1
|
Brodie JF, Bello C, Emer C, Galetti M, Luskin MS, Osuri A, Peres CA, Stoll A, Villar N, López AB. Defaunation impacts on the carbon balance of tropical forests. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14414. [PMID: 39466005 DOI: 10.1111/cobi.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/14/2024] [Indexed: 10/29/2024]
Abstract
The urgent need to mitigate and adapt to climate change necessitates a comprehensive understanding of carbon cycling dynamics. Traditionally, global carbon cycle models have focused on vegetation, but recent research suggests that animals can play a significant role in carbon dynamics under some circumstances, potentially enhancing the effectiveness of nature-based solutions to mitigate climate change. However, links between animals, plants, and carbon remain unclear. We explored the complex interactions between defaunation and ecosystem carbon in Earth's most biodiverse and carbon-rich biome, tropical rainforests. Defaunation can change patterns of seed dispersal, granivory, and herbivory in ways that alter tree species composition and, therefore, forest carbon above- and belowground. Most studies we reviewed show that defaunation reduces carbon storage 0-26% in the Neo- and Afrotropics, primarily via population declines in large-seeded, animal-dispersed trees. However, Asian forests are not predicted to experience changes because their high-carbon trees are wind dispersed. Extrapolating these local effects to entire ecosystems implies losses of ∼1.6 Pg CO2 equivalent across the Brazilian Atlantic Forest and 4-9.2 Pg across the Amazon over 100 years and of ∼14.7-26.3 Pg across the Congo basin over 250 years. In addition to being hard to quantify with precision, the effects of defaunation on ecosystem carbon are highly context dependent; outcomes varied based on the balance between antagonist and mutualist species interactions, abiotic conditions, human pressure, and numerous other factors. A combination of experiments, large-scale comparative studies, and mechanistic models could help disentangle the effects of defaunation from other anthropogenic forces in the face of the incredible complexity of tropical forest systems. Overall, our synthesis emphasizes the importance of-and inconsistent results when-integrating animal dynamics into carbon cycle models, which is crucial for developing climate change mitigation strategies and effective policies.
Collapse
Affiliation(s)
- Jedediah F Brodie
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, Montana, USA
- Institute for Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Carolina Bello
- Department of Environmental Systems Science, ETH, Zürich, Switzerland
| | - Carine Emer
- Rio de Janeiro Botanical Garden Research Institute, Rio de Janeiro, Brazil
| | - Mauro Galetti
- Department of Biodiversity, Center for Biodiversity Dynamics and Climate Change, São Paulo State University (UNESP), Rio Claro, Brazil
- Kimberly Green Latin American and Caribbean Center (LACC), Florida International University (FIU), Miami, Florida, USA
| | - Matthew S Luskin
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
| | - Anand Osuri
- Nature Conservation Foundation, Mysore, India
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Annina Stoll
- Department of Environmental Systems Science, ETH, Zürich, Switzerland
| | - Nacho Villar
- Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
| | - Ana-Benítez López
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Gallozzi F, Attili L, Colangelo P, Giuliani D, Capizzi D, Sposimo P, Dell'Agnello F, Lorenzini R, Solano E, Castiglia R. A survey of VKORC1 missense mutations in eleven Italian islands reveals widespread rodenticide resistance in house mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176090. [PMID: 39255931 DOI: 10.1016/j.scitotenv.2024.176090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
To protect native wildlife, more than one hundred rodent eradications have been attempted in the Mediterranean islands by using anticoagulant rodenticides (ARs). Despite their high efficiency, resistance to ARs has been observed in many countries and it is mostly related to missense mutations (SNPs) in the VKORC1 gene. The presence of resistant individuals reduces the efficiency of rodent management, leading to an excessive use of ARs. Thus, the risk of poisoning in non-target species increases. In this study, the first survey of ARs resistance in the house mouse Mus domesticus covering multiple islands in the Mediterranean was performed. Tissue samples of eighty-two mice from eleven islands in Italy were analysed and eight missense SNPs were found. In addition to some well-known missense mutations, such as Tyr139Cys, six new missense SNPs for the house mouse were discovered, four of which were new even for any rodent species. Furthermore, the frequency of Tyr139Cys significantly increased in Ventotene Island after a four-year long rat eradication. This could be due to the selective pressure of ARs that allowed the mice carrying the mutation to survive. This study demonstrates once again the importance of assessing resistance to ARs before undertaking rodent eradications. Indeed, this would allow an informed decision of the most effective AR to use, maximizing the success rate of the eradications and minimizing secondary poisoning and other deleterious effects for non-target species and the environment.
