1
|
Cusinato R, Seiler A, Schindler K, Tzovara A. Sleep Modulates Neural Timescales and Spatiotemporal Integration in the Human Cortex. J Neurosci 2025; 45:e1845242025. [PMID: 39965931 PMCID: PMC11984084 DOI: 10.1523/jneurosci.1845-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
Spontaneous neural dynamics manifest across multiple temporal and spatial scales, which are thought to be intrinsic to brain areas and exhibit hierarchical organization across the cortex. In wake, a hierarchy of timescales is thought to naturally emerge from microstructural properties, gene expression, and recurrent connections. A fundamental question is timescales' organization and changes in sleep, where physiological needs are different. Here, we describe two measures of neural timescales, obtained from broadband activity and gamma power, which display complementary properties. We leveraged intracranial electroencephalography in 106 human epilepsy patients (48 females) to characterize timescale changes from wake to sleep across the cortical hierarchy. We show that both broadband and gamma timescales are globally longer in sleep than in wake. While broadband timescales increase along the sensorimotor-association axis, gamma ones decrease. During sleep, slow waves can explain the increase of broadband and gamma timescales, but only broadband ones show a positive association with slow-wave density across the cortex. Finally, we characterize spatial correlations and their relationship with timescales as a proxy for spatiotemporal integration, finding high integration at long distances in wake for broadband and at short distances in sleep for gamma timescales. Our results suggest that mesoscopic neural populations possess different timescales that are shaped by anatomy and are modulated by the sleep/wake cycle.
Collapse
Affiliation(s)
- Riccardo Cusinato
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center - NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| | - Andrea Seiler
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center - NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
2
|
Zhang QY, Su CW, Luo Q, Grebogi C, Huang ZG, Jiang J. Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders. RESEARCH (WASHINGTON, D.C.) 2025; 8:0648. [PMID: 40190349 PMCID: PMC11971527 DOI: 10.34133/research.0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 04/09/2025]
Abstract
The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability. Applying this refined method to datasets for major depressive disorder (MDD) and autism spectrum disorder (ASD), we identified differences in brain regions between patients and healthy controls, explaining related anomalies. This rigorous validation is crucial for clinical application, paving the way for precise neuropathological identification and novel treatments in neuropsychiatric research, demonstrating substantial potential in clinical neurology.
Collapse
Affiliation(s)
- Qian-Yun Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chun-Wang Su
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital,
Fudan University, Shanghai 200433, China
- Institutes of Brain Science and Human Phenome Institute,
Fudan University, Shanghai 200032, China
- School of Psychology and Cognitive Science,
East China Normal University, Shanghai 200241, China
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology,
University of Aberdeen, Aberdeen AB24 3UE, UK
- School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Zi-Gang Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Junjie Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
3
|
Van Maldegem M, Vohryzek J, Atasoy S, Alnagger N, Cardone P, Bonhomme V, Vanhaudenhuyse A, Demertzi A, Jaquet O, Bahri MA, Nunez P, Kringelbach ML, Stamatakis EA, Luppi AI. Connectome harmonic decomposition tracks the presence of disconnected consciousness during ketamine-induced unresponsiveness. Br J Anaesth 2025; 134:1088-1104. [PMID: 39933965 PMCID: PMC11947573 DOI: 10.1016/j.bja.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/07/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Ketamine, in doses suitable to induce anaesthesia in humans, gives rise to a unique state of unresponsiveness accompanied by vivid experiences and sensations, making it possible to disentangle the correlated but distinct concepts of conscious awareness and behavioural responsiveness. This distinction is often overlooked in the study of consciousness. METHODS The mathematical framework of connectome harmonic decomposition (CHD) was used to view functional magnetic resonance imaging (fMRI) signals during ketamine-induced unresponsiveness as distributed patterns across spatial scales. The connectome harmonic signature of this particular state was mapped onto signatures of other states of consciousness for comparison. RESULTS An increased prevalence of fine-grained connectome harmonics was found in fMRI signals obtained during ketamine-induced unresponsiveness, indicating higher granularity. After statistical assessment, the ketamine sedation harmonic signature showed alignment with signatures of LSD-induced (fixed effect =0.0113 [0.0099, 0.0127], P<0.001) or ketamine-induced (fixed effect =0.0087 [0.0071, 0.0103], P<0.001) psychedelic states, and misalignment with signatures seen in unconscious individuals owing to propofol sedation (fixed effect =-0.0213 [-0.0245, -0.0181], P<0.001) or brain injury (fixed effect =-0.0205 [-0.0234, -0.0178], P<0.001). CONCLUSIONS The CHD framework, which only requires resting-state fMRI data and can be applied retrospectively, has the ability to track alterations in conscious awareness in the absence of behavioural responsiveness on a group level. This is possible because of ketamine's unique property of decoupling these two facets, and is important for consciousness and anaesthesia research.
Collapse
Affiliation(s)
- Milan Van Maldegem
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK.
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Vincent Bonhomme
- Anaesthesia and Perioperative Neuroscience, GIGA-Consciousness, University of Liege, Liege, Belgium; Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Conscious Care Lab, GIGA-Consciousness, University of Liege, Liege, Belgium; Algology Interdisciplinary Centre, University Hospital of Liege, Liege, Belgium
| | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-CRC Human Imaging Unit, University of Liege, Liege, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liege, Liege, Belgium
| | - Oceane Jaquet
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | | | - Pablo Nunez
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Andrea I Luppi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK; Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Division of Information Engineering, University of Cambridge, Cambridge, UK; St John's College, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Escrichs A, Sanz Perl Y, Fisher PM, Martínez-Molina N, G-Guzman E, Frokjaer VG, Kringelbach ML, Knudsen GM, Deco G. Whole-brain turbulent dynamics predict responsiveness to pharmacological treatment in major depressive disorder. Mol Psychiatry 2025; 30:1069-1079. [PMID: 39256549 PMCID: PMC11835742 DOI: 10.1038/s41380-024-02690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
Depression is a multifactorial clinical syndrome with a low pharmacological treatment response rate. Therefore, identifying predictors of treatment response capable of providing the basis for future developments of individualized therapies is crucial. Here, we applied model-free and model-based measures of whole-brain turbulent dynamics in resting-state functional magnetic resonance imaging (fMRI) in healthy controls and unmedicated depressed patients. After eight weeks of treatment with selective serotonin reuptake inhibitors (SSRIs), patients were classified as responders and non-responders according to the Hamilton Depression Rating Scale 6 (HAMD6). Using the model-free approach, we found that compared to healthy controls and responder patients, non-responder patients presented disruption of the information transmission across spacetime scales. Furthermore, our results revealed that baseline turbulence level is positively correlated with beneficial pharmacological treatment outcomes. Importantly, our model-free approach enabled prediction of which patients would turn out to be non-responders. Finally, our model-based approach provides mechanistic evidence that non-responder patients are less sensitive to stimulation and, consequently, less prone to respond to treatment. Overall, we demonstrated that different levels of turbulent dynamics are suitable for predicting response to SSRIs treatment in depression.
Collapse
Grants
- eBRAIN-Health - Actionable Multilevel Health Data (id 101058516), funded by EU Horizon Europe, and the NODYN Project PID2022-136216NB-I00 financed by the MCIN/AEI/10.13039/501100011033/ FEDER, UE., the Ministry of Science and Innovation, the State Research Agency and the European Regional Development Fund
- NEurological MEchanismS of Injury, and the project Sleep-like cellular dynamics (NEMESIS) (ref. 101071900) funded by the EU ERC Synergy Horizon Europe.
- Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117), and Centre for Eudaimonia and Human Flourishing at Linacre College funded by the Pettit and Carlsberg Foundations
- NeuroPharm project (www.neuropharm.eu), funded by grant 4108-00004B from the Innovation Fund Denmark, grant R279-2018-1145 from The Lundbeck Foundation Alliance BrainDrugs, the Research Fund of the Mental Health Services–Capital Region of Denmark, grant R149-A6325 from the Research Council of Rigshospitalet, grant 16-0058 from the AugustinusFoundation, grants from Savværksejer Jeppe Juhl og Hustru Ovita Juhls Mindelegat, and grantsDFF-6120-00038 and DFF-1057-00052B from the Independent Research Fund Denmark.
- NEurological MEchanismS of Injury, and the project Sleep-like cellular dynamics (NEMESIS) (ref. 101071900) funded by the EU ERC Synergy Horizon Europe and by the NODYN Project PID2022-136216NB-I00 financed by the MCIN/AEI/10.13039/501100011033/ FEDER, UE., the Ministry of Science and Innovation, the State Research Agency and the European Regional Development Fund.
Collapse
Affiliation(s)
- Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Paris Brain Institute (ICM), Paris, France
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Noelia Martínez-Molina
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Elvira G-Guzman
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Vibe G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX1 2JD, UK.
