1
|
Mayorova TD, Koch TL, Kachar B, Jung JH, Reese TS, Smith CL. Placozoan secretory cell types implicated in feeding, innate immunity and regulation of behavior. PLoS One 2025; 20:e0311271. [PMID: 40261937 PMCID: PMC12013895 DOI: 10.1371/journal.pone.0311271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/17/2025] [Indexed: 04/24/2025] Open
Abstract
Placozoa are millimeter-sized, flat, irregularly shaped ciliated animals that crawl on surfaces in warm oceans feeding on biofilms, which they digest externally. They stand out from other animals due to their simple body plans. They lack organs, body cavities, muscles and a nervous system and have only seven broadly defined morphological cell types, each with a unique distribution. Analyses of single cell transcriptomes of four species of placozoans revealed greater diversity of secretory cell types than evident from morphological studies, but the locations of many of these new cell types were unknown and it was unclear which morphological cell types they represent. Furthermore, there were contradictions between the conclusions of previous studies and the single cell RNAseq studies. To address these issues, we used mRNA probes for genes encoding secretory products expressed in different metacells in Trichoplax adhaerens to localize cells in whole mounts and in dissociated cell cultures, where their morphological features could be visualized and identified. The nature and functions of their secretory granules were further investigated with electron microscopic techniques and by imaging secretion in live animals during feeding episodes. We found that two cell types participate in disintegrating prey, one resembling a lytic cell type in mammals and another combining features of zymogen gland cells and enterocytes. We identified secretory epithelial cells expressing glycoproteins or short peptides implicated in defense. We located seven peptidergic cell types and two types of mucocytes. Our findings reveal mechanisms that placozoans use to feed and protect themselves from pathogens and clues about neuropeptidergic signaling. We compare placozoan secretory cell types with cell types in other animal phyla to gain insight about general evolutionary trends in cell type diversification, as well as pathways leading to the emergence of synapomorphies.
Collapse
Affiliation(s)
- Tatiana D. Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Lund Koch
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Bechara Kachar
- Section on Structural Cell Biology, Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jae Hoon Jung
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carolyn L. Smith
- Light Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Gompper G, Stone HA, Kurzthaler C, Saintillan D, Peruani F, Fedosov DA, Auth T, Cottin-Bizonne C, Ybert C, Clément E, Darnige T, Lindner A, Goldstein RE, Liebchen B, Binysh J, Souslov A, Isa L, di Leonardo R, Frangipane G, Gu H, Nelson BJ, Brauns F, Marchetti MC, Cichos F, Heuthe VL, Bechinger C, Korman A, Feinerman O, Cavagna A, Giardina I, Jeckel H, Drescher K. The 2025 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:143501. [PMID: 39837091 PMCID: PMC11836640 DOI: 10.1088/1361-648x/adac98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. Many fundamental properties of motile active matter are by now reasonably well understood and under control. Thus, the ground is now prepared for the study of physical aspects and mechanisms of motion in complex environments, the behavior of systems with new physical features like chirality, the development of novel micromachines and microbots, the emergent collective behavior and swarming of intelligent self-propelled particles, and particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics. The 2025 motile active matter roadmap of Journal of Physics: Condensed Matter reviews the current state of the art of the field and provides guidance for further progress in this fascinating research area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America
| | - Christina Kurzthaler
- Max Planck Institute for the Physics of Complex Systems, Center for Systems Biology Dresden, Cluster of Excellence, Physics of Life, TU Dresden, Dresden, Germany
| | - David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thorsten Auth
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Cecile Cottin-Bizonne
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Christophe Ybert
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Eric Clément
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Thierry Darnige
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Anke Lindner
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Benno Liebchen
- Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Jack Binysh
- Institute of Physics, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Anton Souslov
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Hongri Gu
- Department of Physics, University of Konstanz, Konstanz, Germany
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Frank Cichos
- Molecular Nanophotonics, Leipzig University, 04013 Leipzig, Germany
| | | | | | - Amos Korman
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Ofer Feinerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Cavagna
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Irene Giardina