Collapse
Affiliation(s)
- Francesco Gallozzi
- Università degli studi di Roma "La Sapienza", Dipartimento di Biologia e Biotecnologie "Charles Darwin", via Borelli 50, 00188 Rome, Italy; National Research Council, Research Institute on Terrestrial Ecosystems, Montelibretti, Rome, Italy.
| | - Lorenzo Attili
- Università degli studi di Roma "La Sapienza", Dipartimento di Biologia e Biotecnologie "Charles Darwin", via Borelli 50, 00188 Rome, Italy; Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Centro di Referenza Nazionale per la Medicina Forense Veterinaria, Grosseto, Italy
| | - Paolo Colangelo
- National Research Council, Research Institute on Terrestrial Ecosystems, Montelibretti, Rome, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| | - Davide Giuliani
- Università degli studi di Roma "La Sapienza", Dipartimento di Biologia e Biotecnologie "Charles Darwin", via Borelli 50, 00188 Rome, Italy
| | - Dario Capizzi
- Latium Region, Directorate Environment, via di Campo Romano 65, 00173 Rome, Italy
| | - Paolo Sposimo
- Nature and Environment Management Operators Srl (NEMO), piazza Massimo D'Azeglio 11, 50121 Florence, Italy
| | - Filippo Dell'Agnello
- Nature and Environment Management Operators Srl (NEMO), piazza Massimo D'Azeglio 11, 50121 Florence, Italy
| | - Rita Lorenzini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Centro di Referenza Nazionale per la Medicina Forense Veterinaria, Grosseto, Italy
| | - Emanuela Solano
- National Research Council, Research Institute on Terrestrial Ecosystems, Montelibretti, Rome, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| | - Riccardo Castiglia
- Università degli studi di Roma "La Sapienza", Dipartimento di Biologia e Biotecnologie "Charles Darwin", via Borelli 50, 00188 Rome, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
3
|
Shukla I, Wilmers CC. Waste reduction decreases rat activity from peri-urban environment. PLoS One 2024; 19:e0308917. [PMID: 39536030 PMCID: PMC11559977 DOI: 10.1371/journal.pone.0308917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/01/2024] [Indexed: 11/16/2024] Open
Abstract
Globally, species in the genus Rattus (specifically Rattus rattus and Rattus norvegicus), are some of the most influential invasive taxa due to their high rates of competitive exclusion and large dietary breadth. However, the specific foraging strategies of urban-adjacent populations remain largely unknown. We examined Rattus spp. dependency on human food supplementation in a population on adjacent non-developed (or peri-urban) land. Via linear regression modeling, we measured rodent activity changes between native and invasive species before and after a decrease in human supplementation due to the COVID-19 lockdown in Santa Cruz, California, USA. We documented invasive rat activity via camera traps in normal (pre-COVID lockdown) conditions near dining halls and similar waste sources, and again under COVID lockdown conditions when sources of human supplementation were drastically decreased. After 120 trap nights we found a significant decrease (p < 0.001) in Rattus activity after the removal of human refuse, while native small mammal activity remained unchanged (p = 0.1). These results have strong conservation implications, as they support the hypothesis that proper waste management is an effective, less-invasive form of population control over conventional rodenticides.
