1
|
Luppi PH, Malcey J, Chancel A, Duval B, Cabrera S, Fort P. Neuronal network controlling REM sleep. J Sleep Res 2025; 34:e14266. [PMID: 38972672 DOI: 10.1111/jsr.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024]
Abstract
Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Amarine Chancel
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Blandine Duval
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
2
|
Lüthi A, Nedergaard M. Anything but small: Microarousals stand at the crossroad between noradrenaline signaling and key sleep functions. Neuron 2025; 113:509-523. [PMID: 39809276 DOI: 10.1016/j.neuron.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Continuous sleep restores the brain and body, whereas fragmented sleep harms cognition and health. Microarousals (MAs), brief (3- to 15-s-long) wake intrusions into sleep, are clinical markers for various sleep disorders. Recent rodent studies show that MAs during healthy non-rapid eye movement (NREM) sleep are driven by infraslow fluctuations of noradrenaline (NA) in coordination with electrophysiological rhythms, vasomotor activity, cerebral blood volume, and glymphatic flow. MAs are hence part of healthy sleep dynamics, raising questions about their biological roles. We propose that MAs bolster NREM sleep's benefits associated with NA fluctuations, according to an inverted U-shaped curve. Weakened noradrenergic fluctuations, as may occur in neurodegenerative diseases or with sleep aids, reduce MAs, whereas exacerbated fluctuations caused by stress fragment NREM sleep and collapse NA signaling. We suggest that MAs are crucial for the restorative and plasticity-promoting functions of sleep and advance our insight into normal and pathological arousal dynamics from sleep.
Collapse
Affiliation(s)
- Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
3
|
Gompf HS, Ferrari LL, Anaclet C. Chronic chemogenetic slow-wave-sleep enhancement in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634538. [PMID: 39896659 PMCID: PMC11785230 DOI: 10.1101/2025.01.23.634538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While epidemiological associations and brief studies of sleep effects in human disease have been conducted, rigorous long-term studies of sleep manipulations and in animal models are needed to establish causation and to understand mechanisms. We have previously developed a mouse model of acute slow-wave-sleep (SWS) enhancement using chemogenetic activation of parafacial zone GABAergic neurons (PZGABA) in the parvicellular reticular formation of the pontine brainstem. However, it was unknown if SWS could be enhanced chronically in this model. In the present study, mice expressing the chemogenetic receptor hM3Dq in PZGABA were administered daily with one of three chemogenetic ligands, clozapine N-oxide (CNO), deschloroclozapine (DCZ) and compound 21 (C21), and sleep-wake phenotypes were analyzed using electroencephalogram (EEG) and electromyogram (EMG). We found that SWS time is increased for three hours, and at the same magnitude for at least six months. This phenotype is associated with an increase of slow wave activity (SWA) of similar magnitude throughout the 6-month dosing period. Interestingly, at the end of the 6-month dosing period, SWA remains increased for at least a week. This study validates a mouse model of chronic SWS enhancement that will allow mechanistic investigations into how SWS promotes physiological function and prevents diseases. The approach of a rotating schedule of three chemogenetic ligands may be broadly applicable in chemogenetic studies that require chronic administration.
Collapse
Affiliation(s)
- Heinrich S. Gompf
- Department of Neurological Surgery, University of California Davis School of Medicine
- Department of Neurobiology. University of Massachusetts Chan Medical School
| | - Loris L. Ferrari
- Department of Neurobiology. University of Massachusetts Chan Medical School
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California Davis School of Medicine
- Department of Neurobiology. University of Massachusetts Chan Medical School
| |
Collapse
|
4
|
Osorio-Forero A, Foustoukos G, Cardis R, Cherrad N, Devenoges C, Fernandez LMJ, Lüthi A. Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM-REM sleep cycle. Nat Neurosci 2025; 28:84-96. [PMID: 39587312 DOI: 10.1038/s41593-024-01822-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
The noradrenergic locus coeruleus (LC) regulates arousal levels during wakefulness, but its role in sleep remains unclear. Here, we show in mice that fluctuating LC neuronal activity partitions non-rapid-eye-movement sleep (NREMS) into two brain-autonomic states that govern the NREMS-REMS cycle over ~50-s periods; high LC activity induces a subcortical-autonomic arousal state that facilitates cortical microarousals, whereas low LC activity is required for NREMS-to-REMS transitions. This functional alternation regulates the duration of the NREMS-REMS cycle by setting permissive windows for REMS entries during undisturbed sleep while limiting these entries to maximally one per ~50-s period during REMS restriction. A stimulus-enriched, stress-promoting wakefulness was associated with longer and shorter levels of high and low LC activity, respectively, during subsequent NREMS, resulting in more microarousal-induced NREMS fragmentation and delayed REMS onset. We conclude that LC activity fluctuations are gatekeepers of the NREMS-REMS cycle and that this role is influenced by adverse wake experiences.