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Potash RM, Yang WFZ, Winston B, Atasoy S, Kringelbach ML, Sparby T, Sacchet MD. Investigating the complex cortical dynamics of an advanced concentrative absorption meditation called jhanas (ACAM-J): a geometric eigenmode analysis. Cereb Cortex 2025; 35:bhaf039. [PMID: 40037411 PMCID: PMC11879328 DOI: 10.1093/cercor/bhaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Advanced meditation has been associated with long- and short-term psychological changes such as bliss, profound insight, and transformation of well-being. However, most advanced meditation neuroimaging analyses have implemented primarily spatially-localized approaches, focusing on discrete regional changes in activity rather than distributed dynamics. The present study uses a geometric eigenmode decomposition of ultrahigh field-strength 7T functional magnetic resonance imaging (fMRI) data from an intensely sampled case study to investigate the complex, distributed cortical dynamics associated with advanced concentrative absorption meditation. Geometric eigenmode decomposition of advanced concentrative absorption meditation and non-meditative control task fMRI data revealed elevated global brain state power and energy patterns of specific advanced concentrative absorption meditation states compared to controls, with mid-frequency spectrum brain state power and energy following a non-random, cubic trajectory through the advanced concentrative absorption meditation sequence. Further, these brain state differences were meaningfully associated with subjective phenomenological reports of attention, intensity of advanced concentrative absorption meditation quality, and sensations. This study unites precise methodological design, a novel fMRI decomposition framework, and rigorous phenomenology to provide valuable insights into the distributed neural signatures of highly refined conscious states. These results underscore similarities and differences between advanced concentrative absorption meditation and other altered states of consciousness like those induced by psychedelics-offering insights into refined conscious states and their implications for health and well-being.
Collapse
Affiliation(s)
- Ruby M Potash
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
| | - Winson F Z Yang
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
| | - Brian Winston
- Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford OX3 9BX, United Kingdom
- Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Aarhus Centrum 8000, Denmark
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford OX3 9BX, United Kingdom
- Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Aarhus Centrum 8000, Denmark
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Terje Sparby
- Department of Philosophy, Steiner University College, 0260 Oslo, Norway
- Department of Psychology and Psychotherapy, Witten/Herdecke University, 58448 Witten, Germany
- Integrated Curriculum for Anthroposophic Psychology, Witten/Herdecke University, 58448 Witten, Germany
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
| |
Collapse
|
6
|
Chakraborty P, Saha S, Deco G, Banerjee A, Roy D. Contributions of short- and long-range white matter tracts in dynamic compensation with aging. Cereb Cortex 2025; 35:bhae496. [PMID: 39807971 DOI: 10.1093/cercor/bhae496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/26/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain. However, the crucial components in guiding the compensatory preservation of the dynamical complexity and the underlying mechanisms remain uncovered. Moreover, it remains largely unknown how the brain readjusts its biological parameters to maintain optimal brain dynamics with age; in this work, we provide a parsimonious mechanism using a whole-brain generative model to uncover the role of sub-communities comprised of short-range and long-range connectivity in driving the dynamic compensation process in the aging brain. We utilize two neuroimaging datasets to demonstrate how short- and long-range white matter tracts affect compensatory mechanisms. We unveil their modulation of intrinsic global scaling parameters, such as global coupling strength and conduction delay, via a personalized large-scale brain model. Our key finding suggests that short-range tracts predominantly amplify global coupling strength with age, potentially representing an epiphenomenon of the compensatory mechanism. This mechanistically explains the significance of short-range connections in compensating for the major loss of long-range connections during aging. This insight could help identify alternative avenues to address aging-related diseases where long-range connections are significantly deteriorated.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH-8, Manesar, Haryana 122051, India
- Department of Mathematics, Rampurhat College, Rampurhat, West Bengal 731224, India
| | - Suman Saha
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH-8, Manesar, Haryana 122051, India
- School of Electronics Engineering, Vellore Institute of Technology, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127 India
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institucío Catalana de la Recerca i Estudis Avançats, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH-8, Manesar, Haryana 122051, India
| | - Dipanjan Roy
- School of AIDE, Center for Brain Science and Applications, IIT Jodhpur, NH-62, Surpura Bypass Rd, Karwar, Rajasthan 342030, India
| |
Collapse
|
7
|
Deco G, Perl YS, Jerotic K, Escrichs A, Kringelbach ML. Turbulence as a framework for brain dynamics in health and disease. Neurosci Biobehav Rev 2025; 169:105988. [PMID: 39716558 DOI: 10.1016/j.neubiorev.2024.105988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Turbulence is a universal principle for fast energy and information transfer. Moving beyond the turbulence of fluid dynamics, turbulence has recently been demonstrated in brain dynamics. Importantly, turbulence can be expressed as the rich variability across spacetime of the local levels of synchronisation of coupled brain signals. In fact, the optimal mixing properties of turbulence is what allows for efficient transfer of energy/information over space and time in the brain. This is especially important for survival given the need to overcome the inherent slowness in neural dynamics. Here, we review the research showing that the turbulence offers a convenient framework for describing brain dynamics and that the scale-free nature of turbulence, reflected in power-laws, provides the necessary mechanisms for time-critical information transfer in the brain. Whole-brain modelling of turbulence as coupled-oscillators has been shown to provide precise signatures of many different brain states. The levels of turbulence change in disease, and careful research of the vortex space could potentially help discover new avenues for a better understanding of this breakdown and offer better control of these highly non-linear, non-equilibrium states. Overall, the framework of the turbulent brain is a highly fertile, fast developing field with great potential.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Katarina Jerotic
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anira Escrichs
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Hancock F, Rosas FE, Luppi AI, Zhang M, Mediano PAM, Cabral J, Deco G, Kringelbach ML, Breakspear M, Kelso JAS, Turkheimer FE. Metastability demystified - the foundational past, the pragmatic present and the promising future. Nat Rev Neurosci 2025; 26:82-100. [PMID: 39663408 DOI: 10.1038/s41583-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Healthy brain function depends on balancing stable integration between brain areas for effective coordinated functioning, with coexisting segregation that allows subsystems to express their functional specialization. Metastability, a concept from the dynamical systems literature, has been proposed as a key signature that characterizes this balance. Building on this principle, the neuroscience literature has leveraged the phenomenon of metastability to investigate various aspects of brain function in health and disease. However, this body of work often uses the notion of metastability heuristically, and sometimes inaccurately, making it difficult to navigate the vast literature, interpret findings and foster further development of theoretical and experimental methodologies. Here, we provide a comprehensive review of metastability and its applications in neuroscience, covering its scientific and historical foundations and the practical measures used to assess it in empirical data. We also provide a critical analysis of recent theoretical developments, clarifying common misconceptions and paving the road for future developments.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK.
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, UK.
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
- Sussex AI, University of Sussex, Brighton, UK.
- Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK.
| | - Andrea I Luppi
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- St John's College, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Mengsen Zhang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institución Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University Clayton, Melbourne, Victoria, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Newcastle, New South Wales, Australia
| | - J A Scott Kelso
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland
- The Bath Institute for the Augmented Human, University of Bath, Bath, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- The Institute for Human and Synthetic Minds, King's College London, London, UK
| |
Collapse
|
9
|
Vohryzek J, Sanz-Perl Y, Kringelbach ML, Deco G. Human brain dynamics are shaped by rare long-range connections over and above cortical geometry. Proc Natl Acad Sci U S A 2025; 122:e2415102122. [PMID: 39752525 PMCID: PMC11725837 DOI: 10.1073/pnas.2415102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 01/15/2025] Open
Abstract
A fundamental topological principle is that the container always shapes the content. In neuroscience, this translates into how the brain anatomy shapes brain dynamics. From neuroanatomy, the topology of the mammalian brain can be approximated by local connectivity, accurately described by an exponential distance rule (EDR). The compact, folded geometry of the cortex is shaped by this local connectivity, and the geometric harmonic modes can reconstruct much of the functional dynamics. However, this ignores the fundamental role of the rare long-range (LR) cortical connections, crucial for improving information processing in the mammalian brain, but not captured by local cortical folding and geometry. Here, we show the superiority of harmonic modes combining rare LR connectivity with EDR (EDR+LR) in capturing functional dynamics (specifically LR functional connectivity and task-evoked brain activity) compared to geometry and EDR representations. Importantly, the orchestration of dynamics is carried out by a more efficient manifold made up of a low number of fundamental EDR+LR modes. Our results show the importance of rare LR connectivity for capturing the complexity of functional brain activity through a low-dimensional manifold shaped by fundamental EDR+LR modes.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona08018, Spain
- Department of Psychiatry, Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OxfordOX3 9BX, United Kingdom
| | - Yonatan Sanz-Perl
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona08018, Spain
| | - Morten L. Kringelbach
- Department of Psychiatry, Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OxfordOX3 9BX, United Kingdom
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Department of Clinical Medicine, Centre for Music in the Brain, Aarhus University, Aarhus8000, Denmark
| | - Gustavo Deco
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Barcelona08010, Spain
| |
Collapse
|
10
|
Deco G, Sanz Perl Y, Kringelbach ML. Complex harmonics reveal low-dimensional manifolds of critical brain dynamics. Phys Rev E 2025; 111:014410. [PMID: 39972861 DOI: 10.1103/physreve.111.014410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
The brain needs to perform time-critical computations to ensure survival. A potential solution lies in the nonlocal, distributed computation at the whole-brain level made possible by criticality and amplified by the rare long-range connections found in the brain's unique anatomical structure. This nonlocality can be captured by the mathematical structure of Schrödinger's wave equation, which is at the heart of the complex harmonics decomposition (CHARM) framework that performs the necessary dimensional manifold reduction able to extract nonlocality in critical spacetime brain dynamics. Using a large neuroimaging dataset of over 1000 people, CHARM captured the critical, nonlocal and long-range nature of brain dynamics and the underlying mechanisms were established using a precise whole-brain model. Equally, CHARM revealed the significantly different critical dynamics of wakefulness and sleep. Overall, CHARM is a promising theoretical framework for capturing the low-dimensionality of the complex network dynamics observed in neuroscience and provides evidence that networks of brain regions rather than individual brain regions are the key computational engines of critical brain dynamics.
