1
|
Lambert FM, Beraneck M, Straka H, Simmers J. Locomotor efference copy signaling and gaze control: An evolutionary perspective. Curr Opin Neurobiol 2023; 82:102761. [PMID: 37604066 DOI: 10.1016/j.conb.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 07/22/2023] [Indexed: 08/23/2023]
Abstract
Neural replicas of the spinal motor commands that drive locomotion have become increasingly recognized as an intrinsic neural mechanism for producing gaze-stabilizing eye movements that counteract the perturbing effects of self-generated head/body motion. By pre-empting reactive signaling by motion-detecting vestibular sensors, such locomotor efference copies (ECs) provide estimates of the sensory consequences of behavioral action. Initially demonstrated in amphibian larvae during spontaneous fictive swimming in deafferented in vitro preparations, direct evidence for a contribution of locomotor ECs to gaze stabilization now extends to the ancestral lamprey and to tetrapod adult frogs and mice. Supporting behavioral evidence also exists for other mammals, including humans, therefore further indicating the mechanism's conservation during vertebrate evolution. The relationship between feedforward ECs and vestibular sensory feedback in ocular movement control is variable, ranging from additive to the former supplanting the latter, depending on vestibular sensing ability, and the intensity and regularity of rhythmic locomotor movements.
Collapse
Affiliation(s)
- François M Lambert
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS Unité Mixte de Recherche 5287, Université de Bordeaux, 33706 Bordeaux, France
| | - Mathieu Beraneck
- Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Université Paris Cité, 75006 Paris, France
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - John Simmers
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS Unité Mixte de Recherche 5287, Université de Bordeaux, 33706 Bordeaux, France.
| |
Collapse
|
2
|
Wang S, Cui H, Tang T, Zhang L, Li J, Wu M, Hou Y. Key points of development of motor skills in childhood embodied in gait parameters. Gait Posture 2023; 104:51-57. [PMID: 37321112 DOI: 10.1016/j.gaitpost.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/06/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To observe changes of correlations of gait parameters of four sets of body in children aged 3-6. DESIGN A cross-sectional observational study. SETTING Dong Gang kindergarten in Suzhou, China. PARTICIPANTS A total of 89 children between 3 and 6 years old. MAIN OUTCOME MEASURES A total of 37 three-dimensional (3-D) gait parameters assessed with a wearable gait analysis system in 2-min walking test, for 3 times. RESULTS There were significant differences in gait speed, stride length and sagittal range of motion (ROM) of trunk among children of 3-6 years old (P < 0.05). The left and right toe out angle, sagittal ROM of waist, coronal ROM of trunk and arm swing velocity of male were significantly greater than those of female children (P < 0.05). Most gait parameters were symmetrical (P < 0.01). Canonical correlations of Upper Limbs Set vs. Trunk and Waist Sets increased by ages (P < 0.05). Canonical correlation of Trunk Set vs. Waist Set decreased by ages. Canonical correlations of Lower Limbs Set to any other sets were not significant (P > 0.05). CONCLUSIONS Values and symmetry of gait parameters cannot reflect the development of motor skill during ages of 3-6. Proper trunk movement coordinating with upper limbs and isolating from waist is the key point of development of motor skill in walking. It is built during preschool period and girls develop better. Before the preschool period, lower limbs' isolating movements from the other segments have already developed well. These key points of motor skills in walking should be considered when motor tasks for segment isolation and coordination are given to children with motor dysfunction.
Collapse
Affiliation(s)
- Shujia Wang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, China
| | - Haichao Cui
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, China
| | - Tong Tang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, China
| | - Lechi Zhang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, China
| | - Jinping Li
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, China
| | - Miao Wu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, China
| | - Ying Hou
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, China.
