1
|
Chen Y, Cui H, Xu T, Chen L. Contrasting Effects of Mutualistic Ants ( Solenopsis invicta) and Predatory Ladybugs on the Proportion of Dark Green Morphs of Cotton Aphids. INSECTS 2025; 16:271. [PMID: 40266780 PMCID: PMC11943279 DOI: 10.3390/insects16030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025]
Abstract
Cotton aphids, Aphis gossypii, are an important pest worldwide and have evolved mutualistic relationships with the invasive fire ant Solenopsis invicta. Their body color varies from pale yellow to dark green, with an increase in body size and fecundity. The body color composition in a cotton aphid colony can be influenced by biotic interactions with mutualistic ants and predatory ladybugs. However, since the distribution of nutrients varies across host plant organs, there may exist special effects of biotic interactions on the body color composition of the aphids on different plant parts. In the present study, we found that, under constant laboratory conditions, the proportions of dark green morphs varied among the cotton aphids distributed on different parts of a cotton seedling, with significantly higher proportions on the stems, petioles, and sprouts (SPSs) than on leaves. The presence of mutualistic fire ants significantly increased the proportion of dark green morphs in the cotton aphid colony, but with a reduction in aphid body size, compared to the untended individuals. In contrast, the introduction of a predatory seven-spotted ladybug, Coccinella septempunctata, dramatically decreased the proportion of dark green morphs on SPSs, but not on leaves, leading to a reduction in the proportion of the whole colony. These results illustrate a spatial variation in the proportions of dark green morphs on host plants in cotton aphids, which may be an adaptive strategy used by the aphids to gain benefits and/or minimize costs in the interactions with mutualistic ants and predatory ladybugs.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China; (Y.C.); (H.C.)
| | - Hejun Cui
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China; (Y.C.); (H.C.)
| | - Tian Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Li Chen
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China; (Y.C.); (H.C.)
| |
Collapse
|
2
|
Luttenschlager H, Noël G, Carpentier J, Glacet L, Ravelomanana A, Rakotonirina JC, Rajaonera T, Francis F. Diversity and Implication of Symbiotic Bacteria in Aphids-Ants Relationships in Madagascar. NEOTROPICAL ENTOMOLOGY 2025; 54:40. [PMID: 39979693 DOI: 10.1007/s13744-025-01259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Facultative bacteria in aphids provide their hosts with various physiological and ecological adaptations, such as resistance to thermal stress, parasitoids and entomopathogenic fungi. Furthermore, these symbionts possess the capacity to modulate the composition of honeydew, a substance that is particularly favored by numerous ant species. That's why we were interested in determining whether the presence of facultative bacteria in myrmecophilic aphids influences their relationship with mutualistic ants. In the vicinity of Antananarivo (Madagascar), the objectives of the study were to (i) determine the diversity of ants, aphids and symbionts and to (ii) assess the impacts of the identified symbiont on behavioural interactions of ants and aphids. We identified a total of four species (Serratia symbiotica, Rickettsia, Spiroplasma, Hamiltonella defensa) of facultative symbionts present in the three ant species (Camponotus maculate, Monomorium madecassum, Nylanderia gracilis) we tested and a total of six facultative symbionts (Serratia symbiotica, Rickettsia, Spiroplasma, Hamiltonella defensa, Regiella insecticola, Rickettsiella) among three of the five aphid species (Aphis citricidus, Aphis fabae, Aphis spiraecola, Macrosiphum euphorbiae, Rhopalosiphum maidis) we tested. Although our results did not show the involvement of symbionts on ant behaviour or their association with aphids, our study showed that the number of ants increases with the number of interactions, that Nylanderia gracilis are the ants with the most interactions and finally that ants observed on pesticide-treated plots have fewer interactions with aphids.
Collapse
Affiliation(s)
- Hugo Luttenschlager
- Lab d'Entomologie Fonctionnelle Et Évolutive, Univ de Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium.