Collapse
Affiliation(s)
- Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Najma Cherrad
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Christiane Devenoges
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Choi A, Kim B, Labriola E, Wiest A, Wang Y, Smith J, Shin H, Jin X, An I, Hong J, Antila H, Thomas S, Bhattarai JP, Beier K, Ma M, Weber F, Chung S. Circuit mechanism underlying fragmented sleep and memory deficits in 16p11.2 deletion mouse model of autism. iScience 2024; 27:111285. [PMID: 39628570 PMCID: PMC11612818 DOI: 10.1016/j.isci.2024.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Sleep disturbances are prevalent in children with autism spectrum disorder (ASD). Strikingly, sleep problems are positively correlated with the severity of ASD symptoms, such as memory impairment. However, the neural mechanisms underlying sleep disturbances and cognitive deficits in ASD are largely unexplored. Here, we show that non-rapid eye movement sleep (NREMs) is fragmented in the 16p11.2 deletion mouse model of ASD. The degree of sleep fragmentation is reflected in an increased number of calcium transients in the activity of locus coeruleus noradrenergic (LC-NE) neurons during NREMs. In contrast, optogenetic inhibition of LC-NE neurons and pharmacological blockade of noradrenergic transmission using clonidine consolidate sleep. Furthermore, inhibiting LC-NE neurons restores memory. Finally, rabies-mediated screening of presynaptic neurons reveals altered connectivity of LC-NE neurons with sleep- and memory-regulatory regions in 16p11.2 deletion mice. Our findings identify a crucial role of the LC-NE system in regulating sleep stability and memory in ASD.
Collapse
Affiliation(s)
- Ashley Choi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bowon Kim
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eleanor Labriola
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alyssa Wiest
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingqi Wang
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Smith
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hyunsoo Shin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella An
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Antila
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Thomas
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janardhan P. Bhattarai
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA
| | - Minghong Ma
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Kashiwagi M, Beck G, Kanuka M, Arai Y, Tanaka K, Tatsuzawa C, Koga Y, Saito YC, Takagi M, Oishi Y, Sakaguchi M, Baba K, Ikuno M, Yamakado H, Takahashi R, Yanagisawa M, Murayama S, Sakurai T, Sakai K, Nakagawa Y, Watanabe M, Mochizuki H, Hayashi Y. A pontine-medullary loop crucial for REM sleep and its deficit in Parkinson's disease. Cell 2024; 187:6272-6289.e21. [PMID: 39303715 DOI: 10.1016/j.cell.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Identifying the properties of the rapid eye movement (REM) sleep circuitry and its relation to diseases has been challenging due to the neuronal heterogeneity of the brainstem. Here, we show in mice that neurons in the pontine sublaterodorsal tegmentum (SubLDT) that express corticotropin-releasing hormone-binding protein (Crhbp+ neurons) and project to the medulla promote REM sleep. Within the medullary area receiving projections from Crhbp+ neurons, neurons expressing nitric oxide synthase 1 (Nos1+ neurons) project to the SubLDT and promote REM sleep, suggesting a positively interacting loop between the pons and the medulla operating as a core REM sleep circuit. Nos1+ neurons also project to areas that control wide forebrain activity. Ablating Crhbp+ neurons reduces sleep and impairs REM sleep atonia. In Parkinson's disease patients with REM sleep behavior disorders, CRHBP-immunoreactive neurons are largely reduced and contain pathologic α-synuclein, providing insight into the mechanisms underlying the sleep deficits characterizing this disease.