| |
Collapse
|
3
|
Straka H, Lambert FM, Simmers J. Role of locomotor efference copy in vertebrate gaze stabilization. Front Neural Circuits 2022; 16:1040070. [PMID: 36569798 PMCID: PMC9780284 DOI: 10.3389/fncir.2022.1040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Vertebrate locomotion presents a major challenge for maintaining visual acuity due to head movements resulting from the intimate biomechanical coupling with the propulsive musculoskeletal system. Retinal image stabilization has been traditionally ascribed to the transformation of motion-related sensory feedback into counteracting ocular motor commands. However, extensive exploration of spontaneously active semi-intact and isolated brain/spinal cord preparations of the amphibian Xenopus laevis, have revealed that efference copies (ECs) of the spinal motor program that generates axial- or limb-based propulsion directly drive compensatory eye movements. During fictive locomotion in larvae, ascending ECs from rostral spinal central pattern generating (CPG) circuitry are relayed through a defined ascending pathway to the mid- and hindbrain ocular motor nuclei to produce conjugate eye rotations during tail-based undulatory swimming in the intact animal. In post-metamorphic adult frogs, this spinal rhythmic command switches to a bilaterally-synchronous burst pattern that is appropriate for generating convergent eye movements required for maintaining image stability during limb kick-based rectilinear forward propulsion. The transition between these two fundamentally different coupling patterns is underpinned by the emergence of altered trajectories in spino-ocular motor coupling pathways that occur gradually during metamorphosis, providing a goal-specific, morpho-functional plasticity that ensures retinal image stability irrespective of locomotor mode. Although the functional impact of predictive ECs produced by the locomotory CPG matches the spatio-temporal specificity of reactive sensory-motor responses, rather than contributing additively to image stabilization, horizontal vestibulo-ocular reflexes (VORs) are selectively suppressed during intense locomotor CPG activity. This is achieved at least in part by an EC-mediated attenuation of mechano-electrical encoding at the vestibular sensory periphery. Thus, locomotor ECs and their potential suppressive impact on vestibular sensory-motor processing, both of which have now been reported in other vertebrates including humans, appear to play an important role in the maintenance of stable vision during active body displacements.
Collapse
Affiliation(s)
- Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Hans Straka,
| | - François M. Lambert
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Fischer PJ, Schnell B. Multiple mechanisms mediate the suppression of motion vision during escape maneuvers in flying Drosophila. iScience 2022; 25:105143. [PMID: 36185378 PMCID: PMC9523382 DOI: 10.1016/j.isci.2022.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Philippe Jules Fischer
- Emmy Noether Group Neurobiology of Flight Control, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| | - Bettina Schnell
- Emmy Noether Group Neurobiology of Flight Control, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
- Corresponding author
| |
Collapse
|
5
|
Rogers LS, Van Wert JC, Mensinger AF. Response of toadfish ( Opsanus tau) utricular afferents to multimodal inputs. J Neurophysiol 2022; 128:364-377. [PMID: 35830608 DOI: 10.1152/jn.00483.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inner ear of teleost fishes is composed of three paired multimodal otolithic end organs (saccule, utricle, and lagena), which encode auditory and vestibular inputs via the deflection of hair cells contained within the sensory epithelia of each organ. However, it remains unclear how the multimodal otolithic end organs of the teleost inner ear simultaneously integrate vestibular and auditory inputs. Therefore, microwire electrodes were chronically implanted using a 3D printed micromanipulator into the utricular nerve of oyster toadfish (Opsanus tau) to determine how utricular afferents respond to conspecific mate vocalizations termed boatwhistles (180 Hz fundamental frequency) during movement. Utricular afferents were recorded while fish were passively moved using a sled system along an underwater track at variable speeds (velocity: 4.0 - 12.5 cm/s; acceleration: 0.2 - 2.6 cm/s2) and while fish freely swam (velocity: 3.5 - 18.6 cm/s; acceleration: 0.8 - 29.8 cm/s2). Afferent fiber activities (spikes/s) increased in response to the onset of passive and active movements; however, afferent fibers differentially adapted to sustained movements. Additionally, utricular afferent fibers remained sensitive to playbacks of conspecific male boatwhistle vocalizations during both passive and active movements. Here, we demonstrate in alert toadfish that utricular afferents exhibit enhanced activity levels (spikes/s) in response to behaviorally-relevant acoustic stimuli during swimming.
Collapse
Affiliation(s)
- Loranzie S Rogers
- Biology Department, University of Minnesota Duluth, Duluth, MN, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Allen F Mensinger
- Biology Department, University of Minnesota Duluth, Duluth, MN, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
6
|
Fujiwara T, Brotas M, Chiappe ME. Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila. Neuron 2022; 110:2124-2138.e8. [PMID: 35525243 PMCID: PMC9275417 DOI: 10.1016/j.neuron.2022.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022]
Abstract
Flexible mapping between activity in sensory systems and movement parameters is a hallmark of motor control. This flexibility depends on the continuous comparison of short-term postural dynamics and the longer-term goals of an animal, thereby necessitating neural mechanisms that can operate across multiple timescales. To understand how such body-brain interactions emerge across timescales to control movement, we performed whole-cell patch recordings from visual neurons involved in course control in Drosophila. We show that the activity of leg mechanosensory cells, propagating via specific ascending neurons, is critical for stride-by-stride steering adjustments driven by the visual circuit, and, at longer timescales, it provides information about the moving body's state to flexibly recruit the visual circuit for course control. Thus, our findings demonstrate the presence of an elegant stride-based mechanism operating at multiple timescales for context-dependent course control. We propose that this mechanism functions as a general basis for the adaptive control of locomotion.