| | - Grégoire Noël
- Lab d'Entomologie Fonctionnelle Et Évolutive, Univ de Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Joachim Carpentier
- Lab d'Entomologie Fonctionnelle Et Évolutive, Univ de Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Lallie Glacet
- Lab d'Entomologie Fonctionnelle Et Évolutive, Univ de Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Andrianjaka Ravelomanana
- Depto d'Entomologie-Culture, Elevage Et Santé de La Faculté Des Sciences, Univ d'Antananarivo, Antananarivo, Madagascar
| | - Jean Claude Rakotonirina
- Depto d'Entomologie-Culture, Elevage Et Santé de La Faculté Des Sciences, Univ d'Antananarivo, Antananarivo, Madagascar
| | - Tahina Rajaonera
- Depto d'Entomologie-Culture, Elevage Et Santé de La Faculté Des Sciences, Univ d'Antananarivo, Antananarivo, Madagascar
| | - Frédéric Francis
- Lab d'Entomologie Fonctionnelle Et Évolutive, Univ de Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
3
|
Wang B, Jacquin-Joly E, Wang G. The Role of ( E)-β-Farnesene in Tritrophic Interactions: Biosynthesis, Chemoreception, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:313-335. [PMID: 39378330 DOI: 10.1146/annurev-ento-013024-021018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
(E)-β-farnesene (EBF) stands out as a crucial volatile organic compound, exerting significant influence on the complex interactions between plants, aphids, and predator insects. Serving as an alarm signal within aphids, EBF is also emitted by plants as a defense mechanism to attract aphid predators. This review delves into EBF sources, functions, biosynthesis, detection mechanisms, and its coevolutionary impacts on aphids and insect predators. The exploration underscores the need to comprehend the biophysical and structural foundations of EBF receptors in aphids, emphasizing their role in unraveling the intricate patterns and mechanisms of interaction between EBF and target receptors. Furthermore, we advocate for adopting structure-based or machine-learning methodologies to anticipate receptor-ligand interactions. On the basis of this knowledge, we propose future research directions aiming at designing, optimizing, and screening more stable and efficient active odorants. A pivotal outcome of this comprehensive investigation aims to contribute to the development of more effective aphid-targeted control strategies.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China;
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China;
| |
Collapse
|
4
|
Zhao M, Huang S, Zhang Q, Wei Y, Tao Z, Wang C, Zhao Y, Zhang X, Dong J, Wang L, Chen C, Wang T, Li P. The plant terpenes DMNT and TMTT function as signaling compounds that attract Asian corn borer (Ostrinia furnacalis) to maize plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2528-2542. [PMID: 39171839 PMCID: PMC11583840 DOI: 10.1111/jipb.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
During their co-evolution with herbivorous insects, plants have developed multiple defense strategies that resist pests, such as releasing a blend of herbivory-induced plant volatiles (HIPVs) that repel pests or recruit their natural enemies. However, the responses of insects to HIPVs in maize (Zea mays L.) are not well understood. Here, we demonstrate that the Asian corn borer (ACB, Ostrinia furnacalis), a major insect pest of maize, shows a preference for maize pre-infested with ACB larvae rather than being repelled by these plants. Through combined transcriptomic and metabolomics analysis of ACB-infested maize seedlings, we identified two substances that explain this behavior: (E)-4,8-dimethylnona-1,3,7-triene (DMNT) and (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT). DMNT and TMTT attracted ACB larvae, and knocking out the maize genes responsible for their biosynthesis via gene editing impaired this attraction. External supplementation with DMNT/TMTT hampered the larvae's ability to locate pre-infested maize. These findings uncover a novel role for DMNT and TMTT in driving the behavior of ACB. Genetic modification of maize to make it less detectable by ACB might be an effective strategy for developing maize germplasm resistant to ACB and for managing this pest effectively in the field.
Collapse
Affiliation(s)
- Mengjie Zhao
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Shijie Huang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qingyang Zhang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Yuming Wei
- The School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Tao
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanhong Wang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Yibing Zhao
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Xinqiao Zhang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Jinghui Dong
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Ling Wang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Chen Chen
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tengyue Wang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Peijin Li
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
5
|
Bronstein JL, Sridhar H. Connecting and integrating cooperation within and between species. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230203. [PMID: 39034697 PMCID: PMC11293865 DOI: 10.1098/rstb.2023.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 07/23/2024] Open
Abstract