Collapse
Affiliation(s)
- Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Goichi Beck
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshifumi Arai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumiko Koga
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki C Saito
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Marina Takagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Ikuno
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Japan Life Science Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shigeo Murayama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan; Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuya Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University Lyon 1, 69373 Lyon, France
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
Wiest A, Maurer JJ, Weber F, Chung S. A hypothalamic circuit mechanism underlying the impact of stress on memory and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618467. [PMID: 39463948 PMCID: PMC11507874 DOI: 10.1101/2024.10.17.618467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stress profoundly affects sleep and memory processes. Stress impairs memory consolidation, and similarly, disruptions in sleep compromise memory functions. Yet, the neural circuits underlying stress-induced sleep and memory disturbances are still not fully understood. Here, we show that activation of CRHPVN neurons, similar to acute restraint stress, decreases sleep and impairs memory in a spatial object recognition task. Conversely, inhibiting CRHPVN neurons during stress reverses stress-induced memory deficits while slightly increasing the amount of sleep. We found that both stress and stimulation of CRHPVN neurons activate neurons in the lateral hypothalamus (LH), and that their projections to the LH are critical for mediating stress-induced memory deficits and sleep disruptions. Our results suggest a pivotal role for CRHPVN neuronal pathways in regulating the adverse effects of stress on memory and sleep, an important step towards improving sleep and ameliorating the cognitive deficits that occur in stress-related disorders.
Collapse
Affiliation(s)
- Alyssa Wiest
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John J. Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Iannacone MJ, Um P, Grubbs JI, van der Linden AM, Raizen DM. Quiescence Enhances Survival during Viral Infection in Caenorhabditis elegans. J Neurosci 2024; 44:e1700222024. [PMID: 39060176 PMCID: PMC11358607 DOI: 10.1523/jneurosci.1700-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Infection causes reduced activity, anorexia, and sleep, which are components of the phylogenetically conserved but poorly understood sickness behavior. We developed a Caenorhabditis elegans model to study quiescence during chronic infection, using infection with the Orsay virus. The Orsay virus infects intestinal cells yet strongly affects behavior, indicating gut-to-nervous system communication. Infection quiescence has the sleep properties of reduced responsiveness and rapid reversibility. Both the ALA and RIS neurons regulate virus-induced quiescence though ALA plays a more prominent role. Quiescence-defective animals have decreased survival when infected, indicating a benefit of quiescence during chronic infectious disease. The survival benefit of quiescence is not explained by a difference in viral load, indicating that it improves resilience rather than resistance to infection. Orsay infection is associated with a decrease in ATP levels, and this decrease is more severe in quiescence-defective animals. We propose that quiescence preserves energetic resources by reducing energy expenditures and/or by increasing extraction of energy from nutrients. This model presents an opportunity to explore the role of sleep and fatigue in chronic infectious illness.
Collapse
Affiliation(s)
- Michael J Iannacone
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul Um
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jeremy I Grubbs
- Department of Biology, University of Nevada, Reno, Nevada 89557
| | | | - David M Raizen
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
9
|
Maurer JJ, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of rapid eye movement sleep by the preoptic area of the hypothalamus. eLife 2024; 12:RP92095. [PMID: 38884573 PMCID: PMC11182646 DOI: 10.7554/elife.92095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John J Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexandra Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
10
|
Choi A, Smith J, Wang Y, Shin H, Kim B, Wiest A, Jin X, An I, Hong J, Antila H, Thomas S, Bhattarai JP, Beier K, Ma M, Weber F, Chung S. Circuit mechanism underlying fragmented sleep and memory deficits in 16p11.2 deletion mouse model of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.26.573156. [PMID: 38234815 PMCID: PMC10793436 DOI: 10.1101/2023.12.26.573156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Sleep disturbances are prevalent in children with autism spectrum disorder (ASD) and have a major impact on the quality of life. Strikingly, sleep problems are positively correlated with the severity of ASD symptoms, such as memory impairment. However, the neural mechanisms underlying sleep disturbances and cognitive deficits in ASD are largely unexplored. Here, we show that non-rapid eye movement sleep (NREMs) is highly fragmented in the 16p11.2 deletion mouse model of ASD. The degree of sleep fragmentation is reflected in an increased number of calcium transients in the activity of locus coeruleus noradrenergic (LC-NE) neurons during NREMs. Exposure to a novel environment further exacerbates sleep disturbances in 16p11.2 deletion mice by fragmenting NREMs and decreasing rapid eye movement sleep (REMs). In contrast, optogenetic inhibition of LC-NE neurons and pharmacological blockade of noradrenergic transmission using clonidine reverse sleep fragmentation. Furthermore, inhibiting LC-NE neurons restores memory. Rabies-mediated unbiased screening of presynaptic neurons reveals altered connectivity of LC-NE neurons with sleep- and memory regulatory brain regions in 16p11.2 deletion mice. Our findings demonstrate that heightened activity of LC-NE neurons and altered brain-wide connectivity underlies sleep fragmentation in 16p11.2 deletion mice and identify a crucial role of the LC-NE system in regulating sleep stability and memory in ASD.
