1
|
Meyerhof GT, Dhavan P, Blunk S, Bourd A, Singh R, Chandel A, Montell C. Visual threat avoidance while host seeking by Aedes aegypti mosquitoes. Cell Rep 2025; 44:115435. [PMID: 40112001 PMCID: PMC12077400 DOI: 10.1016/j.celrep.2025.115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The mosquito Aedes aegypti infects hundreds of millions of people annually with disease-causing viruses. When a mosquito approaches a host, the host often swats defensively. Here, we reveal the mosquito's escape behavior during host seeking in response to a threatening visual cue-a newly appearing shadow. We found that reactions to a shadow are far more aversive when it appears quickly versus slowly. Remarkably, mosquitoes evade shadows under very dim light conditions. Knockout of the TRP channel compromises the ability of mosquitoes to avoid threatening shadows, but only under high light conditions. Conversely, removing two of the five rhodopsins normally present in the compound eyes, Op1 and Op2, diminishes shadow aversion, but only under low light. Upon removal of a threatening visual cue, mosquitoes quickly re-initiate host seeking. Thus, female Aedes balance their need to host seek with visual threat avoidance by rapidly transitioning between these two behavioral states.
Collapse
Affiliation(s)
- Geoff T Meyerhof
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pratik Dhavan
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Summer Blunk
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Allison Bourd
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ramandeep Singh
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Avinash Chandel
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
2
|
Bredt BH, Tripet F, Müller P. Revealing complex mosquito behaviour: a review of current automated video tracking systems suitable for tracking mosquitoes in the field. Parasit Vectors 2025; 18:66. [PMID: 39985064 PMCID: PMC11846416 DOI: 10.1186/s13071-025-06666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/08/2025] [Indexed: 02/24/2025] Open
Abstract
Mosquito-borne pathogens continue to cause tremendous suffering, morbidity and mortality. For many of these diseases, vector control remains the most effective approach. The development and deployment of effective and efficient mosquito control products and strategies require a profound understanding of mosquito behaviour. To study complex mosquito behaviour, automated video tracking of mosquito flight paths has proven to be a comprehensive approach, and several video tracking approaches have emerged in recent years, making the choice for a suitable system challenging. Here, we conducted a literature review by searching PubMed and Google Scholar, and we identified 66 publications focusing on mosquito video tracking, which made use of eight different systems. We then compared and scored those video tracking systems by assessing their performance in the laboratory as well as their potential suitability for tracking mosquito behaviour in a field setting. While all eight systems have produced valuable information on mosquito behaviour, for tracking mosquitoes in the field, 'Braid', 'EthoVision XT' and 'Trackit3D' appear to be the most suitable systems as they need small disk capacity and are well adaptable to different settings. However, the optimal choice will ultimately depend on the specifications required to answer a given research question, the financial resources available and user preferences.
Collapse
Affiliation(s)
- Beatrice H Bredt
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Frédéric Tripet
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pie Müller
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Alami A, Ez zoubi Y, Fadil M, Annemer S, Bassouya M, Moustaid W, Farah A. Exploring Ternary Essential Oil Mixtures of Moroccan Artemisia Species for Larvicidal Effectiveness Against Culex pipiens Mosquitoes: A Mixture Design Approach. J Parasitol Res 2025; 2025:2379638. [PMID: 40017590 PMCID: PMC11867729 DOI: 10.1155/japr/2379638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025] Open
Abstract
Essential oils (EOs) have gained significant attention for their biopesticidal properties in pest management. This study investigates the insecticidal potential of EOs extracted from the aerial parts of three indigenous Artemisia species-Artemisia absinthium, Artemisia arborescens, and Artemisia campestris-collected from various provenances in Morocco. The EOs were tested individually and in combination against Culex pipiens (C. pipiens) larvae to explore potential synergistic interactions using a mixture design methodology. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography with flame ionization detection (GC-FID) analyses revealed quantitative and qualitative variations in the chemical composition of the oils. The primary constituents of A. absinthium were identified as thujone (32.20% ± 2.65%), camphor (19.95% ± 2.64%), and chamazulene (19.58% ± 2.33%). In A. arborescens, thujone (52.05% ± 3.84%), camphor (10.71% ± 3.08%), and eucalyptol (4.79% ± 1.53%) were the major components, while A. campestris comprised camphor (18.98% ± 2.65%), car-3-en-5-one (11.25% ± 2.33%), and thujone (6.63% ± 1.67%). When applied individually, all three EOs exhibited significant larvicidal activity against C. pipiens larvae, with A. arborescens showing the highest efficacy (LC50 11.11 μg/mL (5.45 ± 22.62)) compared to A. absinthium (LC50: 16.98 μg/mL (6.73 ± 27.39)) and A. campestris (LC50: 19.07 μg/mL (13.57 ± 23.38)). In mixture experiments, the mixture design outcomes reveal that the ternary formulation comprising 58% A. absinthium, 26% A. arborescens, and 16% A. campestris emerged as the most effective blend, achieving complete larval eradication. This study highlights the potential of Artemisia EO combinations as a sustainable and effective alternative for managing mosquito vectors of disease.