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Hannah Jeckel
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Knut Drescher
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Leys SP, Grombacher L, Field D, Elliott GRD, Ho VR, Kahn AS, Reid PJ, Riesgo A, Lanna E, Bobkov Y, Ryan JF, Horton AL. A morphological cell atlas of the freshwater sponge Ephydatia muelleri with key insights from targeted single-cell transcriptomes. EvoDevo 2025; 16:1. [PMID: 39953556 PMCID: PMC11827373 DOI: 10.1186/s13227-025-00237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
How animal cell types, tissues, and regional body plans arose is a fundamental question in EvoDevo. Many current efforts attempt to link genetic information to the morphology of cells, tissues and regionalization of animal body plans using single-cell sequencing of cell populations. However, a lack of in-depth understanding of the morphology of non-bilaterian animals remains a considerable block to understanding the transitions between bilaterian and non-bilaterian cells and tissues. Sponges (Porifera), one of the earliest diverging animal phyla, pose a particular challenge to this endeavour, because their body plans lack mouths, gut, conventional muscle and nervous systems. With a goal to help bridge this gap, we have studied the morphology, behaviour and transcriptomics of cells and tissue types of an easily accessible and well-studied species of freshwater sponge, Ephydatia muelleri. New features described here include: a polarized external epithelium, a new contractile sieve cell that forms the entry to incurrent canals, motile cilia on apopyle cells at the exit of choanocyte chambers, and non-motile cilia on cells in excurrent canals and oscula. Imaging cells in vivo shows distinct behavioural characteristics of motile cells in the mesohyl. Transcriptomic phenotypes of three cell types (cystencytes, choanocytes and archaeocytes) captured live indicate that cell-type transcriptomes are distinct. Importantly, individual archaeocytes show a range of transcriptomic phenotypes which is supported by the distinct expression of different genes by subsets of this cell type. In contrast, all five choanocyte cells sampled live revealed highly uniform transcriptomes with significantly fewer genes expressed than in other cell types. Our study shows that sponges have tissues whose morphology and cell diversity are both functionally complex, but which together enable the sponge, like other metazoans, to sense and respond to stimuli.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Lauren Grombacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Daniel Field
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Glen R D Elliott
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Elliott Microscopy and Microanalysis Inc., Edmonton, AB, Canada
| | - Vanessa R Ho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Amanda S Kahn
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Moss Landing Marine Laboratories and San Jose State University, Moss Landing, CA, 95039, USA
| | - Pamela J Reid
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Ana Riesgo
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Emilio Lanna
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Universidade Federal da Bahia, Instituto de Biologia, Salvador, BA, Brazil
| | - Yuriy Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
4
|
Ho VR, Goss GG, Leys SP. ATP and glutamate coordinate contractions in the freshwater sponge Ephydatia muelleri. J Exp Biol 2025; 228:JEB248010. [PMID: 39936310 PMCID: PMC11883242 DOI: 10.1242/jeb.248010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025]
Abstract
Sponges (phylum Porifera) are an early diverging animal lineage without nervous and muscular systems, and yet they are able to produce coordinated whole-body contractions in response to disturbances. Little is known about the underlying signalling mechanisms in coordinating such responses. Previous studies demonstrated that sponges respond specifically to chemicals such as l-glutamate and γ-amino-butyric acid (GABA), which trigger and prevent contractions, respectively. Genes for purinergic P2X-like receptors are present in several sponge genomes, leading us to ask whether ATP works with glutamate to coordinate contractions in sponges as it does in other animal nervous systems. Using pharmacological approaches on the freshwater sponge Ephydatia muelleri, we show that ATP is involved in coordinating contractions. Bath application of ATP caused a rapid, sustained expansion of the excurrent canals in a dose-dependent manner. Complete contractions occurred when ATP was added in the presence of apyrase, an enzyme that hydrolyses ATP. Application of ADP, the first metabolic product of ATP hydrolysis, triggered complete contractions, whereas AMP, the subsequent metabolite, did not trigger a response. Blocking ATP from binding and activating P2X receptors with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) prevented both glutamate- and ATP-triggered contractions, suggesting that ATP works downstream of glutamate. Bioinformatic analysis revealed two P2X receptor sequences, one of which groups with other vertebrate P2X receptors. Altogether, our results confirm that purinergic signalling by ATP is involved in coordinating contractions in the freshwater sponge.