Collapse
Affiliation(s)
- Ashley Choi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Smith
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingqi Wang
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hyunsoo Shin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bowon Kim
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alyssa Wiest
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella An
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Antila
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Thomas
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janardhan P. Bhattarai
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA
| | - Minghong Ma
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Luppi PH, Chancel A, Malcey J, Cabrera S, Fort P, Maciel RM. Which structure generates paradoxical (REM) sleep: The brainstem, the hypothalamus, the amygdala or the cortex? Sleep Med Rev 2024; 74:101907. [PMID: 38422648 DOI: 10.1016/j.smrv.2024.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France.
| | - Amarine Chancel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Renato M Maciel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| |
Collapse
|
12
|
Choi A, Smith J, Wang Y, Shin H, Kim B, Wiest A, Jin X, An I, Hong J, Antila H, Thomas S, Bhattarai JP, Beier K, Ma M, Weber F, Chung S. Circuit mechanism underlying fragmented sleep and memory deficits in 16p11.2 deletion mouse model of autism. RESEARCH SQUARE 2024:rs.3.rs-3877710. [PMID: 38559267 PMCID: PMC10980164 DOI: 10.21203/rs.3.rs-3877710/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sleep disturbances are prevalent in children with autism spectrum disorder (ASD) and have a major impact on the quality of life. Strikingly, sleep problems are positively correlated with the severity of ASD symptoms, such as memory impairment. However, the neural mechanisms underlying sleep disturbances and cognitive deficits in ASD are largely unexplored. Here, we show that non-rapid eye movement sleep (NREMs) is highly fragmented in the 16p11.2 deletion mouse model of ASD. The degree of sleep fragmentation is reflected in an increased number of calcium transients in the activity of locus coeruleus noradrenergic (LC-NE) neurons during NREMs. Exposure to a novel environment further exacerbates sleep disturbances in 16p11.2 deletion mice by fragmenting NREMs and decreasing rapid eye movement sleep (REMs). In contrast, optogenetic inhibition of LC-NE neurons and pharmacological blockade of noradrenergic transmission using clonidine reverse sleep fragmentation. Furthermore, inhibiting LC-NE neurons restores memory. Rabies-mediated unbiased screening of presynaptic neurons reveals altered connectivity of LC-NE neurons with sleep- and memory regulatory brain regions in 16p11.2 deletion mice. Our findings demonstrate that heightened activity of LC-NE neurons and altered brain-wide connectivity underlies sleep fragmentation in 16p11.2 deletion mice and identify a crucial role of the LC-NE system in regulating sleep stability and memory in ASD.