Collapse
Affiliation(s)
- Abdellatif Alami
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yassine Ez zoubi
- Laboratory of Research and Development in Engineering Sciences, Biotechnology Environmental Technology and Valorization of Bio-Resources Team, Department of Biology, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mouhcine Fadil
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Saoussan Annemer
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Bassouya
- Laboratory of Biotechnology, Environment Agrifood and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Wafae Moustaid
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
4
|
Poda BS, Cribellier A, Feugère L, Fatou M, Nignan C, Hien DFDS, Müller P, Gnankiné O, Dabiré RK, Diabaté A, Muijres FT, Roux O. Spatial and temporal characteristics of laboratory-induced Anopheles coluzzii swarms: Shape, structure, and flight kinematics. iScience 2024; 27:111164. [PMID: 39524359 PMCID: PMC11546533 DOI: 10.1016/j.isci.2024.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Malaria mosquitoes mate in swarms, but how these swarms are formed and maintained remains poorly understood. We characterized three-dimensional spatiotemporal flight kinematics of Anopheles coluzzii males swarming at sunset above a ground marker. The location, shape, and volume of swarms were highly stereotypic, consistent over the complete swarming duration. Swarms have an elliptical cone shape; mean flight kinematics varies spatially within the swarm, but remain rather consistent throughout swarming duration. Using a sensory system-informed model, we show that swarming mosquitoes use visual perception of both the ground marker and sunset horizon to display the swarming behavior. To control their height, swarming individuals maintain an optical angle of the marker ranging from 24° to 55°. Limiting the viewing angle deviation to 4.5% of the maximum value results in the observed elliptical cone swarm shape. We discuss the implications of these finding on malaria mosquito mating success, speciation and for vector control.
