1
|
Eom K, Kim D, Hyun JH. Engram and behavior: How memory is stored in the brain. Neurobiol Learn Mem 2025; 219:108047. [PMID: 40074071 DOI: 10.1016/j.nlm.2025.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
During the processing of information in humans, activated neurons behave in a specific way. The activity of these neurons leaves traces on the neurons, such as changes in synaptic or intrinsic properties. Formation of the memory traces is associated with molecular changes in the neurons. Hence, monitoring collective neural activities and following the trace of neural activities are important to neuroscience research. This collective or group of neurons is described as a 'neural ensemble', while the neural trace is described as a 'neural engram'. Both terms have been used and studied by neuroscientists for a long time. In this article, we discuss the development of these concepts, current research methods, and future areas of development.
Collapse
Affiliation(s)
- Kisang Eom
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Donguk Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung Ho Hyun
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Biomedical Sciences & Engineering Major of Interdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
2
|
Li M, Yang XK, Yang J, Li TX, Cui C, Peng X, Lei J, Ren K, Ming J, Zhang P, Tian B. Ketamine ameliorates post-traumatic social avoidance by erasing the traumatic memory encoded in VTA-innervated BLA engram cells. Neuron 2024; 112:3192-3210.e6. [PMID: 39032491 DOI: 10.1016/j.neuron.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/21/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Erasing traumatic memory during memory reconsolidation is a promising retrieval-extinction strategy for post-traumatic stress disorder (PTSD). Here, we developed an acute social defeat stress (SDS) mouse model with short-term and re-exposure-evoked long-term social avoidance. SDS-associated traumatic memories were identified to be stored in basolateral amygdala (BLA) engram cells. A single intraperitoneal administration of subanesthetic-dose ketamine within, but not beyond, the re-exposure time window significantly alleviates SDS-induced social avoidance, which reduces the activity and quantity of reactivated BLA engram cells. Furthermore, activation or inhibition of dopaminergic projections from the ventral tegmental area to the BLA effectively mimics or blocks the therapeutic effect of re-exposure with ketamine and is dopamine D2 receptor dependent. Single-cell RNA sequencing reveals that re-exposure with ketamine triggered significant changes in memory-related pathways in the BLA. Together, our research advances the understanding of how ketamine mitigates PTSD symptoms and offers promising avenues for developing more effective treatments for trauma-related disorders.
Collapse
Affiliation(s)
- Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xue-Ke Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tong-Xia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiang Peng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| |
Collapse
|
3
|
Kveim VA, Salm L, Ulmer T, Lahr M, Kandler S, Imhof F, Donato F. Divergent recruitment of developmentally defined neuronal ensembles supports memory dynamics. Science 2024; 385:eadk0997. [PMID: 39146420 DOI: 10.1126/science.adk0997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Memories are dynamic constructs whose properties change with time and experience. The biological mechanisms underpinning these dynamics remain elusive, particularly concerning how shifts in the composition of memory-encoding neuronal ensembles influence the evolution of a memory over time. By targeting developmentally distinct subpopulations of principal neurons, we discovered that memory encoding resulted in the concurrent establishment of multiple memory traces in the mouse hippocampus. Two of these traces were instantiated in subpopulations of early- and late-born neurons and followed distinct reactivation trajectories after encoding. The divergent recruitment of these subpopulations underpinned gradual reorganization of memory ensembles and modulated memory persistence and plasticity across multiple learning episodes. Thus, our findings reveal profound and intricate relationships between ensemble dynamics and the progression of memories over time.
Collapse
Affiliation(s)
- Vilde A Kveim
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Laurenz Salm
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Talia Ulmer
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Maria Lahr
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | | | - Fabia Imhof
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Flavio Donato
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Fu Y, Cao Z, Ye T, Yang H, Chu C, Lei C, Wen Y, Cai Z, Yuan Y, Guo X, Yang L, Sheng H, Cui D, Shao D, Chen M, Lai B, Zheng P. Projection neurons from medial entorhinal cortex to basolateral amygdala are critical for the retrieval of morphine withdrawal memory. iScience 2024; 27:110239. [PMID: 39021787 PMCID: PMC11253517 DOI: 10.1016/j.isci.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The medial entorhinal cortex (MEC) is crucial for contextual memory, yet its role in context-induced retrieval of morphine withdrawal memory remains unclear. This study investigated the role of the MEC and its projection neurons from MEC layer 5 to the basolateral amygdala (BLA) (MEC-BLA neurons) in context-induced retrieval of morphine withdrawal memory. Results show that context activates the MEC in morphine withdrawal mice, and the inactivation of the MEC inhibits context-induced retrieval of morphine withdrawal memory. At neural circuits, context activates MEC-BLA neurons in morphine withdrawal mice, and the inactivation of MEC-BLA neurons inhibits context-induced retrieval of morphine withdrawal memory. But MEC-BLA neurons are not activated by conditioning of context and morphine withdrawal, and the inhibition of MEC-BLA neurons do not influence the coupling of context and morphine withdrawal memory. These results suggest that MEC-BLA neurons are critical for the retrieval, but not for the formation, of morphine withdrawal memory.