Collapse
Affiliation(s)
- Ashley Choi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Smith
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingqi Wang
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hyunsoo Shin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bowon Kim
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alyssa Wiest
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella An
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Antila
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Thomas
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janardhan P. Bhattarai
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA
| | - Minghong Ma
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Maurer J, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of REM sleep by the preoptic area of the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554341. [PMID: 37662417 PMCID: PMC10473649 DOI: 10.1101/2023.08.22.554341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rapid-eye-movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Smith J, Honig-Frand A, Antila H, Choi A, Kim H, Beier KT, Weber F, Chung S. Regulation of stress-induced sleep fragmentation by preoptic glutamatergic neurons. Curr Biol 2024; 34:12-23.e5. [PMID: 38096820 PMCID: PMC10872481 DOI: 10.1016/j.cub.2023.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 01/11/2024]
Abstract
Sleep disturbances are detrimental to our behavioral and emotional well-being. Stressful events disrupt sleep, in particular by inducing brief awakenings (microarousals, MAs), resulting in sleep fragmentation. The preoptic area of the hypothalamus (POA) is crucial for sleep control. However, how POA neurons contribute to the regulation of MAs and thereby impact sleep quality is unknown. Using fiber photometry in mice, we examine the activity of genetically defined POA subpopulations during sleep. We find that POA glutamatergic neurons are rhythmically activated in synchrony with an infraslow rhythm in the spindle band of the electroencephalogram during non-rapid eye movement sleep (NREMs) and are transiently activated during MAs. Optogenetic stimulation of these neurons promotes MAs and wakefulness. Exposure to acute social defeat stress fragments NREMs and significantly increases the number of transients in the calcium activity of POA glutamatergic neurons during NREMs. By reducing MAs, optogenetic inhibition during spontaneous sleep and after stress consolidates NREMs. Monosynaptically restricted rabies tracing reveals that POA glutamatergic neurons are innervated by brain regions regulating stress and sleep. In particular, presynaptic glutamatergic neurons in the lateral hypothalamus become activated after stress, and stimulating their projections to the POA promotes MAs and wakefulness. Our findings uncover a novel circuit mechanism by which POA excitatory neurons regulate sleep quality after stress.
Collapse
Affiliation(s)
- Jennifer Smith
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Honig-Frand
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Antila
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Choi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Kim
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Vetrivelan R, Bandaru SS. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr Neurol Neurosci Rep 2023; 23:907-923. [PMID: 38060134 PMCID: PMC11891935 DOI: 10.1007/s11910-023-01322-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools. RECENT FINDINGS Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy. Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
16
|
Weber F, Hong J, Lozano D, Beier K, Chung S. Prefrontal Cortical Regulation of REM Sleep. RESEARCH SQUARE 2023:rs.3.rs-1417511. [PMID: 37886570 PMCID: PMC10602053 DOI: 10.21203/rs.3.rs-1417511/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Rapid-eye-movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram (EEG). The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here, we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus (LH) and regulate phasic events, reflected in accelerated EEG theta oscillations and increased eye-movement density during REM sleep. Calcium imaging reveals that the majority of LH-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.
Collapse
|
17
|
Hong J, Lozano DE, Beier KT, Chung S, Weber F. Prefrontal cortical regulation of REM sleep. Nat Neurosci 2023; 26:1820-1832. [PMID: 37735498 DOI: 10.1038/s41593-023-01398-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2023] [Indexed: 09/23/2023]
Abstract
Rapid eye movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram. The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus and regulate phasic events, reflected in accelerated electroencephalogram theta oscillations and increased eye movement density during REM sleep. Calcium imaging reveals that the majority of lateral hypothalamus-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Lozano
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Fraigne JJ, Luppi PH, Mahoney CE, De Luca R, Shiromani PJ, Weber F, Adamantidis A, Peever J. Dopamine neurons in the ventral tegmental area modulate rapid eye movement sleep. Sleep 2023; 46:zsad024. [PMID: 36775897 DOI: 10.1093/sleep/zsad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/13/2023] [Indexed: 02/14/2023] Open
Affiliation(s)
- Jimmy J Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Pierre H Luppi
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM, and Université Claude Bernard Lyon 1, Lyon, France
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Roberto De Luca
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Priyattam J Shiromani
- Laboratory of Sleep Medicine and Chronobiology, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoine Adamantidis
- Departments of Neurology and Biomedical Research, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Wiest A, Chung S. Exploring non-rapid eye movement sleep substages in rats to develop biomarkers for depression. Sleep 2023; 46:zsad117. [PMID: 37084776 PMCID: PMC10334478 DOI: 10.1093/sleep/zsad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 04/23/2023] Open