Collapse
Affiliation(s)
- Bèwadéyir Serge Poda
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Antoine Cribellier
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Lionel Feugère
- Natural Resources Institute, University of Greenwich, Chatham, UK
- L2TI, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Mathurin Fatou
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Charles Nignan
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Unité de Formation et de Recherche en Sciences Appliquées et Technologies, Université de Dédougou, Dédougou, Burkina Faso
| | | | - Pie Müller
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Olivier Gnankiné
- Laboratoire d’Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Roch Kounbobr Dabiré
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Olivier Roux
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
5
|
Gupta S, Cribellier A, Poda SB, Roux O, Muijres FT, Riffell JA. Mosquitoes integrate visual and acoustic cues to mediate conspecific interactions in swarms. Curr Biol 2024; 34:4091-4103.e4. [PMID: 39216484 PMCID: PMC11491102 DOI: 10.1016/j.cub.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Male mosquitoes form aerial aggregations, known as swarms, to attract females and maximize their chances of finding a mate. Within these swarms, individuals must be able to recognize potential mates and navigate the social environment to successfully intercept a mating partner. Prior research has almost exclusively focused on the role of acoustic cues in mediating the male mosquito's ability to recognize and pursue females. However, the role of other sensory modalities in this behavior has not been explored. Moreover, how males avoid collisions with one another in the swarm while pursuing females remains poorly understood. In this study, we combined free-flight and tethered-flight simulator experiments to demonstrate that swarming Anopheles coluzzii mosquitoes integrate visual and acoustic information to track conspecifics and avoid collisions. Our tethered experiments revealed that acoustic stimuli gated mosquito steering responses to visual objects simulating nearby mosquitoes, especially in males that exhibited a strong response toward visual objects in the presence of female flight tones. Additionally, we observed that visual cues alone could trigger changes in mosquitoes' wingbeat amplitude and frequency. These findings were corroborated by our free-flight experiments, which revealed that Anopheles coluzzii modulate their thrust-based flight responses to nearby conspecifics in a similar manner to tethered animals, potentially allowing for collision avoidance within swarms. Together, these results demonstrate that both males and females integrate multiple sensory inputs to mediate swarming behavior, and for males, the change in flight kinematics in response to multimodal cues might allow them to simultaneously track females while avoiding collisions.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Antoine Cribellier
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Serge B Poda
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands; Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 2779, Bobo-Dioulasso, Burkina Faso
| | - Olivier Roux
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 2779, Bobo-Dioulasso, Burkina Faso; MIVEGEC, University of Montpellier, IRD, CNRS, 34394 Montpellier, France
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Gupta S, Cribellier A, Poda SB, Roux O, Muijres FT, Riffell JA. Multisensory integration in Anopheles mosquito swarms: The role of visual and acoustic information in mate tracking and collision avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590128. [PMID: 38712209 PMCID: PMC11071295 DOI: 10.1101/2024.04.18.590128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Male mosquitoes form aerial aggregations, known as swarms, to attract females and maximize their chances of finding a mate. Within these swarms, individuals must be able to recognize potential mates and navigate the dynamic social environment to successfully intercept a mating partner. Prior research has almost exclusively focused on the role of acoustic cues in mediating the male mosquito's ability to recognize and pursue flying females. However, the role of other sensory modalities in this behavior has not been explored. Moreover, how males avoid collisions with one another in the dense swarm while pursuing females remains poorly understood. In this study, we combined free-flight and tethered flight simulator experiments to demonstrate that swarming Anopheles coluzzii mosquitoes integrate visual and acoustic information to track conspecifics and avoid collisions. Our tethered experiments revealed that acoustic stimuli gated mosquito steering responses to visual objects simulating nearby mosquitoes, especially in males that exhibited attraction to visual objects in the presence of female flight tones. Additionally, we observed that visual cues alone could trigger changes in mosquitoes' wingbeat amplitude and frequency. These findings were corroborated by our free-flight experiments, which revealed that mosquitoes modulate their flight responses to nearby conspecifics in a similar manner to tethered animals, allowing for collision avoidance within swarms. Together, these results demonstrate that both males and females integrate multiple sensory inputs to mediate swarming behavior, and for males, the change in flight kinematics in response to multimodal cues allows them to simultaneously track females while avoiding collisions.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Antoine Cribellier
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, Netherlands
| | - Serge B. Poda
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, Netherlands
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Olivier Roux
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, Netherlands
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Frye M, Coates A. Animal behavior: Mosquitos ride the wave. Curr Biol 2024; 34:R291-R293. [PMID: 38593776 DOI: 10.1016/j.cub.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Some insects have a frustrating knack for avoiding a swatter. A new study shows that mosquitos not only evade the visual image of the looming threat, they also surf the wave of air the swatter creates.