Collapse
Affiliation(s)
- Ishana Shukla
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher C. Wilmers
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
4
|
Carromeu-Santos A, Mathias ML, Gabriel SI. Widespread distribution of rodenticide resistance-conferring mutations in the Vkorc1 gene among house mouse populations in Portuguese Macaronesian islands and Iberian Atlantic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166290. [PMID: 37586516 DOI: 10.1016/j.scitotenv.2023.166290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Growing evidence of widespread resistance to anticoagulant rodenticides (ARs) in house mice pose significant challenges to pest control efforts. First-generation ARs were introduced in the early 1950s but resistance to these emerged later that decade. Second-generation rodenticides were then developed, with resistance being reported in the late 1970s. Research has linked resistance to ARs with mutations in the Vkorc1 gene, leading to the use of more toxic and environmentally harmful compounds. In this study, 243 tail tips of house mice from mainland Portugal and Southern Spain, the Azores and Madeira archipelagos were analysed for all 3 exons of the Vkorc1 gene. Mutations L128S, Y139C, along with the so-called spretus genotype Vkorc1spr are considered responsible for reduced susceptibility of house mice to ARs. All these sequence variants were broadly detected throughout the sampling regions. Vkorc1spr was the most often recorded among mainland populations, whereas Y139C was nearly ubiquitous among the insular populations. In contrast, L128S was only detected in mainland Portugal and four islands of the Azores archipelago. All first generation ARs such as warfarin and coumatetralyl are deemed ineffective against all Vkorc1 variants identified in this study. Second-generation bromadiolone and difenacoum should also be discarded to control populations carrying Vkorc1spr, Y139C or L128S mutations. Inadequate use of ARs in regions where resistant animals have been found in large proportions will result in the spreading of rodenticide resistance among rodent populations through the positive selection of non-susceptible individuals. Consequently, ineffectiveness of rodent control will increase and potentiate environmental contamination, hazarding non-target wildlife through secondary poisoning. We highlight the need for Vkorc1 screening as a crucial tool in rodent management, aiding in the selection of the most appropriate control/eradication method in order to prevent misuse of these toxic biocides and the spread of rodenticide resistance among house mouse populations.
Collapse
Affiliation(s)
- A Carromeu-Santos
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M L Mathias
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - S I Gabriel
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Moore JH, Gibson L, Amir Z, Chanthorn W, Ahmad AH, Jansen PA, Mendes CP, Onuma M, Peres CA, Luskin MS. The rise of hyperabundant native generalists threatens both humans and nature. Biol Rev Camb Philos Soc 2023; 98:1829-1844. [PMID: 37311559 DOI: 10.1111/brv.12985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
In many disturbed terrestrial landscapes, a subset of native generalist vertebrates thrives. The population trends of these disturbance-tolerant species may be driven by multiple factors, including habitat preferences, foraging opportunities (including crop raiding or human refuse), lower mortality when their predators are persecuted (the 'human shield' effect) and reduced competition due to declines of disturbance-sensitive species. A pronounced elevation in the abundance of disturbance-tolerant wildlife can drive numerous cascading impacts on food webs, biodiversity, vegetation structure and people in coupled human-natural systems. There is also concern for increased risk of zoonotic disease transfer to humans and domestic animals from wildlife species with high pathogen loads as their abundance and proximity to humans increases. Here we use field data from 58 landscapes to document a supra-regional phenomenon of the hyperabundance and community dominance of Southeast Asian wild pigs and macaques. These two groups were chosen as prime candidates capable of reaching hyperabundance as they are edge adapted, with gregarious social structure, omnivorous diets, rapid reproduction and high tolerance to human proximity. Compared to intact interior forests, population densities in degraded forests were 148% and 87% higher for wild boar and macaques, respectively. In landscapes with >60% oil palm coverage, wild boar and pig-tailed macaque estimated abundances were 337% and 447% higher than landscapes with <1% oil palm coverage, respectively, suggesting marked demographic benefits accrued by crop raiding on calorie-rich food subsidies. There was extreme community dominance in forest landscapes with >20% oil palm cover where two pig and two macaque species accounted for >80% of independent camera trap detections, leaving <20% for the other 85 mammal species >1 kg considered. Establishing the population trends of pigs and macaques is imperative since they are linked to cascading impacts on the fauna and flora of local forest ecosystems, disease and human health, and economics (i.e., crop losses). The severity of potential negative cascading effects may motivate control efforts to achieve ecosystem integrity, human health and conservation objectives. Our review concludes that the rise of native generalists can be mediated by specific types of degradation, which influences the ecology and conservation of natural areas, creating both positive and detrimental impacts on intact ecosystems and human society.