Affiliation(s)
- Alyssa Wiest
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Schott AL, Baik J, Chung S, Weber F. A medullary hub for controlling REM sleep and pontine waves. Nat Commun 2023; 14:3922. [PMID: 37400467 DOI: 10.1038/s41467-023-39496-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2023] [Indexed: 07/05/2023] Open
Abstract
Rapid-eye-movement (REM) sleep is a distinct behavioral state associated with vivid dreaming and memory processing. Phasic bursts of electrical activity, measurable as spike-like pontine (P)-waves, are a hallmark of REM sleep implicated in memory consolidation. However, the brainstem circuits regulating P-waves, and their interactions with circuits generating REM sleep, remain largely unknown. Here, we show that an excitatory population of dorsomedial medulla (dmM) neurons expressing corticotropin-releasing-hormone (CRH) regulates both REM sleep and P-waves in mice. Calcium imaging showed that dmM CRH neurons are selectively activated during REM sleep and recruited during P-waves, and opto- and chemogenetic experiments revealed that this population promotes REM sleep. Chemogenetic manipulation also induced prolonged changes in P-wave frequency, while brief optogenetic activation reliably triggered P-waves along with transiently accelerated theta oscillations in the electroencephalogram (EEG). Together, these findings anatomically and functionally delineate a common medullary hub for the regulation of both REM sleep and P-waves.
Collapse
Affiliation(s)
- Amanda L Schott
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Justin Baik
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Fraigne JJ, Wang J, Lee H, Luke R, Pintwala SK, Peever JH. A novel machine learning system for identifying sleep-wake states in mice. Sleep 2023; 46:zsad101. [PMID: 37021715 PMCID: PMC10262194 DOI: 10.1093/sleep/zsad101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Research into sleep-wake behaviors relies on scoring sleep states, normally done by manual inspection of electroencephalogram (EEG) and electromyogram (EMG) recordings. This is a highly time-consuming process prone to inter-rater variability. When studying relationships between sleep and motor function, analyzing arousal states under a four-state system of active wake (AW), quiet wake (QW), nonrapid-eye-movement (NREM) sleep, and rapid-eye-movement (REM) sleep provides greater precision in behavioral analysis but is a more complex model for classification than the traditional three-state identification (wake, NREM, and REM sleep) usually used in rodent models. Characteristic features between sleep-wake states provide potential for the use of machine learning to automate classification. Here, we devised SleepEns, which uses a novel ensemble architecture, the time-series ensemble. SleepEns achieved 90% accuracy to the source expert, which was statistically similar to the performance of two other human experts. Considering the capacity for classification disagreements that are still physiologically reasonable, SleepEns had an acceptable performance of 99% accuracy, as determined blindly by the source expert. Classifications given by SleepEns also maintained similar sleep-wake characteristics compared to expert classifications, some of which were essential for sleep-wake identification. Hence, our approach achieves results comparable to human ability in a fraction of the time. This new machine-learning ensemble will significantly impact the ability of sleep researcher to detect and study sleep-wake behaviors in mice and potentially in humans.
Collapse
Affiliation(s)
- Jimmy J Fraigne
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jeffrey Wang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hanhee Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sara K Pintwala
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - John H Peever
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Traut J, Mengual JP, Meijer EJ, McKillop LE, Alfonsa H, Hoerder-Suabedissen A, Song SH, Fehér KD, Riemann D, Molnar Z, Akerman CJ, Vyazovskiy VV, Krone LB. Effects of clozapine-N-oxide and compound 21 on sleep in laboratory mice. eLife 2023; 12:e84740. [PMID: 36892930 PMCID: PMC9998087 DOI: 10.7554/elife.84740] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools for remote control of targeted cell populations using chemical actuators that bind to modified receptors. Despite the popularity of DREADDs in neuroscience and sleep research, potential effects of the DREADD actuator clozapine-N-oxide (CNO) on sleep have never been systematically tested. Here, we show that intraperitoneal injections of commonly used CNO doses (1, 5, and 10 mg/kg) alter sleep in wild-type male laboratory mice. Using electroencephalography (EEG) and electromyography (EMG) to analyse sleep, we found a dose-dependent suppression of rapid eye movement (REM) sleep, changes in EEG spectral power during non-REM (NREM) sleep, and altered sleep architecture in a pattern previously reported for clozapine. Effects of CNO on sleep could arise from back-metabolism to clozapine or binding to endogenous neurotransmitter receptors. Interestingly, we found that the novel DREADD actuator, compound 21 (C21, 3 mg/kg), similarly modulates sleep despite a lack of back-metabolism to clozapine. Our results demonstrate that both CNO and C21 can modulate sleep of mice not expressing DREADD receptors. This implies that back-metabolism to clozapine is not the sole mechanism underlying side effects of chemogenetic actuators. Therefore, any chemogenetic experiment should include a DREADD-free control group injected with the same CNO, C21, or newly developed actuator. We suggest that electrophysiological sleep assessment could serve as a sensitive tool to test the biological inertness of novel chemogenetic actuators.