Collapse
Affiliation(s)
- Mark Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive, Los Angeles, CA 90095, USA.
| | - Athena Coates
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Cribellier A, Camilo LH, Goyal P, Muijres FT. Mosquitoes escape looming threats by actively flying with the bow wave induced by the attacker. Curr Biol 2024; 34:1194-1205.e7. [PMID: 38367617 DOI: 10.1016/j.cub.2024.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
To detect and escape looming threats, night-flying insects must rely on other senses than vision alone. Nocturnal mosquitoes can evade looming objects in the dark, but how they achieve this is still unknown. Here, we show how night-active female malaria mosquitoes escape from rapidly looming objects that simulate defensive actions of blood-hosts. First, we quantified the escape performance of flying mosquitoes from an event-triggered mechanical swatter, showing that mosquitoes use swatter-induced airflow to increase their escape success. Secondly, we used high-speed videography and deep-learning-based tracking to analyze escape flights in detail, showing that mosquitoes use banked turns to evade the threat. By combining escape kinematics data with numerical simulations of attacker-induced airflow and a mechanistic movement model, we unraveled how mosquitoes control these banked evasive maneuvers: they actively steer away from the danger, and then passively travel with the bow wave produced by the attacker. Our results demonstrate that night-flying mosquitoes can detect looming objects when visual cues are minimal, suggesting that they use attacker-induced airflow both to detect the danger and as a fluid medium to move with away from the threat. This shows that escape strategies of flying insects are more complex than previous visually induced escape flight studies suggest. As most insects are of similar or smaller sizes than mosquitoes, comparable escape strategies are expected among millions of flying insect species. The here-observed escape maneuvers are distinct from those of mosquitoes escaping from odor-baited traps, thus providing new insights for the development of novel trapping techniques for integrative vector management.
Collapse
Affiliation(s)
- Antoine Cribellier
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Leonardo Honfi Camilo
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Pulkit Goyal
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
9
|
Van de Schoot E, Merckx T, Ebert D, Wesselingh RA, Altermatt F, Van Dyck H. Evolutionary change in flight-to-light response in urban moths comes with changes in wing morphology. Biol Lett 2024; 20:20230486. [PMID: 38471566 PMCID: PMC10932693 DOI: 10.1098/rsbl.2023.0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Moths and other insects are attracted by artificial light sources. This flight-to-light behaviour disrupts their general activity focused on finding resources, such as mating partners, and increases predation risk. It thus has substantial fitness costs. In illuminated urban areas, spindle ermine moths Yponomeuta cagnagella were reported to have evolved a reduced flight-to-light response. Yet, the specific mechanism remained unknown, and was hypothesized to involve either changes in visual perception or general flight ability or overall mobility traits. Here, we test whether spindle ermine moths from urban and rural populations-with known differences in flight-to-light responses-differ in flight-related morphological traits. Urban individuals were found to have on average smaller wings than rural moths, which in turn correlated with a lower probability of being attracted to an artificial light source. Our finding supports the reduced mobility hypothesis, which states that reduced mobility in urban areas is associated with specific morphological changes in the flight apparatus.
Collapse
Affiliation(s)
| | - Thomas Merckx
- WILD, Biology Department, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | | | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hans Van Dyck
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
10
|
Ajayi OM, Wynne NE, Chen SC, Vinauger C, Benoit JB. Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods. Integr Comp Biol 2023; 63:530-547. [PMID: 37429615 PMCID: PMC10503478 DOI: 10.1093/icb/icad097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
11
|
Goyal P, Baird E, Srinivasan MV, Muijres FT. Visual guidance of honeybees approaching a vertical landing surface. J Exp Biol 2023; 226:jeb245956. [PMID: 37589414 PMCID: PMC10482386 DOI: 10.1242/jeb.245956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Landing is a critical phase for flying animals, whereby many rely on visual cues to perform controlled touchdown. Foraging honeybees rely on regular landings on flowers to collect food crucial for colony survival and reproduction. Here, we explored how honeybees utilize optical expansion cues to regulate approach flight speed when landing on vertical surfaces. Three sensory-motor control models have been proposed for landings of natural flyers. Landing honeybees maintain a constant optical expansion rate set-point, resulting in a gradual decrease in approach velocity and gentile touchdown. Bumblebees exhibit a similar strategy, but they regularly switch to a new constant optical expansion rate set-point. In contrast, landing birds fly at a constant time to contact to achieve faster landings. Here, we re-examined the landing strategy of honeybees by fitting the three models to individual approach flights of honeybees landing on platforms with varying optical expansion cues. Surprisingly, the landing model identified in bumblebees proved to be the most suitable for these honeybees. This reveals that honeybees adjust their optical expansion rate in a stepwise manner. Bees flying at low optical expansion rates tend to increase their set-point stepwise, while those flying at high optical expansion rates tend to decrease it stepwise. This modular landing control system enables honeybees to land rapidly and reliably under a wide range of initial flight conditions and visual landing platform patterns. The remarkable similarity between the landing strategies of honeybees and bumblebees suggests that this may also be prevalent among other flying insects. Furthermore, these findings hold promising potential for bioinspired guidance systems in flying robots.