Collapse
Affiliation(s)
- Gustavo Deco
- Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Roc Boronat 138, 08010 Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Yonatan Sanz Perl
- Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Roc Boronat 138, 08010 Barcelona, Spain
- University of Buenos Aires, Department of Physics, Buenos Aires, Argentina
| | - Morten L Kringelbach
- University of Oxford, Centre for Eudaimonia and Human Flourishing, Linacre College, Oxford, United Kingdom
- University of Oxford, Department of Psychiatry, Oxford, United Kingdom
- Aarhus University, Center for Music in the Brain, Department of Clinical Medicine, Aarhus, Denmark
| |
Collapse
|
11
|
Liu Y, Seguin C, Betzel RF, Han D, Akarca D, Di Biase MA, Zalesky A. A generative model of the connectome with dynamic axon growth. Netw Neurosci 2024; 8:1192-1211. [PMID: 39735503 PMCID: PMC11674315 DOI: 10.1162/netn_a_00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/03/2024] [Indexed: 12/31/2024] Open
Abstract
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones. This simple dynamic growth mechanism, despite being solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry and features of complex network architecture consistent with the human brain, including lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and modularity. We demonstrate that our model parameters can be fitted to individual connectomes, enabling connectome dimensionality reduction and comparison of parameters between groups. Our work offers an opportunity to bridge studies of axon guidance and connectome development, providing new avenues for understanding neural development from a computational perspective.
Collapse
Affiliation(s)
- Yuanzhe Liu
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Daniel Han
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Maria A. Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zalesky
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Herzog R, Mediano PAM, Rosas FE, Luppi AI, Sanz-Perl Y, Tagliazucchi E, Kringelbach ML, Cofré R, Deco G. Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF. Netw Neurosci 2024; 8:1590-1612. [PMID: 39735506 PMCID: PMC11674928 DOI: 10.1162/netn_a_00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/20/2024] [Indexed: 12/31/2024] Open
Abstract
Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions. Here, we introduce an efficient and accessible implementation of the DMF model: the FastDMF. By leveraging analytical and numerical advances-including a novel estimation of the feedback inhibition control parameter and a Bayesian optimization algorithm-the FastDMF circumvents various computational bottlenecks of previous implementations, improving interpretability, performance, and memory use. Furthermore, these advances allow the FastDMF to increase the number of simulated regions by one order of magnitude, as confirmed by the good fit to fMRI data parcellated at 90 and 1,000 regions. These advances open the way to the widespread use of biophysically grounded whole-brain models for investigating the interplay between anatomy, function, and brain dynamics and to identify mechanistic explanations of recent results obtained from fine-grained neuroimaging recordings.
Collapse
Affiliation(s)
- Rubén Herzog
- Sorbonne Universite, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Pedro A. M. Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E. Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Sussex Centre for Consciousness Science and Sussex AI, University of Sussex, Brighton, UK
- Centre for Psychedelic Research and Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Andrea I. Luppi
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, UK
- St John’s College, University of Cambridge, Cambridge, UK
- Information Engineering Division, University of Cambridge, Cambridge, UK
| | - Yonatan Sanz-Perl
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Universidad de San Andres, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle epiniere (ICM), Paris, France
- Institucio Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rodrigo Cofré
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Gustavo Deco
- Institucio Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
13
|
Zhao HT, Schmidt ER. Human-specific genetic modifiers of cortical architecture and function. Curr Opin Genet Dev 2024; 88:102241. [PMID: 39111228 PMCID: PMC11547859 DOI: 10.1016/j.gde.2024.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Evolution of the cerebral cortex is thought to have been critical for the emergence of our cognitive abilities. Major features of cortical evolution include increased neuron number and connectivity and altered morpho-electric properties of cortical neurons. Significant progress has been made in identifying human-specific genetic modifiers (HSGMs), some of which are involved in shaping these features of cortical architecture. But how did these evolutionary changes support the emergence of our cognitive abilities? Here, we highlight recent studies aimed at examining the impact of HSGMs on cortical circuit function and behavior. We also discuss the need for greater insight into the link between evolution of cortical architecture and the functional and computational properties of neuronal circuits, as we seek to provide a neurobiological foundation for human cognition.
Collapse
Affiliation(s)
- Hanzhi T Zhao
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA
| | - Ewoud Re Schmidt
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA.
| |
Collapse
|
14
|
Zhang XY, Moore JM, Ru X, Yan G. Geometric Scaling Law in Real Neuronal Networks. PHYSICAL REVIEW LETTERS 2024; 133:138401. [PMID: 39392951 DOI: 10.1103/physrevlett.133.138401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/16/2024] [Indexed: 10/13/2024]
Abstract
We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.
Collapse
Affiliation(s)
- Xin-Ya Zhang
- MOE Key Laboratory of Advanced Micro-Structured Materials, and School of Physical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
- Shanghai Research Institute for Intelligent Autonomous Systems, National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, and Shanghai Key Laboratory of Intelligent Autonomous Systems, Tongji University, Shanghai 201210, People's Republic of China
| | - Jack Murdoch Moore
- MOE Key Laboratory of Advanced Micro-Structured Materials, and School of Physical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
- Shanghai Research Institute for Intelligent Autonomous Systems, National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, and Shanghai Key Laboratory of Intelligent Autonomous Systems, Tongji University, Shanghai 201210, People's Republic of China
| | - Xiaolei Ru
- MOE Key Laboratory of Advanced Micro-Structured Materials, and School of Physical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
- Shanghai Research Institute for Intelligent Autonomous Systems, National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, and Shanghai Key Laboratory of Intelligent Autonomous Systems, Tongji University, Shanghai 201210, People's Republic of China
| | - Gang Yan
- MOE Key Laboratory of Advanced Micro-Structured Materials, and School of Physical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
- Shanghai Research Institute for Intelligent Autonomous Systems, National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, and Shanghai Key Laboratory of Intelligent Autonomous Systems, Tongji University, Shanghai 201210, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| |
Collapse
|
15
|
Zhao N, Tao J, Wong C, Wu JS, Liu J, Chen LD, Lee TMC, Xu Y, Chan CCH. Theta burst stimulation on the fronto-cerebellar connective network promotes cognitive processing speed in the simple cognitive task. Front Hum Neurosci 2024; 18:1387299. [PMID: 39314267 PMCID: PMC11417469 DOI: 10.3389/fnhum.2024.1387299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background The fronto-cerebellar functional network has been proposed to subserve cognitive processing speed. This study aims to elucidate how the long-range frontal-to-cerebellar effective connectivity contributes to faster speed. Methods In total, 60 healthy participants were randomly allocated to three five-daily sessions of transcranial magnetic stimulation conditions, namely intermittent theta-burst stimulation (iTBS, excitatory), continuous theta-burst stimulation (CTBS, inhibitory), or a sham condition. The sites of the stimulations were the right pre-supplementary motor area (RpSMA), medial cerebellar vermis VI (MCV6), and vertex, respectively. Performances in two reaction time tasks were recorded at different time points. Results Post-stimulation speeds revealed marginal decreases in the simple but not complex task. Nevertheless, participants in the excitatory RpSMA and inhibitory MCV6 conditions showed direct and negative path effects on faster speeds compared to the sham condition in the simple reaction time (SRT) task (β = -0.320, p = 0.045 and β = -0.414, p = 0.007, respectively). These path effects were not observed in the SDMT task. Discussion RpSMA and MCV6 were involved in promoting the path effects of faster reaction times on simple cognitive task. This study offers further evidence to support their roles within the long-range frontal-to-cerebellar connectivity subserving cognitive processing speed. The enhancement effects, however, are likely limited to simple rather than complex mental operations.
Collapse
Affiliation(s)
- Ning Zhao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Rehabilitation, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Clive Wong
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Jing-song Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li-dian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tatia M. C. Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yanwen Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Soochow University, Wuxi, China
| | - Chetwyn C. H. Chan
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| |
Collapse
|
16
|
Millán AP, Sun H, Torres JJ, Bianconi G. Triadic percolation induces dynamical topological patterns in higher-order networks. PNAS NEXUS 2024; 3:pgae270. [PMID: 39035037 PMCID: PMC11259606 DOI: 10.1093/pnasnexus/pgae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Triadic interactions are higher-order interactions which occur when a set of nodes affects the interaction between two other nodes. Examples of triadic interactions are present in the brain when glia modulate the synaptic signals among neuron pairs or when interneuron axo-axonic synapses enable presynaptic inhibition and facilitation, and in ecosystems when one or more species can affect the interaction among two other species. On random graphs, triadic percolation has been recently shown to turn percolation into a fully fledged dynamical process in which the size of the giant component undergoes a route to chaos. However, in many real cases, triadic interactions are local and occur on spatially embedded networks. Here, we show that triadic interactions in spatial networks induce a very complex spatio-temporal modulation of the giant component which gives rise to triadic percolation patterns with significantly different topology. We classify the observed patterns (stripes, octopus, and small clusters) with topological data analysis and we assess their information content (entropy and complexity). Moreover, we illustrate the multistability of the dynamics of the triadic percolation patterns, and we provide a comprehensive phase diagram of the model. These results open new perspectives in percolation as they demonstrate that in presence of spatial triadic interactions, the giant component can acquire a time-varying topology. Hence, this work provides a theoretical framework that can be applied to model realistic scenarios in which the giant component is time dependent as in neuroscience.