Collapse
Affiliation(s)
- Yali Fu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zixuan Cao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ting Ye
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenshan Chu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chao Lei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaxian Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhangyin Cai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Yuan
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinli Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huan Sheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongyang Cui
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Da Shao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Medical College of China Three Gorges University, Yichang 443002, China
| |
Collapse
|
5
|
Delamare G, Zaki Y, Cai DJ, Clopath C. Drift of neural ensembles driven by slow fluctuations of intrinsic excitability. eLife 2024; 12:RP88053. [PMID: 38712831 PMCID: PMC11076042 DOI: 10.7554/elife.88053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.
Collapse
Affiliation(s)
- Geoffroy Delamare
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Yosif Zaki
- Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Denise J Cai
- Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Claudia Clopath
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
6
|
Tomé DF, Zhang Y, Aida T, Mosto O, Lu Y, Chen M, Sadeh S, Roy DS, Clopath C. Dynamic and selective engrams emerge with memory consolidation. Nat Neurosci 2024; 27:561-572. [PMID: 38243089 PMCID: PMC10917686 DOI: 10.1038/s41593-023-01551-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
Episodic memories are encoded by experience-activated neuronal ensembles that remain necessary and sufficient for recall. However, the temporal evolution of memory engrams after initial encoding is unclear. In this study, we employed computational and experimental approaches to examine how the neural composition and selectivity of engrams change with memory consolidation. Our spiking neural network model yielded testable predictions: memories transition from unselective to selective as neurons drop out of and drop into engrams; inhibitory activity during recall is essential for memory selectivity; and inhibitory synaptic plasticity during memory consolidation is critical for engrams to become selective. Using activity-dependent labeling, longitudinal calcium imaging and a combination of optogenetic and chemogenetic manipulations in mouse dentate gyrus, we conducted contextual fear conditioning experiments that supported our model's predictions. Our results reveal that memory engrams are dynamic and that changes in engram composition mediated by inhibitory plasticity are crucial for the emergence of memory selectivity.
Collapse
Affiliation(s)
- Douglas Feitosa Tomé
- Department of Bioengineering, Imperial College London, London, UK.
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Ying Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Life Sciences & IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Tomomi Aida
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivia Mosto
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yifeng Lu
- Center for Life Sciences & IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mandy Chen
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sadra Sadeh
- Department of Bioengineering, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
7
|
Zeidler Z, DeNardo L. The Role of Prefrontal Ensembles in Memory Across Time: Time-Dependent Transformations of Prefrontal Memory Ensembles. ADVANCES IN NEUROBIOLOGY 2024; 38:67-78. [PMID: 39008011 DOI: 10.1007/978-3-031-62983-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The medial prefrontal cortex (mPFC) plays a critical role in recalling recent and remote fearful memories. Modern neuroscience techniques, such as projection-specific circuit manipulation and activity-dependent labeling, have illuminated how mPFC memory ensembles are reorganized over time. This chapter discusses the implications of new findings for traditional theories of memory, such as the systems consolidation theory and theories of memory engrams. It also examines the specific contributions of mPFC subregions, like the prelimbic and infralimbic cortices, in fear memory, highlighting how their distinct connections influence memory recall. Further, it elaborates on the cellular and molecular changes within the mPFC that support memory persistence and how these are influenced by interactions with the hippocampus. Ultimately, this chapter provides insights into how lasting memories are dynamically encoded in prefrontal circuits, arguing for a key role of memory ensembles that extend beyond strict definitions of the engram.