Collapse
Affiliation(s)
- Pulkit Goyal
- Experimental Zoology Group, Wageningen University & Research, 6708WD Wageningen, The Netherlands
| | - Emily Baird
- Department of Zoology, Stockholm University, 114 18 Stockholm, Sweden
| | - Mandyam V. Srinivasan
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University & Research, 6708WD Wageningen, The Netherlands
| |
Collapse
|
12
|
Riskin DK, Carter GG. The evolution of sanguivory in vampire bats: origins and convergences. CAN J ZOOL 2023. [DOI: 10.1139/cjz-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Blood-feeding (sanguivory) has evolved more than two dozen times among birds, fishes, insects, arachnids, molluscs, crustaceans, and annelids; however, among mammals, it is restricted to the vampire bats. Here, the authors revisit the question of how it evolved in that group. Evidence to date suggests that the ancestors of phyllostomids were insectivorous, and that carnivory, omnivory, and nectarivory evolved among phyllostomids after vampire bats diverged. Frugivory likely also evolved after vampire bats diverged, but the phylogeny is ambiguous on that point. However, vampire bats lack any genetic evidence of a frugivorous past, and the behavioural progression from frugivory to sanguivory is difficult to envision. Thus, the most parsimonious scenario is that sanguivory evolved in an insectivorous ancestor to vampire bats via ectoparasite-eating, wound-feeding, or some combination of the two—all feeding habits found among blood-feeding birds today. Comparing vampire bats with other sanguivores, the authors find several remarkable examples of convergence. Further, it was found that blood-feeding has been ca. 50 times more likely to evolve in a vertebrate lineage than in an invertebrate one. The authors hypothesize that this difference exists because vertebrates are more likely than invertebrates to have the biochemical necessities required to assimilate the components of vertebrate blood.
Collapse
Affiliation(s)
- Daniel K. Riskin
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Gerald G. Carter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
- Department of Ecology, Evolution, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Wynne NE, Chandrasegaran K, Fryzlewicz L, Vinauger C. Visual threats reduce blood-feeding and trigger escape responses in Aedes aegypti mosquitoes. Sci Rep 2022; 12:21354. [PMID: 36494463 PMCID: PMC9734121 DOI: 10.1038/s41598-022-25461-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The diurnal mosquitoes Aedes aegypti are vectors of several arboviruses, including dengue, yellow fever, and Zika viruses. To find a host to feed on, they rely on the sophisticated integration of olfactory, visual, thermal, and gustatory cues emitted by the hosts. If detected by their target, this latter may display defensive behaviors that mosquitoes need to be able to detect and escape in order to survive. In humans, a typical response is a swat of the hand, which generates both mechanical and visual perturbations aimed at a mosquito. Here, we used programmable visual displays to generate expanding objects sharing characteristics with the visual component of an approaching hand and quantified the behavioral response of female mosquitoes. Results show that Ae. aegypti is capable of using visual information to decide whether to feed on an artificial host mimic. Stimulations delivered in a LED flight arena further reveal that landed Ae. aegypti females display a stereotypical escape strategy by taking off at an angle that is a function of the direction of stimulus introduction. Altogether, this study demonstrates that mosquitoes landed on a host mimic can use isolated visual cues to detect and avoid a potential threat.