Collapse
Affiliation(s)
- Ana P Millán
- Electromagnetism and Matter Physics Department, Institute “Carlos I” for Theoretical and Computational Physics, University of Granada, Granada E-18071, Spain
| | - Hanlin Sun
- Nordita, KTH Royal Institute of Technology and Stockholm University, Stockholm SE-106 91, Sweden
| | - Joaquín J Torres
- Electromagnetism and Matter Physics Department, Institute “Carlos I” for Theoretical and Computational Physics, University of Granada, Granada E-18071, Spain
| | - Ginestra Bianconi
- Centre for Complex Systems, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK
- The Alan Turing Institute, London NW1 2DB, UK
| |
Collapse
|
17
|
Millán AP, van Straaten ECW, Stam CJ, Nissen IA, Idema S, Van Mieghem P, Hillebrand A. Individualized epidemic spreading models predict epilepsy surgery outcomes: A pseudo-prospective study. Netw Neurosci 2024; 8:437-465. [PMID: 38952815 PMCID: PMC11142635 DOI: 10.1162/netn_a_00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but up to 50% of patients continue to have seizures one year after the resection. In order to aid presurgical planning and predict postsurgical outcome on a patient-by-patient basis, we developed a framework of individualized computational models that combines epidemic spreading with patient-specific connectivity and epileptogeneity maps: the Epidemic Spreading Seizure and Epilepsy Surgery framework (ESSES). ESSES parameters were fitted in a retrospective study (N = 15) to reproduce invasive electroencephalography (iEEG)-recorded seizures. ESSES reproduced the iEEG-recorded seizures, and significantly better so for patients with good (seizure-free, SF) than bad (nonseizure-free, NSF) outcome. We illustrate here the clinical applicability of ESSES with a pseudo-prospective study (N = 34) with a blind setting (to the resection strategy and surgical outcome) that emulated presurgical conditions. By setting the model parameters in the retrospective study, ESSES could be applied also to patients without iEEG data. ESSES could predict the chances of good outcome after any resection by finding patient-specific model-based optimal resection strategies, which we found to be smaller for SF than NSF patients, suggesting an intrinsic difference in the network organization or presurgical evaluation results of NSF patients. The actual surgical plan overlapped more with the model-based optimal resection, and had a larger effect in decreasing modeled seizure propagation, for SF patients than for NSF patients. Overall, ESSES could correctly predict 75% of NSF and 80.8% of SF cases pseudo-prospectively. Our results show that individualised computational models may inform surgical planning by suggesting alternative resections and providing information on the likelihood of a good outcome after a proposed resection. This is the first time that such a model is validated with a fully independent cohort and without the need for iEEG recordings.
Collapse
Affiliation(s)
- Ana P. Millán
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Institute “Carlos I” for Theoretical and Computational Physics, and Electromagnetism and Matter Physics Department, University of Granada, Granada, Spain
| | - Elisabeth C. W. van Straaten
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ida A. Nissen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
| | - Sander Idema
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cancer Biology and Immonology, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Kringelbach ML, Sanz Perl Y, Deco G. The Thermodynamics of Mind. Trends Cogn Sci 2024; 28:568-581. [PMID: 38677884 DOI: 10.1016/j.tics.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
To not only survive, but also thrive, the brain must efficiently orchestrate distributed computation across space and time. This requires hierarchical organisation facilitating fast information transfer and processing at the lowest possible metabolic cost. Quantifying brain hierarchy is difficult but can be estimated from the asymmetry of information flow. Thermodynamics has successfully characterised hierarchy in many other complex systems. Here, we propose the 'Thermodynamics of Mind' framework as a natural way to quantify hierarchical brain orchestration and its underlying mechanisms. This has already provided novel insights into the orchestration of hierarchy in brain states including movie watching, where the hierarchy of the brain is flatter than during rest. Overall, this framework holds great promise for revealing the orchestration of cognition.
Collapse
Affiliation(s)
- Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; International Centre for Flourishing, Universities of Oxford, Aarhus, and Pompeu Fabra, Oxford, UK.
| | - Yonatan Sanz Perl
- International Centre for Flourishing, Universities of Oxford, Aarhus, and Pompeu Fabra, Oxford, UK; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain; Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Deco
- International Centre for Flourishing, Universities of Oxford, Aarhus, and Pompeu Fabra, Oxford, UK; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
19
|
Martínez-Molina N, Escrichs A, Sanz-Perl Y, Sihvonen AJ, Särkämö T, Kringelbach ML, Deco G. The evolution of whole-brain turbulent dynamics during recovery from traumatic brain injury. Netw Neurosci 2024; 8:158-177. [PMID: 38562284 PMCID: PMC10898780 DOI: 10.1162/netn_a_00346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
It has been previously shown that traumatic brain injury (TBI) is associated with reductions in metastability in large-scale networks in resting-state fMRI (rsfMRI). However, little is known about how TBI affects the local level of synchronization and how this evolves during the recovery trajectory. Here, we applied a novel turbulent dynamics framework to investigate whole-brain dynamics using an rsfMRI dataset from a cohort of moderate to severe TBI patients and healthy controls (HCs). We first examined how several measures related to turbulent dynamics differ between HCs and TBI patients at 3, 6, and 12 months post-injury. We found a significant reduction in these empirical measures after TBI, with the largest change at 6 months post-injury. Next, we built a Hopf whole-brain model with coupled oscillators and conducted in silico perturbations to investigate the mechanistic principles underlying the reduced turbulent dynamics found in the empirical data. A simulated attack was used to account for the effect of focal lesions. This revealed a shift to lower coupling parameters in the TBI dataset and, critically, decreased susceptibility and information-encoding capability. These findings confirm the potential of the turbulent framework to characterize longitudinal changes in whole-brain dynamics and in the reactivity to external perturbations after TBI.
Collapse
Affiliation(s)
- Noelia Martínez-Molina
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki, Finland
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Yonatan Sanz-Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Aleksi J. Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki, Finland
- School of Health and Rehabilitation Sciences, Queensland Aphasia Research Centre and UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
- Department of Neurology, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki, Finland
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
20
|
Martínez-Molina N, Sanz-Perl Y, Escrichs A, Kringelbach ML, Deco G. Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury. Front Neuroinform 2024; 18:1382372. [PMID: 38590709 PMCID: PMC10999628 DOI: 10.3389/fninf.2024.1382372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery.
Collapse
Affiliation(s)
- Noelia Martínez-Molina
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yonatan Sanz-Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
21
|
Liu Y, Seguin C, Betzel RF, Akarca D, Di Biase MA, Zalesky A. A generative model of the connectome with dynamic axon growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581824. [PMID: 38464116 PMCID: PMC10925171 DOI: 10.1101/2024.02.23.581824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization - axonal growth. Emulating the chemoaffinity guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones. This simple dynamic growth mechanism, despite being solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry and features of complex network architecture consistent with the human brain, including lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and modularity. We demonstrate that our model parameters can be fitted to individual connectomes, enabling connectome dimensionality reduction and comparison of parameters between groups. Our work offers an opportunity to bridge studies of axon guidance and connectome development, providing new avenues for understanding neural development from a computational perspective.
Collapse
Affiliation(s)
- Yuanzhe Liu
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Danyal Akarca
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Maria A. Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zalesky
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Deco G, Lynn CW, Sanz Perl Y, Kringelbach ML. Violations of the fluctuation-dissipation theorem reveal distinct nonequilibrium dynamics of brain states. Phys Rev E 2023; 108:064410. [PMID: 38243472 DOI: 10.1103/physreve.108.064410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/16/2023] [Indexed: 01/21/2024]
Abstract
The brain is a nonequilibrium system whose dynamics change in different brain states, such as wakefulness and deep sleep. Thermodynamics provides the tools for revealing these nonequilibrium dynamics. We used violations of the fluctuation-dissipation theorem to describe the hierarchy of nonequilibrium dynamics associated with different brain states. Together with a whole-brain model fitted to empirical human neuroimaging data, and deriving the appropriate analytical expressions, we were able to capture the deviation from equilibrium in different brain states that arises from asymmetric interactions and hierarchical organization.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Christopher W Lynn
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, New York 10016, USA and Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires 1428, Argentina and Paris Brain Institute (ICM), Paris 75013, France
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom; and Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
24
|
Schoonhoven DN, Coomans EM, Millán AP, van Nifterick AM, Visser D, Ossenkoppele R, Tuncel H, van der Flier WM, Golla SSV, Scheltens P, Hillebrand A, van Berckel BNM, Stam CJ, Gouw AA. Tau protein spreads through functionally connected neurons in Alzheimer's disease: a combined MEG/PET study. Brain 2023; 146:4040-4054. [PMID: 37279597 PMCID: PMC10545627 DOI: 10.1093/brain/awad189] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
Recent studies on Alzheimer's disease (AD) suggest that tau proteins spread through the brain following neuronal connections. Several mechanisms could be involved in this process: spreading between brain regions that interact strongly (functional connectivity); through the pattern of anatomical connections (structural connectivity); or simple diffusion. Using magnetoencephalography (MEG), we investigated which spreading pathways influence tau protein spreading by modelling the tau propagation process using an epidemic spreading model. We compared the modelled tau depositions with 18F-flortaucipir PET binding potentials at several stages of the AD continuum. In this cross-sectional study, we analysed source-reconstructed MEG data and dynamic 100-min 18F-flortaucipir PET from 57 subjects positive for amyloid-β pathology [preclinical AD (n = 16), mild cognitive impairment (MCI) due to AD (n = 16) and AD dementia (n = 25)]. Cognitively healthy subjects without amyloid-β pathology were included as controls (n = 25). Tau propagation was modelled as an epidemic process (susceptible-infected model) on MEG-based functional networks [in alpha (8-13 Hz) and beta (13-30 Hz) bands], a structural or diffusion network, starting from the middle and inferior temporal lobe. The group-level network of the control group was used as input for the model to predict tau deposition in three stages of the AD continuum. To assess performance, model output was compared to the group-specific tau deposition patterns as measured with 18F-flortaucipir PET. We repeated the analysis by using networks of the preceding disease stage and/or using regions with most observed tau deposition during the preceding stage as seeds. In the preclinical AD stage, the functional networks predicted most of the modelled tau-PET binding potential, with best correlations between model and tau-PET [corrected amplitude envelope correlation (AEC-c) alpha C = 0.584; AEC-c beta C = 0.569], followed by the structural network (C = 0.451) and simple diffusion (C = 0.451). Prediction accuracy declined for the MCI and AD dementia stages, although the correlation between modelled tau and tau-PET binding remained highest for the functional networks (C = 0.384; C = 0.376). Replacing the control-network with the network from the preceding disease stage and/or alternative seeds improved prediction accuracy in MCI but not in the dementia stage. These results suggest that in addition to structural connections, functional connections play an important role in tau spread, and highlight that neuronal dynamics play a key role in promoting this pathological process. Aberrant neuronal communication patterns should be taken into account when identifying targets for future therapy. Our results also suggest that this process is more important in earlier disease stages (preclinical AD/MCI); possibly, in later stages, other processes may be influential.