There has long been a fundamental divide in the study of cooperation: researchers focus either on cooperation within species, including but not limited to sociality, or else on cooperation between species, commonly termed mutualism. Here, we explore the ecologically and evolutionarily significant ways in which within- and between-species cooperation interact. We highlight two primary cross-linkages. First, cooperation of one type can change the context in which cooperation of the other type functions, and thus potentially its outcome. We delineate three possibilities: (i) within-species cooperation modulates benefits for a heterospecific partner; (ii) between-species cooperation affects the dynamics of within-species cooperation; and (iii) both processes take place interactively. The second type of cross-linkage emerges when resources or services that cooperation makes available are obtainable either from members of the same species or from different species. This brings cooperation at the two levels into direct interaction, to some extent obscuring the distinction between them. We expand on these intersections between within- and between-species cooperation in a diversity of taxa and interaction types. These interactions have the potential to weave together social networks and trophic dynamics, contributing to the structure and functioning of ecological communities in ways that are just beginning to be explored. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Judith L. Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ85721, USA
| | - Hari Sridhar
- Konrad Lorenz Institute for Evolution and Cognition Research, KlosterneuburgA-3400, Austria
| |
Collapse
|
6
|
Chen Y, Yao X, Jiang Z, Xiao Z, Luo C, Zhong G, Yi X. OBP83b and OBP49a Involved in the Perception of Female-Derived Pheromones in Bactrocera dorsalis (Hendel). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17858-17867. [PMID: 39081139 DOI: 10.1021/acs.jafc.4c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In Bactrocera dorsalis, both males and females release chemical signals to attract mates. In our previous study, we identified ethyl laurate, ethyl myristate, and ethyl palmitate as potent female-derived pheromones that contribute to mate attraction. However, the mechanisms underlying the olfactory recognition remain unclear. In this study, we observed strong antennal and behavioral responses in male B. dorsalis to these female-derived pheromones, and further investigation revealed significant upregulation of OBP49a and OBP83b following exposure to these compounds. Through fluorescence competitive binding assays and RNA interference techniques, we demonstrated the crucial roles of OBP49a and OBP83b in detecting female-derived pheromones. Finally, molecular docking analysis identified key residues, including His134 in OBP83b and a lysine residue in OBP49a, which formed hydrogen bonds with female-derived pheromones, facilitating their binding. These findings not only advance our understanding of olfactory recognition of pheromones in B. dorsalis but also offer potential targets for developing olfaction-interfering techniques for pest control.
Collapse
Affiliation(s)
- Yaoyao Chen
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Yao
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhiyan Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Ziwei Xiao
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Chang Luo
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Zaharieva A, Rusanov K, Rusanova M, Paunov M, Yordanova Z, Mantovska D, Tsacheva I, Petrova D, Mishev K, Dobrev PI, Lacek J, Filepová R, Zehirov G, Vassileva V, Mišić D, Motyka V, Chaneva G, Zhiponova M. Uncovering the Interrelation between Metabolite Profiles and Bioactivity of In Vitro- and Wild-Grown Catmint ( Nepeta nuda L.). Metabolites 2023; 13:1099. [PMID: 37887424 PMCID: PMC10609352 DOI: 10.3390/metabo13101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-β,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.
Collapse
Affiliation(s)
- Anna Zaharieva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Krasimir Rusanov
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Mila Rusanova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Grigor Zehirov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| |
Collapse
|
8
|
Wang J, Wei J, Yi T, Li YY, Xu T, Chen L, Xu H. A green leaf volatile, (Z)-3-hexenyl-acetate, mediates differential oviposition by Spodoptera frugiperda on maize and rice. BMC Biol 2023; 21:140. [PMID: 37337192 DOI: 10.1186/s12915-023-01642-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Insects rely on chemosensory perception, mainly olfaction, for the location of mates, food sources, and oviposition sites. Plant-released volatile compounds guide herbivorous insects to search for and locate their host plants, further helping them to identify suitable positions for oviposition. The fall armyworm Spodoptera frugiperda (S. frugiperda) was found to invade China in 2019 and has since seriously threatened multiple crops, particularly maize and rice. However, the chemical and molecular mechanisms underlying oviposition preference in this pest are not fully understood. Here, the oviposition preference of S. frugiperda on maize and rice plants was investigated. RESULTS GC-EAD and GC-MS/MS techniques were used to identify the antennally active volatiles from maize and rice plants. The attraction and oviposition stimulation of identified components to female adults were tested in both laboratory and field settings. The odorant receptors (ORs) on female antennae were expressed in Xenopus oocytes, and their functions evaluated by RNAi. Ten and eleven compounds of maize and rice plants, respectively, were identified to possess electrophysiological activity from headspace volatiles. Among these compounds, (Z)-3-hexenyl-acetate specifically presented in maize volatiles was found to play a critical role in attracting females and stimulating oviposition compared to rice volatiles. Among the cloned ORs on the antennae of both sexes, SfruOR23 with highly female-biased expression mediated the responses of females to (Z)-3-hexenyl-acetate. Knockdown of SfruOR23 using RNAi markedly reduced the electrophysiological response of female antennae and oviposition preference to the compound. CONCLUSIONS (Z)-3-Hexenyl-acetate is a key volatile mediating the host and oviposition preference of S. frugiperda on maize. The olfactory receptor of (Z)-3-hexenyl-acetate was identified to be SfruOR23, which is mainly expressed in the antennae of S. frugiperda.