Collapse
Affiliation(s)
- Nicole E. Wynne
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Karthikeyan Chandrasegaran
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Lauren Fryzlewicz
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Clément Vinauger
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
14
|
Adedeji EO, Oduselu GO, Ogunlana OO, Fatumo S, Koenig R, Adebiyi E. Anopheles gambiae Trehalase Inhibitors for Malaria Vector Control: A Molecular Docking and Molecular Dynamics Study. INSECTS 2022; 13:1070. [PMID: 36421973 PMCID: PMC9694508 DOI: 10.3390/insects13111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 06/07/2023]
Abstract
Trehalase inhibitors are considered safe alternatives for insecticides and fungicides. However, there are no studies testing these compounds on Anopheles gambiae, a major vector of human malaria. This study predicted the three-dimensional structure of Anopheles gambiae trehalase (AgTre) and identified potential inhibitors using molecular docking and molecular dynamics methods. Robetta server, C-I-TASSER, and I-TASSER were used to predict the protein structure, while the structural assessment was carried out using SWISS-MODEL, ERRAT, and VERIFY3D. Molecular docking and screening of 3022 compounds was carried out using AutoDock Vina in PyRx, and MD simulation was carried out using NAMD. The Robetta model outperformed all other models and was used for docking and simulation studies. After a post-screening analysis and ADMET studies, uniflorine, 67837201, 10406567, and Compound 2 were considered the best hits with binding energies of -6.9, -8.9, -9, and -8.4 kcal/mol, respectively, better than validamycin A standard (-5.4 kcal/mol). These four compounds were predicted to have no eco-toxicity, Brenk, or PAINS alerts. Similarly, they were predicted to be non-mutagenic, carcinogenic, or hepatoxic. 67837201, 10406567, and Compound 2 showed excellent stability during simulation. The study highlights uniflorine, 67837201, 10406567, and Compound 2 as good inhibitors of AgTre and possible compounds for malaria vector control.
Collapse
Affiliation(s)
- Eunice O. Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Nigeria
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112233, Nigeria
| | - Gbolahan O. Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112233, Nigeria
| | - Olubanke O. Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Nigeria
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota 112233, Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK
| | - Rainer Koenig
- Institute for Infectious Diseases and Infection Control (IIMK, RG Systemsbiology), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota 112233, Nigeria
- Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota 112233, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Barredo E, Raji JI, Ramon M, DeGennaro M, Theobald J. Carbon dioxide and blood-feeding shift visual cue tracking during navigation in Aedes aegypti mosquitoes. Biol Lett 2022; 18:20220270. [PMID: 36166270 PMCID: PMC9514554 DOI: 10.1098/rsbl.2022.0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Haematophagous mosquitoes need a blood meal to complete their reproductive cycle. To accomplish this, female mosquitoes seek vertebrate hosts, land on them and bite. As their eggs mature, they shift attention away from hosts and towards finding sites to lay eggs. We asked whether females were more tuned to visual cues when a host-related signal, carbon dioxide, was present, and further examined the effect of a blood meal, which shifts behaviour to ovipositing. Using a custom, tethered-flight arena that records wing stroke changes while displaying visual cues, we found the presence of carbon dioxide enhances visual attention towards discrete stimuli and improves contrast sensitivity for host-seeking Aedes aegypti mosquitoes. Conversely, intake of a blood meal reverses vertical bar tracking, a stimulus that non-fed females readily follow. This switch in behaviour suggests that having a blood meal modulates visual attention in mosquitoes, a phenomenon that has been described before in olfaction but not in visually driven behaviours.
Collapse
Affiliation(s)
- Elina Barredo
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Joshua I. Raji
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Michael Ramon
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
16
|
Mosquito flight: Escaping attacks in dim light. Curr Biol 2022; 32:R279-R281. [PMID: 35349815 DOI: 10.1016/j.cub.2022.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To avoid fast attackers, animals must move somewhere their pursuer cannot follow or does not expect. A new study shows that female mosquitoes of either a diurnal or a nocturnal species each exhibit a distinct escape strategy matched to the light level they experience as they hunt for blood.
Collapse
|