Collapse
Affiliation(s)
- Deborah N Schoonhoven
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Emma M Coomans
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Anne M van Nifterick
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Denise Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, 221 00 Lund, Sweden
| | - Hayel Tuncel
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
25
|
Lorents A, Colin ME, Bjerke IE, Nougaret S, Montelisciani L, Diaz M, Verschure P, Vezoli J. Human Brain Project Partnering Projects Meeting: Status Quo and Outlook. eNeuro 2023; 10:ENEURO.0091-23.2023. [PMID: 37669867 PMCID: PMC10481639 DOI: 10.1523/eneuro.0091-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
As the European Flagship Human Brain Project (HBP) ends in September 2023, a meeting dedicated to the Partnering Projects (PPs), a collective of independent research groups that partnered with the HBP, was held on September 4-7, 2022. The purpose of this meeting was to allow these groups to present their results, reflect on their collaboration with the HBP and discuss future interactions with the European Research Infrastructure (RI) EBRAINS that has emerged from the HBP. In this report, we share the tour-de-force that the Partnering Projects that were present in the meeting have made in furthering knowledge concerning various aspects of Brain Research with the HBP. We describe briefly major achievements of the HBP Partnering Projects in terms of a systems-level understanding of the functional architecture of the brain and its possible emulation in artificial systems. We then recapitulate open discussions with EBRAINS representatives about the evolution of EBRAINS as a sustainable Research Infrastructure for the Partnering Projects after the HBP, and also for the wider scientific community.
Collapse
Affiliation(s)
| | | | - Ingvild Elise Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway
| | - Simon Nougaret
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Luca Montelisciani
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Marissa Diaz
- Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Paul Verschure
- Donders Center for Neuroscience (DCN-FNWI), Radboud University, Nijmegen 6500HD, The Netherlands
| | - Julien Vezoli
- Ernst Strügmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
- Institut National de la Santé et de la Recherche Médicale Unité 1208, Stem Cell and Brain Research Institute, Université Claude Bernard Lyon 1, Bron 69500, France
| |
Collapse
|
26
|
Castaldo F, Páscoa Dos Santos F, Timms RC, Cabral J, Vohryzek J, Deco G, Woolrich M, Friston K, Verschure P, Litvak V. Multi-modal and multi-model interrogation of large-scale functional brain networks. Neuroimage 2023; 277:120236. [PMID: 37355200 PMCID: PMC10958139 DOI: 10.1016/j.neuroimage.2023.120236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Existing whole-brain models are generally tailored to the modelling of a particular data modality (e.g., fMRI or MEG/EEG). We propose that despite the differing aspects of neural activity each modality captures, they originate from shared network dynamics. Building on the universal principles of self-organising delay-coupled nonlinear systems, we aim to link distinct features of brain activity - captured across modalities - to the dynamics unfolding on a macroscopic structural connectome. To jointly predict connectivity, spatiotemporal and transient features of distinct signal modalities, we consider two large-scale models - the Stuart Landau and Wilson and Cowan models - which generate short-lived 40 Hz oscillations with varying levels of realism. To this end, we measure features of functional connectivity and metastable oscillatory modes (MOMs) in fMRI and MEG signals - and compare them against simulated data. We show that both models can represent MEG functional connectivity (FC), functional connectivity dynamics (FCD) and generate MOMs to a comparable degree. This is achieved by adjusting the global coupling and mean conduction time delay and, in the WC model, through the inclusion of balance between excitation and inhibition. For both models, the omission of delays dramatically decreased the performance. For fMRI, the SL model performed worse for FCD and MOMs, highlighting the importance of balanced dynamics for the emergence of spatiotemporal and transient patterns of ultra-slow dynamics. Notably, optimal working points varied across modalities and no model was able to achieve a correlation with empirical FC higher than 0.4 across modalities for the same set of parameters. Nonetheless, both displayed the emergence of FC patterns that extended beyond the constraints of the anatomical structure. Finally, we show that both models can generate MOMs with empirical-like properties such as size (number of brain regions engaging in a mode) and duration (continuous time interval during which a mode appears). Our results demonstrate the emergence of static and dynamic properties of neural activity at different timescales from networks of delay-coupled oscillators at 40 Hz. Given the higher dependence of simulated FC on the underlying structural connectivity, we suggest that mesoscale heterogeneities in neural circuitry may be critical for the emergence of parallel cross-modal functional networks and should be accounted for in future modelling endeavours.
Collapse
Affiliation(s)
- Francesca Castaldo
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Francisco Páscoa Dos Santos
- Eodyne Systems SL, Barcelona, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ryan C Timms
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United United Kingdom
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United United Kingdom; Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gustavo Deco
- Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Mark Woolrich
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paul Verschure
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
27
|
van Lingen MR, Breedt LC, Geurts JJG, Hillebrand A, Klein M, Kouwenhoven MCM, Kulik SD, Reijneveld JC, Stam CJ, De Witt Hamer PC, Zimmermann MLM, Santos FAN, Douw L. The longitudinal relation between executive functioning and multilayer network topology in glioma patients. Brain Imaging Behav 2023; 17:425-435. [PMID: 37067658 PMCID: PMC10435610 DOI: 10.1007/s11682-023-00770-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
Many patients with glioma, primary brain tumors, suffer from poorly understood executive functioning deficits before and/or after tumor resection. We aimed to test whether frontoparietal network centrality of multilayer networks, allowing for integration across multiple frequencies, relates to and predicts executive functioning in glioma. Patients with glioma (n = 37) underwent resting-state magnetoencephalography and neuropsychological tests assessing word fluency, inhibition, and set shifting before (T1) and one year after tumor resection (T2). We constructed binary multilayer networks comprising six layers, with each layer representing frequency-specific functional connectivity between source-localized time series of 78 cortical regions. Average frontoparietal network multilayer eigenvector centrality, a measure for network integration, was calculated at both time points. Regression analyses were used to investigate associations with executive functioning. At T1, lower multilayer integration (p = 0.017) and epilepsy (p = 0.006) associated with poorer set shifting (adj. R2 = 0.269). Decreasing multilayer integration (p = 0.022) and not undergoing chemotherapy at T2 (p = 0.004) related to deteriorating set shifting over time (adj. R2 = 0.283). No significant associations were found for word fluency or inhibition, nor did T1 multilayer integration predict changes in executive functioning. As expected, our results establish multilayer integration of the frontoparietal network as a cross-sectional and longitudinal correlate of executive functioning in glioma patients. However, multilayer integration did not predict postoperative changes in executive functioning, which together with the fact that this correlate is also found in health and other diseases, limits its specific clinical relevance in glioma.
Collapse
Affiliation(s)
- Marike R van Lingen
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Lucas C Breedt
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Martin Klein
- Department of Medical Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Mathilde C M Kouwenhoven
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Shanna D Kulik
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Mona L M Zimmermann
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Fernando A N Santos
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Institute of Advanced Studies, University of Amsterdam, Amsterdam, the Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Tewarie PKB, Hindriks R, Lai YM, Sotiropoulos SN, Kringelbach M, Deco G. Non-reversibility outperforms functional connectivity in characterisation of brain states in MEG data. Neuroimage 2023; 276:120186. [PMID: 37268096 DOI: 10.1016/j.neuroimage.2023.120186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Characterising brain states during tasks is common practice for many neuroscientific experiments using electrophysiological modalities such as electroencephalography (EEG) and magnetoencephalography (MEG). Brain states are often described in terms of oscillatory power and correlated brain activity, i.e. functional connectivity. It is, however, not unusual to observe weak task induced functional connectivity alterations in the presence of strong task induced power modulations using classical time-frequency representation of the data. Here, we propose that non-reversibility, or the temporal asymmetry in functional interactions, may be more sensitive to characterise task induced brain states than functional connectivity. As a second step, we explore causal mechanisms of non-reversibility in MEG data using whole brain computational models. We include working memory, motor, language tasks and resting-state data from participants of the Human Connectome Project (HCP). Non-reversibility is derived from the lagged amplitude envelope correlation (LAEC), and is based on asymmetry of the forward and reversed cross-correlations of the amplitude envelopes. Using random forests, we find that non-reversibility outperforms functional connectivity in the identification of task induced brain states. Non-reversibility shows especially better sensitivity to capture bottom-up gamma induced brain states across all tasks, but also alpha band associated brain states. Using whole brain computational models we find that asymmetry in the effective connectivity and axonal conduction delays play a major role in shaping non-reversibility across the brain. Our work paves the way for better sensitivity in characterising brain states during both bottom-up as well as top-down modulation in future neuroscientific experiments.
