1
|
Maselli V, Norcia M, Pinto B, Cirillo E, Polese G, Di Cosmo A. Stress Induced by Fishing in Common Octopus ( Octopus vulgaris) and Relative Impact on Its Use as an Experimental Model. Animals (Basel) 2025; 15:503. [PMID: 40002985 PMCID: PMC11851374 DOI: 10.3390/ani15040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The common octopus (Octopus vulgaris), among coleoid cephalopods, has evolved the most complex nervous system and sophisticated behaviors. Historically, O. vulgaris was a key animal model for neurophysiology research, and today, it is studied for its genomic innovations. However, unlike other models, there is no octopus farming for research, so specimens must be collected from the wild. This study assessed the impact of fishing on octopuses used in research, considering those caught using artisanal pots in the 'Regno di Nettuno' Marine Protected Area, Ischia (NA). To evaluate fishing stress, we identified morphological stress indicators such as chromatophore pattern and posture, and three potential molecular markers, estrogen receptor (ER), catalase (CAT), and heat shock protein (HSP70). We measured the percentage of stress signals shown by fished specimens and analyzed their differential gene expression. The transcriptional levels of octopuses caught using traps were compared to control specimens acclimated in captivity. Results indicated fluctuations in gene expression due to fishing stress. These findings suggest that an acclimation period after the stress event of fishing is crucial for ensuring the welfare of octopuses used in research, thus enhancing the quality of physiological and ethological studies.
Collapse
Affiliation(s)
- Valeria Maselli
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
| | - Mariangela Norcia
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
| | - Bruno Pinto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, 80077 Ischia, Italy
| | - Emanuela Cirillo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
- MNESYS—PNRR Partenariato Esteso, 16132 Genova, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
- MNESYS—PNRR Partenariato Esteso, 16132 Genova, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
- MNESYS—PNRR Partenariato Esteso, 16132 Genova, Italy
| |
Collapse
|
2
|
Winterhalter PR, Georgevici A, Gharpure NJ, Szabó G, Simm A. The circadian rhythm: A key variable in aging? Aging Cell 2024; 23:e14268. [PMID: 39078410 PMCID: PMC11561671 DOI: 10.1111/acel.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
The determination of age-related transcriptional changes may contribute to the understanding of health and life expectancy. The broad application of results from age cohorts may have limitations. Altering sample sizes per time point or sex, using a single mouse strain or tissue, a limited number of replicates, or omitting the middle of life can bias the surveys. To achieve higher general validity and to identify less distinctive players, bulk RNA sequencing of a mouse cohort, including seven organs of two strains from both sexes of 5 ages, was performed. Machine learning by bootstrapped variable importance and selection methodology (Boruta) was used to identify common aging features where the circadian rhythms (CiR) transcripts appear as promising age markers in an unsupervised analysis. Pathways of 11 numerically analyzed local network clusters were affected and classified into four major gene expression profiles, whereby CiR and proteostasis candidates were particularly conspicuous with partially opposing changes. In a data-based interaction association network, the CiR-proteostasis axis occupies an exposed central position, highlighting its relevance. The computation of 11,830 individual transcript associations provides potential superordinate contributors, such as hormones, to age-related changes, as in CiR. In hormone-sensitive LNCaP cells, short-term supraphysiologic levels of the sex hormones dihydrotestosterone or estradiol increase the expression of the CiR transcript Bhlhe40 and the associated senescence regulator Cdkn2b (p15). According to these findings, the bilateral dysregulation of CiR appears as a fundamental protagonist of aging, whose transcripts could serve as a biological marker and its restoration as a therapeutic opportunity.
Collapse
Affiliation(s)
| | - Adrian‐Iustin Georgevici
- Clinic for Heart Surgery (UMH)Martin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
- Department of Anaesthesiology and Intensive Care Medicine St. Josef‐HospitalRuhr‐University BochumBochumGermany
| | - Nitin J. Gharpure
- Clinic for Heart Surgery (UMH)Martin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Gábor Szabó
- Clinic for Heart Surgery (UMH)Martin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
- Department of Cardiac SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Andreas Simm
- Clinic for Heart Surgery (UMH)Martin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
3
|
Fejzo MS. Hyperemesis gravidarum theories dispelled by recent research: a paradigm change for better care and outcomes. Trends Mol Med 2024; 30:530-540. [PMID: 38782680 DOI: 10.1016/j.molmed.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Nausea and vomiting (NVP) affect most pregnant women. At the severe end of the clinical spectrum, hyperemesis gravidarum (HG) can be life-threatening. The condition is fraught with misconceptions that have slowed progress and left women undertreated. Herein, recent scientific advances are presented that dispel common myths associated with HG related to maternal/offspring outcomes, etiology, and evolution. There is now strong evidence that (i) HG is associated with poor outcomes, (ii) a common cause of NVP and HG has been identified, and (iii) NVP is likely a protective evolutionary mechanism that occurs throughout the animal kingdom but is no longer necessary for human survival. Therefore, it is encouraging that we are finally on the cusp of testing treatments that may put an end to unnecessary suffering.