Collapse
Affiliation(s)
- Vanessa R. Ho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Greg G. Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| |
Collapse
|
5
|
Mayorova TD, Koch TL, Kachar B, Jung JH, Reese TS, Smith CL. Placozoan secretory cell types implicated in feeding, innate immunity and regulation of behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.18.613768. [PMID: 39372748 PMCID: PMC11452194 DOI: 10.1101/2024.09.18.613768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Placozoa are millimeter-sized, flat, irregularly shaped ciliated animals that crawl on surfaces in warm oceans feeding on biofilms, which they digest externally. They stand out from other animals due to their simple body plans. They lack organs, body cavities, muscles and a nervous system and have only seven broadly defined morphological cell types, each with a unique distribution. Analyses of single cell transcriptomes of four species of placozoans revealed greater diversity of secretory cell types than evident from morphological studies, but the locations of many of these new cell types were unknown and it was unclear which morphological cell types they represent. Furthermore, there were contradictions between the conclusions of previous studies and the single cell RNAseq studies. To address these issues, we used mRNA probes for genes encoding secretory products expressed in different metacells in Trichoplax adhaerens to localize cells in whole mounts and in dissociated cell cultures, where their morphological features could be visualized and identified. The nature and functions of their secretory granules were further investigated with electron microscopic techniques and by imaging secretion in live animals during feeding episodes. We found that two cell types participate in disintegrating prey, one resembling a lytic cell type in mammals and another combining features of zymogen gland cells and enterocytes. We identified secretory epithelial cells expressing glycoproteins or short peptides implicated in defense. We located seven peptidergic cell types and two types of mucocytes. Our findings reveal mechanisms that placozoans use to feed and protect themselves from pathogens and clues about neuropeptidergic signaling. We compare placozoan secretory cell types with cell types in other animal phyla to gain insight about general evolutionary trends in cell type diversification, as well as pathways leading to the emergence of synapomorphies.
Collapse
Affiliation(s)
- Tatiana D. Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Thomas Lund Koch
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Bechara Kachar
- Section on Structural Cell Biology, Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States of America
| | - Jae Hoon Jung
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Carolyn L. Smith
- Light Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
6
|
Falcucci G, Amati G, Bella G, Facci AL, Krastev VK, Polverino G, Succi S, Porfiri M. Adapting to the Abyss: Passive Ventilation in the Deep-Sea Glass Sponge Euplectella aspergillum. PHYSICAL REVIEW LETTERS 2024; 132:208402. [PMID: 38829072 DOI: 10.1103/physrevlett.132.208402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/09/2024] [Indexed: 06/05/2024]
Abstract
We analyze the flow physics inside the body cavity and downstream the deep-sea glass sponge Euplectella aspergillum. We provide evidence that the helical skeletal motifs of the sponge give rise to a rich fluid dynamic field, allowing the organism to scavenge flow from the bottom of the sea and promoting a spontaneous, organized vertical flow within its body cavity toward the osculum. Our analysis points at a functional adaptation of the organism, which can passively divert flow through the osculum in unfavorable, low ambient currents, with no need for active pumping, with potential repercussions in functional ecology, as well as the design of chemical reactors, air-treatment units, and civil and aeronaval structures.