Collapse
Affiliation(s)
- Janine Traut
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
| | - Jose Prius Mengual
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
- The Kavli Institute for Nanoscience DiscoveryOxfordUnited Kingdom
| | - Elise J Meijer
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
- The Kavli Institute for Nanoscience DiscoveryOxfordUnited Kingdom
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
| | - Hannah Alfonsa
- Department of Pharmacology, University of OxfordOxfordUnited Kingdom
| | | | - Seo Ho Song
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Kristoffer D Fehér
- Geneva University Hospitals (HUG), Division of Psychiatric SpecialtiesGenevaSwitzerland
- University Hospital of Psychiatry and Psychotherapy, University of BernBernSwitzerland
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
| | - Zoltan Molnar
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Colin J Akerman
- Department of Pharmacology, University of OxfordOxfordUnited Kingdom
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
- The Kavli Institute for Nanoscience DiscoveryOxfordUnited Kingdom
| | - Lukas B Krone
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of OxfordOxfordUnited Kingdom
- The Kavli Institute for Nanoscience DiscoveryOxfordUnited Kingdom
- University Hospital of Psychiatry and Psychotherapy, University of BernBernSwitzerland
- Centre for Experimental Neurology, University of BernBernSwitzerland
| |
Collapse
|
23
|
Sulaman BA, Wang S, Tyan J, Eban-Rothschild A. Neuro-orchestration of sleep and wakefulness. Nat Neurosci 2023; 26:196-212. [PMID: 36581730 DOI: 10.1038/s41593-022-01236-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Although considered an inactive state for centuries, sleep entails many active processes occurring at the cellular, circuit and organismal levels. Over the last decade, several key technological advances, including calcium imaging and optogenetic and chemogenetic manipulations, have facilitated a detailed understanding of the functions of different neuronal populations and circuits in sleep-wake regulation. Here, we present recent progress and summarize our current understanding of the circuitry underlying the initiation, maintenance and coordination of wakefulness, rapid eye movement sleep (REMS) and non-REMS (NREMS). We propose a de-arousal model for sleep initiation, in which the neuromodulatory milieu necessary for sleep initiation is achieved by engaging in repetitive pre-sleep behaviors that gradually reduce vigilance to the external environment and wake-promoting neuromodulatory tone. We also discuss how brain processes related to thermoregulation, hunger and fear intersect with sleep-wake circuits to control arousal. Lastly, we discuss controversies and lingering questions in the sleep field.