Collapse
Affiliation(s)
- Marlena Schoenberg Fejzo
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Zheng J, Li S, Zheng X. Living in a dynamic environment: The effects of multi-ways temperature variation on embryo and newborn juveniles of a shallow-water octopus (Amphioctopus fangsiao). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171510. [PMID: 38453076 DOI: 10.1016/j.scitotenv.2024.171510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Shallow waters are characterized by fluctuating environmental conditions, modulating marine life cycles and biological phenomena. Multiple variations in water temperature could affect eggs and embryos during spawning events of many marine invertebrate species, yet most of the findings on embryonic development in invertebrates come from experiments based on the constant temperature. In this study, to examine the effects of temperature variation on octopus embryos, Amphioctopus fangsiao, a common shallow-water octopus along the coast of China, was exposed to the constant temperature (18 °C, in situ temperature of the seawater in Lianyungang), ramping temperatures (from 18 to 24 °C), diel oscillating temperatures (18 °C and 20 °C for 12 h each day), and acute increasing temperatures (the temperature increased sharply from 18 °C to 24 °C at embryonic development stage XIX) for 47 days (from embryogenesis to settlement). The results demonstrated that the temperature variations accelerated the development time of A. fangsiao embryos. Temperature fluctuations could cause embryonic oxidative damage and disorder of glycolipid metabolism, thereby affecting the growth performance of embryos and the survival rate of hatchings. Through transcriptome sequencing, the mechanistic adaption of the embryo to environmental temperature variations was revealed. The pathways involved in the TCA cycle, DNA replication and repair, protein synthesis, cell signaling, and nervous system damage repair were significantly enriched, indicating that the embryo could improve heat tolerance to thermal stress by regulating gene expression. Moreover, acute warming temperatures posed the most detrimental effects on A. fangsiao embryos, which could cause embryos to hatch prematurely from the vegetal pole, further reducing the survival of hatchings. Meanwhile, the diel oscillating temperature was observed to affect the normal morphology of the embryo, resulting in embryo deformities. Thus, the constant temperature is critical for balanced growth and defense status in octopuses by maintaining metabolism homeostasis. For the first time, this study evaluates the effects of multiple temperature fluctuations on embryos of A. fangsiao, providing new insights into the physiological changes and molecular responses of cephalopod embryos following dynamic temperature stress.
Collapse
Affiliation(s)
- Jian Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China; Key Laboratory of Evolution & Marine Biodiversity, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shuwen Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China; Key Laboratory of Evolution & Marine Biodiversity, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China; Key Laboratory of Evolution & Marine Biodiversity, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Wang ZY, Ragsdale CW. Signaling Ligand Heterogeneities in the Peduncle Complex of the Cephalopod Mollusc Octopus bimaculoides. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:158-170. [PMID: 38688255 DOI: 10.1159/000539128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION The octopus peduncle complex is an agglomeration of neural structures with remarkably diverse functional roles. The complex rests on the optic tract, between the optic lobe and the central brain, and comprises the peduncle lobe proper, the olfactory lobe, and the optic gland. The peduncle lobe regulates visuomotor behaviors, the optic glands control sexual maturation and maternal death, and the olfactory lobe is thought to receive input from the olfactory organ. Recent transcriptomic and metabolomic studies have identified candidate peptide and steroid ligands in the Octopus bimaculoides optic gland. METHODS With gene expression for these ligands and their biosynthetic enzymes, we show that optic gland neurochemistry extends beyond the traditional optic gland secretory tissue and into lobular territories. RESULTS A key finding is that the classically defined olfactory lobe is itself a heterogeneous territory and includes steroidogenic territories that overlap with cells expressing molluscan neuropeptides and the synthetic enzyme dopamine beta-hydroxylase. CONCLUSION Our study reveals the neurochemical landscape of the octopus peduncle complex, highlighting the unexpected overlap between traditionally defined regions.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Psychology, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Wang ZY. Octopus death and dying. Integr Comp Biol 2023; 63:1209-1213. [PMID: 37437909 DOI: 10.1093/icb/icad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Affiliation(s)