Collapse
Affiliation(s)
- Jonathan H Moore
- School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan, Shenzhen, China
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Luke Gibson
- School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan, Shenzhen, China
| | - Zachary Amir
- School of Biological Sciences, University of Queensland, Brisbane, St Lucia, Queensland, 4072, Australia
| | - Wirong Chanthorn
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, 50 Ngamwongwan Road, Jatujak District, Bangkok, 10900, Thailand
| | - Abdul Hamid Ahmad
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Malaysia
| | - Patrick A Jansen
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
| | - Calebe P Mendes
- School of Biological Sciences, University of Queensland, Brisbane, St Lucia, Queensland, 4072, Australia
| | - Manabu Onuma
- National Institute for Environmental Studies, 16-2 Onagava, Tsukuba-City, 305-8506, Japan
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Instituto Juruá, R. Ajuricaba, 359 - Aleixo, Manaus, 69083-020, Brazil
| | - Matthew Scott Luskin
- School of Biological Sciences, University of Queensland, Brisbane, St Lucia, Queensland, 4072, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
6
|
Pires MM, Benchimol M, Cruz LR, Peres CA. Terrestrial food web complexity in Amazonian forests decays with habitat loss. Curr Biol 2023; 33:389-396.e3. [PMID: 36580916 DOI: 10.1016/j.cub.2022.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
The conversion of natural ecosystems into human-modified landscapes (HMLs) is the main driver of biodiversity loss in terrestrial ecosystems.1,2,3 Even when species persist within habitat remnants, populations may become so small that ecological interactions are functionally lost, disrupting local interaction networks.4,5 To uncover the consequences of land use changes toward ecosystem functioning, we need to understand how changes in species richness and abundance in HMLs6,7,8 rearrange ecological networks. We used data from forest vertebrate surveys and combined modeling and network analysis to investigate how the structure of predator-prey networks was affected by habitat insularization induced by a hydroelectric reservoir in the Brazilian Amazonia.9 We found that network complexity, measured by interaction diversity, decayed non-linearly with decreasingly smaller forest area. Although on large forest islands (>100 ha) prey species were linked to 3-4 potential predators, they were linked to one or had no remaining predator on small islands. Using extinction simulations, we show that the variation in network structure cannot be explained by abundance-related extinction risk or prey availability. Our findings show that habitat loss may result in an abrupt disruption of terrestrial predator-prey networks, generating low-complexity ecosystems that may not retain functionality. Release from predation on some small islands may produce cascading effects over plants that accelerate forest degradation, whereas predator spillover on others may result in overexploited prey populations. Our analyses highlight that in addition to maintaining diversity, protecting large continuous forests is required for the persistence of interaction networks and related ecosystem functions.
Collapse
Affiliation(s)
- Mathias M Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| | - Maíra Benchimol
- Applied Ecology & Conservation Lab, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, 45650-000 Ilhéus, Bahia, Brazil
| | - Livia R Cruz
- Programa de Pós Graduaçao em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil; Conservation Innovation Lab, Biology and Society Graduation Program, Arizona State University, Tempe, AZ 85287-4601, USA
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich NR47TJ, UK; Instituto Juruá, Rua Ajuricaba 359, 69057-060 Manaus, Brazil.
| |
Collapse
|