Collapse
Affiliation(s)
- Terufumi Fujiwara
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Margarida Brotas
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - M Eugenia Chiappe
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.
| |
Collapse
|
7
|
Bacqué-Cazenave J, Courtand G, Beraneck M, Straka H, Combes D, Lambert FM. Locomotion-induced ocular motor behavior in larval Xenopus is developmentally tuned by visuo-vestibular reflexes. Nat Commun 2022; 13:2957. [PMID: 35618719 PMCID: PMC9135768 DOI: 10.1038/s41467-022-30636-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Locomotion in vertebrates is accompanied by retinal image-stabilizing eye movements that derive from sensory-motor transformations and predictive locomotor efference copies. During development, concurrent maturation of locomotor and ocular motor proficiency depends on the structural and neuronal capacity of the motion detection systems, the propulsive elements and the computational capability for signal integration. In developing Xenopus larvae, we demonstrate an interactive plasticity of predictive locomotor efference copies and multi-sensory motion signals to constantly elicit dynamically adequate eye movements during swimming. During ontogeny, the neuronal integration of vestibulo- and spino-ocular reflex components progressively alters as locomotion parameters change. In young larvae, spino-ocular motor coupling attenuates concurrent angular vestibulo-ocular reflexes, while older larvae express eye movements that derive from a combination of the two components. This integrative switch depends on the locomotor pattern generator frequency, represents a stage-independent gating mechanism, and appears during ontogeny when the swim frequency naturally declines with larval age.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France
- Normandie Univ, Unicaen, CNRS, EthoS, 14000, Caen, France
- Univ Rennes, CNRS, EthoS (Éthologie animale et humaine)-UMR 6552, F-35000, Rennes, France
| | - Gilles Courtand
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France
| | - Mathieu Beraneck
- Université de Paris, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006, Paris, France
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, 82152, Planegg, Germany
| | - Denis Combes
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France
| | - François M Lambert
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France.
| |
Collapse
|
8
|
Studies of the Behavioral Sequences: The Neuroethological Morphology Concept Crossing Ethology and Functional Morphology. Animals (Basel) 2022; 12:ani12111336. [PMID: 35681801 PMCID: PMC9179564 DOI: 10.3390/ani12111336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Behavioral sequences analysis is a relevant method for quantifying the behavioral repertoire of animals to respond to the classical Tinbergen’s four questions. Research in ethology and functional morphology intercepts at the level of analysis of behaviors through the recording and interpretation of data from of movement sequence studies with various types of imaging and sensor systems. We propose the concept of Neuroethological morphology to build a holistic framework for understanding animal behavior. This concept integrates ethology (including behavioral ecology and neuroethology) with functional morphology (including biomechanics and physics) to provide a heuristic approach in behavioral biology. Abstract Postures and movements have been one of the major modes of human expression for understanding and depicting organisms in their environment. In ethology, behavioral sequence analysis is a relevant method to describe animal behavior and to answer Tinbergen’s four questions testing the causes of development, mechanism, adaptation, and evolution of behaviors. In functional morphology (and in biomechanics), the analysis of behavioral sequences establishes the motor pattern and opens the discussion on the links between “form” and “function”. We propose here the concept of neuroethological morphology in order to build a holistic framework for understanding animal behavior. This concept integrates ethology with functional morphology, and physics. Over the past hundred years, parallel developments in both disciplines have been rooted in the study of the sequential organization of animal behavior. This concept allows for testing genetic, epigenetic, and evo-devo predictions of phenotypic traits between structures, performances, behavior, and fitness in response to environmental constraints. Based on a review of the literature, we illustrate this concept with two behavioral cases: (i) capture behavior in squamates, and (ii) the ritualistic throat display in lizards.
Collapse
|
9
|
Efference copies: Side-eyeing across species. Curr Biol 2022; 32:R91-R93. [DOI: 10.1016/j.cub.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|