Collapse
Affiliation(s)
- Prejaas K B Tewarie
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands; Department of Neurology, Amsterdam UMC, Amsterdam, the Netherlands; Sir Peter Mansfield Imaging Centre, School of Physics, University of Nottingham, Nottingham, United Kingdom.
| | - Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yi Ming Lai
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom; NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
29
|
Ponce-Alvarez A, Kringelbach ML, Deco G. Critical scaling of whole-brain resting-state dynamics. Commun Biol 2023; 6:627. [PMID: 37301936 PMCID: PMC10257708 DOI: 10.1038/s42003-023-05001-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Scale invariance is a characteristic of neural activity. How this property emerges from neural interactions remains a fundamental question. Here, we studied the relation between scale-invariant brain dynamics and structural connectivity by analyzing human resting-state (rs-) fMRI signals, together with diffusion MRI (dMRI) connectivity and its approximation as an exponentially decaying function of the distance between brain regions. We analyzed the rs-fMRI dynamics using functional connectivity and a recently proposed phenomenological renormalization group (PRG) method that tracks the change of collective activity after successive coarse-graining at different scales. We found that brain dynamics display power-law correlations and power-law scaling as a function of PRG coarse-graining based on functional or structural connectivity. Moreover, we modeled the brain activity using a network of spins interacting through large-scale connectivity and presenting a phase transition between ordered and disordered phases. Within this simple model, we found that the observed scaling features were likely to emerge from critical dynamics and connections exponentially decaying with distance. In conclusion, our study tests the PRG method using large-scale brain activity and theoretical models and suggests that scaling of rs-fMRI activity relates to criticality.
Collapse
Affiliation(s)
- Adrián Ponce-Alvarez
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08005, Spain.
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain.
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, 8000, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08005, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
30
|
Stam CJ, van Nifterick AM, de Haan W, Gouw AA. Network Hyperexcitability in Early Alzheimer's Disease: Is Functional Connectivity a Potential Biomarker? Brain Topogr 2023:10.1007/s10548-023-00968-7. [PMID: 37173584 DOI: 10.1007/s10548-023-00968-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Network hyperexcitability (NH) is an important feature of the pathophysiology of Alzheimer's disease. Functional connectivity (FC) of brain networks has been proposed as a potential biomarker for NH. Here we use a whole brain computational model and resting-state MEG recordings to investigate the relation between hyperexcitability and FC. Oscillatory brain activity was simulated with a Stuart Landau model on a network of 78 interconnected brain regions. FC was quantified with amplitude envelope correlation (AEC) and phase coherence (PC). MEG was recorded in 18 subjects with subjective cognitive decline (SCD) and 18 subjects with mild cognitive impairment (MCI). Functional connectivity was determined with the corrected AECc and phase lag index (PLI), in the 4-8 Hz and the 8-13 Hz bands. The excitation/inhibition balance in the model had a strong effect on both AEC and PC. This effect was different for AEC and PC, and was influenced by structural coupling strength and frequency band. Empirical FC matrices of SCD and MCI showed a good correlation with model FC for AEC, but less so for PC. For AEC the fit was best in the hyperexcitable range. We conclude that FC is sensitive to changes in E/I balance. The AEC was more sensitive than the PLI, and results were better for the thetaband than the alpha band. This conclusion was supported by fitting the model to empirical data. Our study justifies the use of functional connectivity measures as surrogate markers for E/I balance.
Collapse
Affiliation(s)
- C J Stam
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - A M van Nifterick
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - W de Haan
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - A A Gouw
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Clusella P, Deco G, Kringelbach ML, Ruffini G, Garcia-Ojalvo J. Complex spatiotemporal oscillations emerge from transverse instabilities in large-scale brain networks. PLoS Comput Biol 2023; 19:e1010781. [PMID: 37043504 PMCID: PMC10124884 DOI: 10.1371/journal.pcbi.1010781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/24/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Spatiotemporal oscillations underlie all cognitive brain functions. Large-scale brain models, constrained by neuroimaging data, aim to trace the principles underlying such macroscopic neural activity from the intricate and multi-scale structure of the brain. Despite substantial progress in the field, many aspects about the mechanisms behind the onset of spatiotemporal neural dynamics are still unknown. In this work we establish a simple framework for the emergence of complex brain dynamics, including high-dimensional chaos and travelling waves. The model consists of a complex network of 90 brain regions, whose structural connectivity is obtained from tractography data. The activity of each brain area is governed by a Jansen neural mass model and we normalize the total input received by each node so it amounts the same across all brain areas. This assumption allows for the existence of an homogeneous invariant manifold, i.e., a set of different stationary and oscillatory states in which all nodes behave identically. Stability analysis of these homogeneous solutions unveils a transverse instability of the synchronized state, which gives rise to different types of spatiotemporal dynamics, such as chaotic alpha activity. Additionally, we illustrate the ubiquity of this route towards complex spatiotemporal activity in a network of next generation neural mass models. Altogehter, our results unveil the bifurcation landscape that underlies the emergence of function from structure in the brain.
Collapse
Affiliation(s)
- Pau Clusella
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Morten L. Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
32
|
Hindriks R, Tewarie PKB. Dissociation between phase and power correlation networks in the human brain is driven by co-occurrent bursts. Commun Biol 2023; 6:286. [PMID: 36934153 PMCID: PMC10024695 DOI: 10.1038/s42003-023-04648-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
Well-known haemodynamic resting-state networks are better mirrored in power correlation networks than phase coupling networks in electrophysiological data. However, what do these power correlation networks reflect? We address this long-outstanding question in neuroscience using rigorous mathematical analysis, biophysical simulations with ground truth and application of these mathematical concepts to empirical magnetoencephalography (MEG) data. Our mathematical derivations show that for two non-Gaussian electrophysiological signals, their power correlation depends on their coherence, cokurtosis and conjugate-coherence. Only coherence and cokurtosis contribute to power correlation networks in MEG data, but cokurtosis is less affected by artefactual signal leakage and better mirrors haemodynamic resting-state networks. Simulations and MEG data show that cokurtosis may reflect co-occurrent bursting events. Our findings shed light on the origin of the complementary nature of power correlation networks to phase coupling networks and suggests that the origin of resting-state networks is partly reflected in co-occurent bursts in neuronal activity.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Prejaas K B Tewarie
- Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands
- Sir Peter Mansfield Imaging Center, School of Physics, University of Nottingham, Nottingham, UK
| |
Collapse
|
33
|
Lead-DBS v3.0: Mapping deep brain stimulation effects to local anatomy and global networks. Neuroimage 2023; 268:119862. [PMID: 36610682 PMCID: PMC10144063 DOI: 10.1016/j.neuroimage.2023.119862] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.
Collapse
|
34
|
Wang Y, Royer J, Park BY, Vos de Wael R, Larivière S, Tavakol S, Rodriguez-Cruces R, Paquola C, Hong SJ, Margulies DS, Smallwood J, Valk SL, Evans AC, Bernhardt BC. Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain. Cereb Cortex 2023; 33:1782-1798. [PMID: 35596951 PMCID: PMC9977370 DOI: 10.1093/cercor/bhac172] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. METHODS We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. RESULTS Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. CONCLUSIONS By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.
Collapse
Affiliation(s)
- Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Department of Data Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Integrative Neuroscience and Cognition Centre, University of Paris and CRNS, INCC - UMR 8002, Rue des Saint-Pères 75006, Paris
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, 62 Arch Street, Humphrey Hall, Room 232 Kingston, Ontario K7L 3N6, Canada
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A. Leipzig D-04103, Germany.,Institute of Systems Neuroscience, Heinrich Heine University, Moorenstr. 5, Düsseldorf 40225, Germany
| | - Alan C Evans
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
35
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528836. [PMID: 36824821 PMCID: PMC9948985 DOI: 10.1101/2023.02.16.528836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activity between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC well aligns with the observed FC when compared to that simulated with traditional structural connectome. Simulations were performed using the open source framework The Virtual Brain on High Performance Computing infrastructure.
Collapse
|
36
|
Kringelbach ML, Perl YS, Tagliazucchi E, Deco G. Toward naturalistic neuroscience: Mechanisms underlying the flattening of brain hierarchy in movie-watching compared to rest and task. SCIENCE ADVANCES 2023; 9:eade6049. [PMID: 36638163 PMCID: PMC9839335 DOI: 10.1126/sciadv.ade6049] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/13/2022] [Indexed: 06/04/2023]
Abstract
Identifying the functional specialization of the brain has moved from using cognitive tasks and resting state to using ecological relevant, naturalistic movies. We leveraged a large-scale neuroimaging dataset to directly investigate the hierarchical reorganization of functional brain activity when watching naturalistic films compared to performing seven cognitive tasks and resting. A thermodynamics-inspired whole-brain model paradigm revealed the generative underlying mechanisms for changing the balance in causal interactions between brain regions in different conditions. Paradoxically, the hierarchy is flatter for movie-watching, and the level of nonreversibility is significantly smaller in comparison to both rest and tasks, where the latter in turn have the highest levels of hierarchy and nonreversibility. The underlying mechanisms were revealed by the model-based generative effective connectivity (GEC). Naturalistic films could therefore provide a fast and convenient way to measure important changes in GEC (integrating functional and anatomical connectivity) found in, for example, neuropsychiatric disorders. Overall, this study demonstrates the benefits of moving toward a more naturalistic neuroscience.