Collapse
Affiliation(s)
- Jiali Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Yi
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ya-Ya Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Tian Xu
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Li Chen
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Plata Á, Gómez-Martínez MA, Beitia FJ, Tena A. Exclusion of Mediterranean ant species enhances biological control of the invasive mealybug Delottococcus aberiae in citrus. PEST MANAGEMENT SCIENCE 2023; 79:2056-2065. [PMID: 36693817 DOI: 10.1002/ps.7380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Delottococcus aberiae is an invasive mealybug that produces severe damage in Spanish citrus. This mealybug has established a mutualistic relationship with native Mediterranean ant species that may limit biological control of this pest. Herein, we evaluated the effect of tending ants on the biological control of D. aberiae. To do this, we compared: (i) the density of D. aberiae, (ii) the density of its natural enemies, and (iii) the damage produced by the mealybug in trees with (control) and without ants (ants excluded with sticky barriers) in two citrus orchards across two consecutive years. RESULTS Lasius grandis was the most abundant ant species in both orchards and represented more than 95% of the ants tending D. aberiae in control trees. Spiders and lacewings were the most abundant predators observed in mealybug colonies, and the exclusion of mutualistic ants increased their abundance. Moreover, in control trees, ant activity throughout the year was negatively correlated with the relative abundance of predators (number of predators per mealybug). No parasitoids were recovered during field experiments. Ant exclusion reduced the density of D. aberiae and the ratio of damaged fruit at harvest across years and orchards. CONCLUSIONS This work corroborates the previous finding that D. aberiae benefits from its mutualistic relationship with L. grandis, probably because the presence of ants reduced the abundance of generalist predators. This mutualism can be disrupted using physical barriers on on the trunk. Further research should assess other methods of ant control that are more economic and feasible for citrus producers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ángel Plata
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| | - María A Gómez-Martínez
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| | - Francisco J Beitia
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| | - Alejandro Tena
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| |
Collapse
|
10
|
Xu T, Zhang N, Xu M, Glauser G, Turlings TCJ, Chen L. Revisiting the trail pheromone components of the red imported fire ant, Solenopsis invicta Buren. INSECT SCIENCE 2023; 30:161-172. [PMID: 35451550 DOI: 10.1111/1744-7917.13047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Ants use species-specific trail pheromones to coordinate their sophisticated foraging behavior. During the past decades, many trail pheromone components with various structures have been identified in ants, including the red imported fire ant, Solenopsis invicta, a notorious invasive species worldwide. Four compounds, Z,E- (ZEF) and E,E-α-farnesene (EEF), Z,E- (ZEHF) and E,E-α-homofarnesene (EEHF), have been reported as components of S. invicta trail pheromone. However, another study reported an analog of α-farnesene, Z,Z,Z-allofarnesene, as a key trail pheromone component. These contrasting results caused some uncertainty about the trail pheromone composition in S. invicta. In this study, we synthesized ZEF and EEF, ZEHF and EEHF, and reanalyzed the chemicals in the Dufour gland extract and in the trail pheromone fraction of S. invicta worker body extract. The reported isomers of farnesene and homofarnesene were detected and showed trail-following activity, with ZEF as the major compound, while no allofarnesene was found, neither in the Dufour gland extract nor in the whole-body extract. Our results confirm ZEF and EEF, ZEHF and EEHF as trail pheromone components of S. invicta.
Collapse
Affiliation(s)
- Tian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Nuo Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Switzerland
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Switzerland
| |
Collapse
|
11
|
Ivens ABF, Kronauer DJC. Aphid-farming ants. Curr Biol 2022; 32:R813-R817. [PMID: 35944477 DOI: 10.1016/j.cub.2022.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Ivens and Kronauer provide an overview of the farming mutualism between ants and aphids, in which ants protect aphids in exchange for food.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
12
|
Hojo MK. Evolution of chemical interactions between ants and their mutualist partners. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100943. [PMID: 35691585 DOI: 10.1016/j.cois.2022.100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Mutualism is the reciprocal exploitation of interacting participants and is vulnerable to nonrewarding cheating. Ants are dominant insects in most terrestrial ecosystems, and some aphids and lycaenid butterfly species provide them with nutritional nectar rewards and employ ants as bodyguards. In this review, I discuss how chemical communication based on condition-dependent signaling and recognition plasticity regulate the payoff of interacting participants. I argue that the selfishness of both participants explains the signaling and communication among participants and contributes to the stability of these mutualisms. Uncovering the origin and maintenance of mutualistic association of ants will come from future research on ant collective behavior, the genetic and neural basis of cooperation, and a deeper understanding of the costs and benefits of these interactions.