Collapse
Affiliation(s)
- Zachary Zeidler
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Laura DeNardo
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Balouek JA, Mclain CA, Minerva AR, Rashford RL, Bennett SN, Rogers FD, Peña CJ. Reactivation of Early-Life Stress-Sensitive Neuronal Ensembles Contributes to Lifelong Stress Hypersensitivity. J Neurosci 2023; 43:5996-6009. [PMID: 37429717 PMCID: PMC10451005 DOI: 10.1523/jneurosci.0016-23.2023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023] Open
Abstract
Early-life stress (ELS) is one of the strongest lifetime risk factors for depression, anxiety, suicide, and other psychiatric disorders, particularly after facing additional stressful events later in life. Human and animal studies demonstrate that ELS sensitizes individuals to subsequent stress. However, the neurobiological basis of such stress sensitization remains largely unexplored. We hypothesized that ELS-induced stress sensitization would be detectable at the level of neuronal ensembles, such that cells activated by ELS would be more reactive to adult stress. To test this, we leveraged transgenic mice to genetically tag, track, and manipulate experience-activated neurons. We found that in both male and female mice, ELS-activated neurons within the nucleus accumbens (NAc), and to a lesser extent the medial prefrontal cortex, were preferentially reactivated by adult stress. To test whether reactivation of ELS-activated ensembles in the NAc contributes to stress hypersensitivity, we expressed hM4Dis receptor in control or ELS-activated neurons of pups and chemogenetically inhibited their activity during experience of adult stress. Inhibition of ELS-activated NAc neurons, but not control-tagged neurons, ameliorated social avoidance behavior following chronic social defeat stress in males. These data provide evidence that ELS-induced stress hypersensitivity is encoded at the level of corticolimbic neuronal ensembles.SIGNIFICANCE STATEMENT Early-life stress enhances sensitivity to stress later in life, yet the mechanisms of such stress sensitization are largely unknown. Here, we show that neuronal ensembles in corticolimbic brain regions remain hypersensitive to stress across the life span, and quieting these ensembles during experience of adult stress rescues stress hypersensitivity.
Collapse
Affiliation(s)
- Julie-Anne Balouek
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Christabel A Mclain
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Adelaide R Minerva
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Rebekah L Rashford
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Shannon N Bennett
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Forrest D Rogers
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|
9
|
Kenna M, Marek R, Sah P. Insights into the encoding of memories through the circuitry of fear. Curr Opin Neurobiol 2023; 80:102712. [PMID: 37003106 DOI: 10.1016/j.conb.2023.102712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023]
Abstract
Associative learning induces physical changes to a network of cells, known as the memory engram. Fear is widely used as a model to understand the circuit motifs that underpin associative memories. Recent advances suggest that the distinct circuitry engaged by different conditioned stimuli (e.g. tone vs. context) can provide insights into what information is being encoded in the fear engram. Moreover, as the fear memory matures, the circuitry engaged indicates how information is remodelled after learning and hints at potential mechanisms for consolidation. Finally, we propose that the consolidation of fear memories involves plasticity of engram cells through coordinated activity between brain regions, and the inherent characteristics of the circuitry may mediate this process.
Collapse
Affiliation(s)
- Matthew Kenna
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Roger Marek
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
10
|
Cho HY, Lee HS, Jeong Y, Han J, Yoo M, Han JH. Excitability-Independent Memory Allocation for Repeated Event. Front Behav Neurosci 2022; 16:860027. [PMID: 35571275 PMCID: PMC9094695 DOI: 10.3389/fnbeh.2022.860027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
How memory is organized in cell ensembles when an event is repeated is not well-understood. Recently, we found that retraining 24 h after the initial fear conditioning (FC) event induces turnover of neurons in the lateral amygdala (LA) that encodes fear memory. Excitability-dependent competition between eligible neurons has been suggested as a rule that governs memory allocation. However, it remains undetermined whether excitability is also involved in the allocation of a repeated event. By increasing excitability in a subset of neurons in the LA before FC, we confirmed that these neurons preferentially participated in encoding fear memory as previously reported. These neurons, however, became unnecessary for memory recall after retraining 24 h following initial FC. Consistently, the initial memory-encoding neurons became less likely to be reactivated during recall. This reorganization in cell ensembles, however, was not induced and memory was co-allocated when retraining occurred 6 h after the initial FC. In 24-h retraining condition, artificially increasing excitability right before retraining failed to drive memory co-allocation. These results suggest a distinct memory allocation mechanism for repeated events distantly separated in time.
Collapse
Affiliation(s)
- Hye-Yeon Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Han-Sol Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yire Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Junho Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Miran Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jin-Hee Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Jin-Hee Han
| |
Collapse
|
11
|
Learning and memory: Shuffling memory traces by relearning. Curr Biol 2021; 31:R1588-R1591. [PMID: 34932971 DOI: 10.1016/j.cub.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Memory engram cells are a subpopulation of neurons activated during learning, and are necessary and sufficient for memory recall. New findings show that relearning induces the turnover of the memory engram cell population involved in fear memory recall.
Collapse
|