Collapse
Affiliation(s)
- Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
37
|
Strength-dependent perturbation of whole-brain model working in different regimes reveals the role of fluctuations in brain dynamics. PLoS Comput Biol 2022; 18:e1010662. [PMID: 36322525 PMCID: PMC9629648 DOI: 10.1371/journal.pcbi.1010662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/17/2022] [Indexed: 01/15/2023] Open
Abstract
Despite decades of research, there is still a lack of understanding of the role and generating mechanisms of the ubiquitous fluctuations and oscillations found in recordings of brain dynamics. Here, we used whole-brain computational models capable of presenting different dynamical regimes to reproduce empirical data's turbulence level. We showed that the model's fluctuations regime fitted to turbulence more faithfully reproduces the empirical functional connectivity compared to oscillatory and noise regimes. By applying global and local strength-dependent perturbations and subsequently measuring the responsiveness of the model, we revealed each regime's computational capacity demonstrating that brain dynamics is shifted towards fluctuations to provide much-needed flexibility. Importantly, fluctuation regime stimulation in a brain region within a given resting state network modulates that network, aligned with previous empirical and computational studies. Furthermore, this framework generates specific, testable empirical predictions for human stimulation studies using strength-dependent rather than constant perturbation. Overall, the whole-brain models fitted to the level of empirical turbulence together with functional connectivity unveil that the fluctuation regime best captures empirical data, and the strength-dependent perturbative framework demonstrates how this regime provides maximal flexibility to the human brain.
Collapse
|
38
|
Cruzat J, Perl YS, Escrichs A, Vohryzek J, Timmermann C, Roseman L, Luppi AI, Ibañez A, Nutt D, Carhart-Harris R, Tagliazucchi E, Deco G, Kringelbach ML. Effects of classic psychedelic drugs on turbulent signatures in brain dynamics. Netw Neurosci 2022; 6:1104-1124. [PMID: 38800462 PMCID: PMC11117113 DOI: 10.1162/netn_a_00250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/06/2022] [Indexed: 05/29/2024] Open
Abstract
Psychedelic drugs show promise as safe and effective treatments for neuropsychiatric disorders, yet their mechanisms of action are not fully understood. A fundamental hypothesis is that psychedelics work by dose-dependently changing the functional hierarchy of brain dynamics, but it is unclear whether different psychedelics act similarly. Here, we investigated the changes in the brain's functional hierarchy associated with two different psychedelics (LSD and psilocybin). Using a novel turbulence framework, we were able to determine the vorticity, that is, the local level of synchronization, that allowed us to extend the standard global time-based measure of metastability to become a local-based measure of both space and time. This framework produced detailed signatures of turbulence-based hierarchical change for each psychedelic drug, revealing consistent and discriminate effects on a higher level network, that is, the default mode network. Overall, our findings directly support a prior hypothesis that psychedelics modulate (i.e., "compress") the functional hierarchy and provide a quantification of these changes for two different psychedelics. Implications for therapeutic applications of psychedelics are discussed.
Collapse
Affiliation(s)
- Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Jakub Vohryzek
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
| | - Christopher Timmermann
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Leor Roseman
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - Agustin Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, and CONICET, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA, and Trinity College Dublin (TCD), Dublin, Ireland
| | - David Nutt
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
- Psychedelics Division–Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires, Argentina
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
39
|
Parsons N, Ugon J, Morgan K, Shelyag S, Hocking A, Chan SY, Poudel G, Domìnguez D JF, Caeyenberghs K. Structural-Functional Connectivity Bandwidth of the Human Brain. Neuroimage 2022; 263:119659. [PMID: 36191756 DOI: 10.1016/j.neuroimage.2022.119659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The human brain is a complex network that seamlessly manifests behaviour and cognition. This network comprises neurons that directly, or indirectly mediate communication between brain regions. Here, we show how multilayer/multiplex network analysis provides a suitable framework to uncover the throughput of structural connectivity (SC) to mediate information transfer-giving rise to functional connectivity (FC). METHOD We implemented a novel method to reconcile SC and FC using diffusion and resting-state functional MRI connectivity data from 484 subjects (272 females, 212 males; age = 29.15 ± 3.47) from the Human Connectome Project. First, we counted the number of direct and indirect structural paths that mediate FC. FC nodes with indirect SC paths were then weighted according to their least restrictive SC path. We refer to this as SC-FC Bandwidth. We then mapped paths with the highest SC-FC Bandwidth across 7 canonical resting-state networks. FINDINGS We found that most pairs of FC nodes were connected by SC paths of length two and three (SC paths of length >5 were virtually non-existent). Direct SC-FC connections accounted for only 10% of all SC-FC connections. The majority of FC nodes without a direct SC path were mediated by a proportion of two (44%) or three SC path lengths (39%). Only a small proportion of FC nodes were mediated by SC path lengths of four (5%). We found high-bandwidth direct SC-FC connections show dense intra- and sparse inter-network connectivity, with a bilateral, anteroposterior distribution. High bandwidth SC-FC triangles have a right superomedial distribution within the somatomotor network. High-bandwidth SC-FC quads have a superoposterior distribution within the default mode network. CONCLUSION Our method allows the measurement of indirect SC-FC using undirected, weighted graphs derived from multimodal MRI data in order to map the location and throughput of SC to mediate FC. An extension of this work may be to explore how SC-FC Bandwidth changes over time, relates to cognition/behavior, and if this measure reflects a marker of neurological injury or psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas Parsons
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia.
| | - Julien Ugon
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Kerri Morgan
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Sergiy Shelyag
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Alex Hocking
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Su Yuan Chan
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Govinda Poudel
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Juan F Domìnguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Cabral J, Castaldo F, Vohryzek J, Litvak V, Bick C, Lambiotte R, Friston K, Kringelbach ML, Deco G. Metastable oscillatory modes emerge from synchronization in the brain spacetime connectome. COMMUNICATIONS PHYSICS 2022; 5:184. [PMID: 38288392 PMCID: PMC7615562 DOI: 10.1038/s42005-022-00950-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/20/2022] [Indexed: 01/31/2024]
Abstract
A rich repertoire of oscillatory signals is detected from human brains with electro- and magnetoencephalography (EEG/MEG). However, the principles underwriting coherent oscillations and their link with neural activity remain under debate. Here, we revisit the mechanistic hypothesis that transient brain rhythms are a signature of metastable synchronization, occurring at reduced collective frequencies due to delays between brain areas. We consider a system of damped oscillators in the presence of background noise - approximating the short-lived gamma-frequency oscillations generated within neuronal circuits - coupled according to the diffusion weighted tractography between brain areas. Varying the global coupling strength and conduction speed, we identify a critical regime where spatially and spectrally resolved metastable oscillatory modes (MOMs) emerge at sub-gamma frequencies, approximating the MEG power spectra from 89 healthy individuals at rest. Further, we demonstrate that the frequency, duration, and scale of MOMs - as well as the frequency-specific envelope functional connectivity - can be controlled by global parameters, while the connectome structure remains unchanged. Grounded in the physics of delay-coupled oscillators, these numerical analyses demonstrate how interactions between locally generated fast oscillations in the connectome spacetime structure can lead to the emergence of collective brain rhythms organized in space and time.
Collapse
Affiliation(s)
- Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- ICVS/3B’s - Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francesca Castaldo
- Wellcome Centre for Human Neuroimaging, University College London, Queen Square Institute of Neurology, London, UK
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, University College London, Queen Square Institute of Neurology, London, UK
| | - Christian Bick
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience – Systems & Network Neuroscience, Amsterdam, The Netherlands
- Mathematical Institute, University of Oxford, Oxford, UK
- Department of Mathematics, University of Exeter, Exeter, UK
| | | | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, Queen Square Institute of Neurology, London, UK
| | - Morten L. Kringelbach
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
41
|
Escrichs A, Perl YS, Uribe C, Camara E, Türker B, Pyatigorskaya N, López-González A, Pallavicini C, Panda R, Annen J, Gosseries O, Laureys S, Naccache L, Sitt JD, Laufs H, Tagliazucchi E, Kringelbach ML, Deco G. Unifying turbulent dynamics framework distinguishes different brain states. Commun Biol 2022; 5:638. [PMID: 35768641 PMCID: PMC9243255 DOI: 10.1038/s42003-022-03576-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Significant advances have been made by identifying the levels of synchrony of the underlying dynamics of a given brain state. This research has demonstrated that non-conscious dynamics tend to be more synchronous than in conscious states, which are more asynchronous. Here we go beyond this dichotomy to demonstrate that different brain states are underpinned by dissociable spatiotemporal dynamics. We investigated human neuroimaging data from different brain states (resting state, meditation, deep sleep and disorders of consciousness after coma). The model-free approach was based on Kuramoto's turbulence framework using coupled oscillators. This was extended by a measure of the information cascade across spatial scales. Complementarily, the model-based approach used exhaustive in silico perturbations of whole-brain models fitted to these measures. This allowed studying of the information encoding capabilities in given brain states. Overall, this framework demonstrates that elements from turbulence theory provide excellent tools for describing and differentiating between brain states.