Collapse
Affiliation(s)
- Bibi A Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Su Wang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Tyan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
24
|
Antila H, Kwak I, Choi A, Pisciotti A, Covarrubias I, Baik J, Eisch A, Beier K, Thomas S, Weber F, Chung S. A noradrenergic-hypothalamic neural substrate for stress-induced sleep disturbances. Proc Natl Acad Sci U S A 2022; 119:e2123528119. [PMID: 36331996 PMCID: PMC9659376 DOI: 10.1073/pnas.2123528119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
In our daily life, we are exposed to uncontrollable and stressful events that disrupt our sleep. However, the underlying neural mechanisms deteriorating the quality of non-rapid eye movement sleep (NREMs) and REM sleep are largely unknown. Here, we show in mice that acute psychosocial stress disrupts sleep by increasing brief arousals (microarousals [MAs]), reducing sleep spindles, and impairing infraslow oscillations in the spindle band of the electroencephalogram during NREMs, while reducing REMs. This poor sleep quality was reflected in an increased number of calcium transients in the activity of noradrenergic (NE) neurons in the locus coeruleus (LC) during NREMs. Opto- and chemogenetic LC-NE activation in naïve mice is sufficient to change the sleep microarchitecture similar to stress. Conversely, chemogenetically inhibiting LC-NE neurons reduced MAs during NREMs and normalized their number after stress. Specifically inhibiting LC-NE neurons projecting to the preoptic area of the hypothalamus (POA) decreased MAs and enhanced spindles and REMs after stress. Optrode recordings revealed that stimulating LC-NE fibers in the POA indeed suppressed the spiking activity of POA neurons that are activated during sleep spindles and REMs and inactivated during MAs. Our findings reveal that changes in the dynamics of the stress-regulatory LC-NE neurons during sleep negatively affect sleep quality, partially through their interaction with the POA.
Collapse
Affiliation(s)
- Hanna Antila
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Iris Kwak
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ashley Choi
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa Pisciotti
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ivan Covarrubias
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Justin Baik
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amelia Eisch
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Kevin Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92617
| | - Steven Thomas
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Franz Weber
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
25
|
Casaglia E, Luppi PH. Is paradoxical sleep setting up innate and acquired complex sensorimotor and adaptive behaviours?: A proposed function based on literature review. J Sleep Res 2022; 31:e13633. [PMID: 35596591 DOI: 10.1111/jsr.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
We summarize here the progress in identifying the neuronal network as well as the function of paradoxical sleep and the gaps of knowledge that should be filled in priority. The core system generating paradoxical sleep localized in the brainstem is now well identified, and the next step is to clarify the role of the forebrain in particular that of the hypothalamus including the melanin-concentrating hormone neurons and of the basolateral amygdala. We discuss these two options, and also the discovery that cortical activation during paradoxical sleep is restricted to a few limbic cortices activated by the lateral supramammillary nucleus and the claustrum. Such activation nicely supports the findings recently obtained showing that neuronal reactivation occurs during paradoxical sleep in these structures, and induces both memory consolidation of important memory and forgetting of less relevant ones. The question that still remains to be answered is whether paradoxical sleep is playing more crucial roles in processing emotional and procedural than other types of memories. One attractive hypothesis is that paradoxical sleep is responsible for erasing negative emotional memories, and that this function is not properly functioning in depressed patients. On the other hand, the presence of a muscle atonia during paradoxical sleep is in favour of a role in procedural memory as new types of motor behaviours can be tried without harm during the state. In a way, it also fits with the proposed role of paradoxical sleep in setting up the sensorimotor system during development.
Collapse
Affiliation(s)
- Elisa Casaglia
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France.,University of Cagliari, Cagliari, Italy
| | - Pierre-Hervé Luppi
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France
| |
Collapse
|
26
|
Osorio-Forero A, Cherrad N, Banterle L, Fernandez LMJ, Lüthi A. When the Locus Coeruleus Speaks Up in Sleep: Recent Insights, Emerging Perspectives. Int J Mol Sci 2022; 23:ijms23095028. [PMID: 35563419 PMCID: PMC9099715 DOI: 10.3390/ijms23095028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
For decades, numerous seminal studies have built our understanding of the locus coeruleus (LC), the vertebrate brain’s principal noradrenergic system. Containing a numerically small but broadly efferent cell population, the LC provides brain-wide noradrenergic modulation that optimizes network function in the context of attentive and flexible interaction with the sensory environment. This review turns attention to the LC’s roles during sleep. We show that these roles go beyond down-scaled versions of the ones in wakefulness. Novel dynamic assessments of noradrenaline signaling and LC activity uncover a rich diversity of activity patterns that establish the LC as an integral portion of sleep regulation and function. The LC could be involved in beneficial functions for the sleeping brain, and even minute alterations in its functionality may prove quintessential in sleep disorders.
Collapse
|