- Z Yan Wang
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Barrera Grijalba CC, Rodríguez Monje SV, Gestal C, Wollesen T. Octopod Hox genes and cephalopod plesiomorphies. Sci Rep 2023; 13:15492. [PMID: 37726311 PMCID: PMC10509229 DOI: 10.1038/s41598-023-42435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Few other invertebrates captivate our attention as cephalopods do. Octopods, cuttlefish, and squids amaze with their behavior and sophisticated body plans that belong to the most intriguing among mollusks. Little is, however, known about their body plan formation and the role of Hox genes. The latter homeobox genes pattern the anterior-posterior body axis and have only been studied in a single decapod species so far. Here, we study developmental Hox and ParaHox gene expression in Octopus vulgaris. Hox genes are expressed in a near-to-staggered fashion, among others in homologous organs of cephalopods such as the stellate ganglia, the arms, or funnel. As in other mollusks Hox1 is expressed in the nascent octopod shell rudiment. While ParaHox genes are expressed in an evolutionarily conserved fashion, Hox genes are also expressed in some body regions that are considered homologous among mollusks such as the cephalopod arms and funnel with the molluscan foot. We argue that cephalopod Hox genes are recruited to a lesser extent into the formation of non-related organ systems than previously thought and emphasize that despite all morphological innovations molecular data still reveal the ancestral molluscan heritage of cephalopods.
Collapse
Affiliation(s)
| | - Sonia Victoria Rodríguez Monje
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Camino Gestal
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Tim Wollesen
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
8
|
Okamoto N, Fujinaga D, Yamanaka N. Steroid hormone signaling: What we can learn from insect models. VITAMINS AND HORMONES 2023; 123:525-554. [PMID: 37717997 DOI: 10.1016/bs.vh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ecdysteroids are a group of steroid hormones in arthropods with pleiotropic functions throughout their life history. Ecdysteroid research in insects has made a significant contribution to our current understanding of steroid hormone signaling in metazoans, but how far can we extrapolate our findings in insects to other systems, such as mammals? In this chapter, we compare steroid hormone signaling in insects and mammals from multiple perspectives and discuss similarities and differences between the two lineages. We also highlight a few understudied areas and remaining questions of steroid hormone biology in metazoans and propose potential future research directions.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Fujinaga
- Department of Entomology, University of California, Riverside, CA, United States
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, United States.
| |
Collapse
|
9
|
Khen A, McCormick LR, Steinke CA, Rouse GW, Zerofski PJ. First known observations of brooding, development, and hatching of fertilized eggs for the North Pacific bigeye octopus, Octopus californicus. Ecol Evol 2022; 12:e9481. [PMID: 36349256 PMCID: PMC9631326 DOI: 10.1002/ece3.9481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The North Pacific bigeye octopus, Octopus californicus (Berry, 1911) is a cold-water, deep-sea octopod. Little is known about their biology due to difficulty accessing their natural habitat and obtaining live specimens. Although they are a frequent bycatch product in commercial bottom trawl fisheries, individuals of this species have rarely been raised in captivity and their embryonic development has not yet been documented. Considering these limitations, we were fortunate to have witnessed this process leading to successful hatching in an aquarium setting. Here, we present a brief observational account of the first-known record of brooding, development, and hatching of fertilized eggs for O. californicus. The incubation time was a maximum of 10 months at a temperature between 8-10°C and embryos hatched over a period of 2.5 months. While more detailed research is needed, this preliminary information contributes to our limited knowledge of this species and supports life history theories of prolonged embryonic development under colder temperatures.
Collapse
Affiliation(s)
- Adi Khen
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Lillian R. McCormick
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Christine A. Steinke
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Greg W. Rouse
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Phil J. Zerofski
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
10
|
Fodor I, Pirger Z. From Dark to Light - An Overview of Over 70 Years of Endocrine Disruption Research on Marine Mollusks. Front Endocrinol (Lausanne) 2022; 13:903575. [PMID: 35872980 PMCID: PMC9301197 DOI: 10.3389/fendo.2022.903575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
|