) Whole Genome Analysis. Subsequently some missing gaps of the study are identified. In the later part of this review, challenges of studying the population genetics of natives will be elaborated. Finally, we conclude our review by reiterating the importance of unveiling migration history and genetic diversity of the indigenous populations as a steppingstone towards comprehending disease evolution and etiology.
Collapse
Affiliation(s)
- Boon-Peng Hoh
- Faculty of Medicine and Health Sciences, UCSI University, UCSI Hospital, Port Dickson, Malaysia
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
31
|
Zanolli C, Kaifu Y, Pan L, Xing S, Mijares AS, Kullmer O, Schrenk F, Corny J, Dizon E, Robles E, Détroit F. Further analyses of the structural organization of Homo luzonensis teeth: Evolutionary implications. J Hum Evol 2022; 163:103124. [PMID: 34998272 DOI: 10.1016/j.jhevol.2021.103124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/13/2023]
Abstract
The species Homo luzonensis has recently been described based on a set of dental and postcranial elements found at Callao Cave (Northern Luzon, Philippines) and dated to at least 50-67 ka. Seven postcanine maxillary teeth are attributed to this taxon, five of them belonging to the same individual (CCH6) and representing the holotype of H. luzonensis, whereas the isolated upper premolar CCH8 and the upper third molar CCH9 are paratypes of the species. The teeth are characterized by their small dimensions associated with primitive features, as also found in Homo floresiensis, another hominin having evolved in an insular environment of Southeast Asia. Postcranial bones of the hands and feet of H. luzonensis and H. floresiensis show Homo habilis-like or australopith-like features, whereas cranial and dental morphology are more consistent with the Asian Homo erectus morphology. Due to this mosaic morphology, the origin and phylogenetic relationships of both H. luzonensis and H. floresiensis are still debated. To test the hypotheses that H. luzonensis derives from H. erectus or from an earlier small-brained hominin, we analyzed the µCT scans of the teeth. We investigated both external and internal tooth structure using morphometric methods including: crown outline shape, tooth crown tissue proportions, enamel-dentine junction shape, and pulp morphology. Homo luzonensis external crown morphology aligns more with H. erectus than with H. habilis/H. rudolfensis. The internal structural organization of H. luzonensis teeth exhibits more affinities with that of H. erectus and H. floresiensis than with Neanderthals and modern humans. Our results suggest that both H. floresiensis and H. luzonensis likely evolved from some H. erectus groups that dispersed in the various islands of this region and became isolated until endemic speciation events occurred at least twice during the Pleistocene in insular environments.
Collapse
Affiliation(s)
- Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France.
| | - Yousuke Kaifu
- The University Museum, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Lei Pan
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Armand S Mijares
- Archaeological Studies Program, University of the Philippines, Quezon City 1101, Philippines; National Museum of the Philippines, Manila 1000, Philippines
| | - Ottmar Kullmer
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Friedemann Schrenk
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Julien Corny
- UMR 7194, CNRS, Département Homme & Environnement, Muséum National D'Histoire Naturelle, Musée de L'Homme, 75016 Paris, France
| | - Eusebio Dizon
- National Museum of the Philippines, Manila 1000, Philippines
| | - Emil Robles
- Archaeological Studies Program, University of the Philippines, Quezon City 1101, Philippines
| | - Florent Détroit
- UMR 7194, CNRS, Département Homme & Environnement, Muséum National D'Histoire Naturelle, Musée de L'Homme, 75016 Paris, France.
| |
Collapse
|