Collapse
Affiliation(s)
- Masaru K Hojo
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
13
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Klein RA, Quinn MT. Neutrophil Immunomodulatory Activity of Farnesene, a Component of Artemisia dracunculus Essential Oils. Pharmaceuticals (Basel) 2022; 15:642. [PMID: 35631467 PMCID: PMC9143003 DOI: 10.3390/ph15050642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Despite their reported therapeutic properties, not much is known about the immunomodulatory activity of essential oils present in Artemisia species. We isolated essential oils from the flowers and leaves of five Artemisia species: A. tridentata, A. ludoviciana, A. dracunculus, A. frigida, and A. cana. The chemical composition of the Artemisia essential oil samples had similarities and differences as compared to those previously reported in the literature. The main components of essential oils obtained from A. tridentata, A. ludoviciana, A. frigida, and A. cana were camphor (23.0-51.3%), 1,8-cineole (5.7-30.0%), camphene (1.6-7.7%), borneol (2.3-14.6%), artemisiole (1.2-7.5%), terpinen-4-ol (2.0-6.9%), α-pinene (0.8-3.9%), and santolinatriene (0.7-3.5%). Essential oils from A. dracunculus were enriched in methyl chavicol (38.8-42.9%), methyl eugenol (26.1-26.4%), terpinolene (5.5-8.8%), (E/Z)-β-ocimene (7.3-16.0%), β-phellandrene (1.3-2.2%), p-cymen-8-ol (0.9-2.3%), and xanthoxylin (1.2-2.2%). A comparison across species also demonstrated that some compounds were present in only one Artemisia species. Although Artemisia essential oils were weak activators of human neutrophils, they were relatively more potent in inhibiting subsequent neutrophil Ca2+ mobilization with N-formyl peptide receptor 1 (FPR1) agonist fMLF- and FPR2 agonist WKYMVM, with the most potent being essential oils from A. dracunculus. Further analysis of unique compounds found in A. dracunculus showed that farnesene, a compound with a similar hydrocarbon structure as lipoxin A4, inhibited Ca2+ influx induced in human neutrophils by fMLF (IC50 = 1.2 μM), WKYMVM (IC50 = 1.4 μM), or interleukin 8 (IC50 = 2.6 μM). Pretreatment with A. dracunculus essential oils and farnesene also inhibited human neutrophil chemotaxis induced by fMLF, suggesting these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Thus, our studies have identified farnesene as a potential anti-inflammatory modulator of human neutrophils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | | | - Robyn A. Klein
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| |
Collapse
|
14
|
Liu Q, Hu X, Su S, Ning Y, Peng Y, Ye G, Lou Y, Turlings TCJ, Li Y. Cooperative herbivory between two important pests of rice. Nat Commun 2021; 12:6772. [PMID: 34799588 PMCID: PMC8604950 DOI: 10.1038/s41467-021-27021-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Normally, when different species of herbivorous arthropods feed on the same plant this leads to fitness-reducing competition. We found this to be different for two of Asia's most destructive rice pests, the brown planthopper and the rice striped stem borer. Both insects directly and indirectly benefit from jointly attacking the same host plant. Double infestation improved host plant quality, particularly for the stemborer because the planthopper fully suppresses caterpillar-induced production of proteinase inhibitors. It also reduced the risk of egg parasitism, due to diminished parasitoid attraction. Females of both pests have adapted their oviposition behaviour accordingly. Their strong preference for plants infested by the other species even overrides their avoidance of plants already attacked by conspecifics. This cooperation between herbivores is telling of adaptations resulting from the evolution of plant-insect interactions, and points out mechanistic vulnerabilities that can be targeted to control these major pests.
Collapse
Affiliation(s)
- Qingsong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
- College of Life Sciences, Xinyang Normal University, 464000, Xinyang, China
| | - Xiaoyun Hu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Shuangli Su
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Gongyin Ye
- Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yonggen Lou
- Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| |
Collapse
|
15
|
Padje AV', van de Peppel LJJ, Aanen DK. Evolution: Ant trail pheromones promote ant-aphid mutualisms. Curr Biol 2021; 31:R1437-R1439. [PMID: 34752771 DOI: 10.1016/j.cub.2021.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A new study shows that trail pheromones produced by an invasive ant species suppress the dispersal and stimulate the reproduction of cotton aphids that the ants can 'milk' for honeydew. Aphids use these pheromones as a signal of ant presence and respond adaptively, analogous to early stages of animal husbandry where animals were attracted to human settlements.
Collapse
Affiliation(s)
- Anouk van 't Padje
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | - Lennart J J van de Peppel
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Duur K Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|