Collapse
Grants
- A.E and Y.S.P. are supported by the HBP SGA3 Human Brain Project Specific Grant Agreement 3 (grant agreement no. 945539), funded by the EU H2020 FET Flagship programme. Y.S.P is supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant 896354. G.D. is supported Spanish national research project (ref. PID2019-105772GB-I00 MCIU AEI) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI); HBP SGA3 Human Brain Project Specific Grant Agreement 3 (grant agreement no. 945539), funded by the EU H2020 FET Flagship programme; SGR Research Support Group support (ref. 2017 SGR 1545), funded by the Catalan Agency for Management of University and Research Grants (AGAUR); Neurotwin Digital twins for model-driven non-invasive electrical brain stimulation (grant agreement ID: 101017716) funded by the EU H2020 FET Proactive programme; euSNN European School of Network Neuroscience (grant agreement ID: 860563) funded by the EU H2020 MSCA-ITN Innovative Training Networks; CECH The Emerging Human Brain Cluster (Id. 001-P-001682) within the framework of the European Research Development Fund Operational Program of Catalonia 2014-2020; Brain-Connects: Brain Connectivity during Stroke Recovery and Rehabilitation (id. 201725.33) funded by the Fundacio La Marato TV3; Corticity, FLAG–ERA JTC 2017 (ref. PCI2018-092891) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI). MLK is supported by the Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117), and Centre for Eudaimonia and Human Flourishing at Linacre College funded by the Pettit and Carlsberg Foundations. The study was supported by the University and University Hospital of Liège, the Belgian National Funds for Scientific Research (FRS-FNRS), the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme, the BIAL Foundation, the Mind Science Foundation, the fund Generet of the King Baudouin Foundation, the Mind-Care foundation and AstraZeneca Foundation, the National Natural Science Foundation of China (Joint Research Project 81471100) and the European Foundation of Biomedical Research FERB Onlus. RP is research fellow, OG is research associate, and SL is research director at FRS-FNRS. The authors thank all the patients and participants, the whole staff from the Radiodiagnostic and Nuclear departments of the University Hospital of Liège.
Collapse
Affiliation(s)
- Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Universidad de San Andrés, Buenos Aires, Argentina.
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Estela Camara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Basak Türker
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Nadya Pyatigorskaya
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- Department of Neuroradiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Ane López-González
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Carla Pallavicini
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, U Laval CANADA, Québec, QC, Canada
- International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Lionel Naccache
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Jacobo D Sitt
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Helmut Laufs
- Department of Neurology, Christian Albrechts University, Kiel, Germany
- Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, DK, Jutland, Denmark.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain.
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany.
- School of Psychological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
42
|
Deco G, Sanz Perl Y, Bocaccio H, Tagliazucchi E, Kringelbach ML. The INSIDEOUT framework provides precise signatures of the balance of intrinsic and extrinsic dynamics in brain states. Commun Biol 2022; 5:572. [PMID: 35688893 PMCID: PMC9187708 DOI: 10.1038/s42003-022-03505-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
Finding precise signatures of different brain states is a central, unsolved question in neuroscience. We reformulated the problem to quantify the 'inside out' balance of intrinsic and extrinsic brain dynamics in brain states. The difference in brain state can be described as differences in the detailed causal interactions found in the underlying intrinsic brain dynamics. We used a thermodynamics framework to quantify the breaking of the detailed balance captured by the level of asymmetry in temporal processing, i.e. the arrow of time. Specifically, the temporal asymmetry was computed by the time-shifted correlation matrices for the forward and reversed time series, reflecting the level of non-reversibility/non-equilibrium. We found precise, distinguishing signatures in terms of the reversibility and hierarchy of large-scale dynamics in three radically different brain states (awake, deep sleep and anaesthesia) in electrocorticography data from non-human primates. Significantly lower levels of reversibility were found in deep sleep and anaesthesia compared to wakefulness. Non-wakeful states also showed a flatter hierarchy, reflecting the diversity of the reversibility across the brain. Overall, this provides signatures of the breaking of detailed balance in different brain states, perhaps reflecting levels of conscious awareness.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain.
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
- School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, 3800, Australia.
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Hernan Bocaccio
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
43
|
A Riemannian approach to predicting brain function from the structural connectome. Neuroimage 2022; 257:119299. [PMID: 35636736 DOI: 10.1016/j.neuroimage.2022.119299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules governing this relationship remain unknown. Emerging literature has suggested that functional interactions between brain regions emerge from the structural connections through mono- as well as polysynaptic mechanisms. Here, we propose a novel approach based on diffusion maps and Riemannian optimization to emulate this dynamic mechanism in the form of random walks on the structural connectome and predict functional interactions as a weighted combination of these random walks. Our proposed approach was evaluated in two different cohorts of healthy adults (Human Connectome Project, HCP; Microstructure-Informed Connectomics, MICs). Our approach outperformed existing approaches and showed that performance plateaus approximately around the third random walk. At macroscale, we found that the largest number of walks was required in nodes of the default mode and frontoparietal networks, underscoring an increasing relevance of polysynaptic communication mechanisms in transmodal cortical networks compared to primary and unimodal systems.
Collapse
|
44
|
Millán AP, van Straaten ECW, Stam CJ, Nissen IA, Idema S, Baayen JC, Van Mieghem P, Hillebrand A. Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings. Sci Rep 2022; 12:4086. [PMID: 35260657 PMCID: PMC8904850 DOI: 10.1038/s41598-022-07730-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on MEG brain networks to explore seizure propagation and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and outcome. We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on individual brain networks derived from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters were tuned in in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. We defined a personalized search algorithm that combined structural and dynamical information to find resections that maximally decreased seizure propagation for a given resection size. The optimal resection for each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation. The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection area. Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be determined with the ultimate goal to improve surgery outcome. MEG-based networks can provide a good approximation of structural connectivity for computational models of seizure propagation, and facilitate their clinical use.
Collapse
Affiliation(s)
- Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ida A Nissen
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Rosen BQ, Halgren E. An estimation of the absolute number of axons indicates that human cortical areas are sparsely connected. PLoS Biol 2022; 20:e3001575. [PMID: 35286306 PMCID: PMC8947121 DOI: 10.1371/journal.pbio.3001575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/24/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
The tracts between cortical areas are conceived as playing a central role in cortical information processing, but their actual numbers have never been determined in humans. Here, we estimate the absolute number of axons linking cortical areas from a whole-cortex diffusion MRI (dMRI) connectome, calibrated using the histologically measured callosal fiber density. Median connectivity is estimated as approximately 6,200 axons between cortical areas within hemisphere and approximately 1,300 axons interhemispherically, with axons connecting functionally related areas surprisingly sparse. For example, we estimate that <5% of the axons in the trunk of the arcuate and superior longitudinal fasciculi connect Wernicke's and Broca's areas. These results suggest that detailed information is transmitted between cortical areas either via linkage of the dense local connections or via rare, extraordinarily privileged long-range connections.
Collapse
Affiliation(s)
- Burke Q Rosen
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Eric Halgren
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Departments of Neurosciences & Radiology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
46
|
De Filippi E, Uribe C, Avila-Varela DS, Martínez-Molina N, Gashaj V, Pritschet L, Santander T, Jacobs EG, Kringelbach ML, Sanz Perl Y, Deco G, Escrichs A. The Menstrual Cycle Modulates Whole-Brain Turbulent Dynamics. Front Neurosci 2021; 15:753820. [PMID: 34955718 PMCID: PMC8695489 DOI: 10.3389/fnins.2021.753820] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Brain dynamics have recently been shown to be modulated by rhythmic changes in female sex hormone concentrations across an entire menstrual cycle. However, many questions remain regarding the specific differences in information processing across spacetime between the two main follicular and luteal phases in the menstrual cycle. Using a novel turbulent dynamic framework, we studied whole-brain information processing across spacetime scales (i.e., across long and short distances in the brain) in two open-source, dense-sampled resting-state datasets. A healthy naturally cycling woman in her early twenties was scanned over 30 consecutive days during a naturally occurring menstrual cycle and under a hormonal contraceptive regime. Our results indicated that the luteal phase is characterized by significantly higher information transmission across spatial scales than the follicular phase. Furthermore, we found significant differences in turbulence levels between the two phases in brain regions belonging to the default mode, salience/ventral attention, somatomotor, control, and dorsal attention networks. Finally, we found that changes in estradiol and progesterone concentrations modulate whole-brain turbulent dynamics in long distances. In contrast, we reported no significant differences in information processing measures between the active and placebo phases in the hormonal contraceptive study. Overall, the results demonstrate that the turbulence framework is able to capture differences in whole-brain turbulent dynamics related to ovarian hormones and menstrual cycle stages.
Collapse
Affiliation(s)
- Eleonora De Filippi
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carme Uribe
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, ON, Canada
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Daniela S. Avila-Varela
- Speech Acquisition and Perception Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Noelia Martínez-Molina
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Venera Gashaj
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tyler Santander
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Emily G. Jacobs
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
47
|
Bondanelli G, Panzeri S. Neuroscience: Turbulent times for brain information processing. Curr Biol 2021; 31:R1400-R1402. [PMID: 34699808 DOI: 10.1016/j.cub.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A recent study shows that rare long-range connections between brain areas may considerably improve transmission of information between areas. The study suggests that information may propagate better through long-range connections when neural activity exhibits turbulent dynamics.
Collapse
Affiliation(s)
- Giulio Bondanelli
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy; Department of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|