Collapse
Affiliation(s)
- Giacomo Falcucci
- Department of Enterprise Engineering "Mario Lucertini", University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy
- Department of Physics, Harvard University, 33 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Giorgio Amati
- SCAI - SuperComputing Applications and Innovation Department - CINECA, Via dei Tizii 6, 00185 Rome, Italy
| | - Gino Bella
- Università Niccolò Cusano - Telematica Roma, Via don Gnocchi - 00100 Rome, Italy
| | - Andrea Luigi Facci
- DEIM - School of Engineering, University of Tuscia, Via del Paradiso 47, 01100 Viterbo, Italy
| | - Vesselin K Krastev
- Department of Enterprise Engineering "Mario Lucertini", University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy
| | - Giovanni Polverino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne 3800, Victoria, Australia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Perth 6009, Western Australia, Australia
| | - Sauro Succi
- Department of Physics, Harvard University, 33 Oxford Street, Cambridge, Massachusetts 02138, USA
- Italian Institute of Technology, Piazzale Aldo Moro 1, 00185 Rome, Italy
| | - Maurizio Porfiri
- Center for Urban Science and Progress, Department of Biomedical Engineering, and Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, 370 Jay Street, Brooklyn, New York 11201, USA
| |
Collapse
|
7
|
Weinrauch AM, Dumar ZJ, Overduin SL, Goss GG, Leys SP, Blewett TA. Evidence for transporter-mediated uptake of environmental L-glutamate in a freshwater sponge, Ephydatia muelleri. J Comp Physiol B 2024; 194:121-130. [PMID: 38553641 DOI: 10.1007/s00360-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/10/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
The freshwater sponge, Ephydatia muelleri, lacks a nervous or endocrine system and yet it exhibits a coordinated whole-body action known as a "sneeze" that can be triggered by exposure to L-glutamate. It is not known how L-glutamate is obtained by E. muelleri in sufficient quantities (i.e., 70 µM) to mediate this response endogenously. The present study tested the hypothesis that L-glutamate can be directly acquired from the environment across the body surface of E. muelleri. We demonstrate carrier mediated uptake of two distinct saturable systems with maximal transport rates (Jmax) of 64.27 ± 4.98 and 25.12 ± 1.87 pmols mg-1 min-1, respectively. The latter system has a higher calculated substrate affinity (Km) of 2.87 ± 0.38 µM compared to the former (8.75 ± 1.00 µM), indicative of distinct systems that can acquire L-glutamate at variable environmental concentrations. Further characterization revealed potential shared pathways of L-glutamate uptake with other negatively charged amino acids, namely D-glutamate and L-aspartate, as well as the neutral amino acid L-alanine. We demonstrate that L-glutamate uptake does not appear to rely on exogenous sodium or proton concentrations as removal of these ions from the bathing media did not significantly alter uptake. Likewise, L-glutamate uptake does not seem to rely on internal proton motive forces driven by VHA as application of 100 nM of the VHA inhibitor bafilomycin did not alter uptake rates within E. muelleri tissues. Whether the acquired amino acid is used to supplement feeding or is stored and accumulated to mediate the sneeze response remains to be determined.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zachary J Dumar
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Sienna L Overduin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
8
|
Olinger LK, McClenaghan B, Hajibabaei M, Fahner N, Berghuis L, Rajabi H, Erwin P, Lane CS, Pawlik JR. Looking for the sponge loop: analyses of detritus on a Caribbean forereef using stable isotope and eDNA metabarcoding techniques. PeerJ 2024; 12:e16970. [PMID: 38410802 PMCID: PMC10896084 DOI: 10.7717/peerj.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Coral reefs are biodiverse ecosystems that rely on trophodynamic transfers from primary producers to consumers through the detrital pathway. The sponge loop hypothesis proposes that sponges consume dissolved organic carbon (DOC) and produce large quantities of detritus on coral reefs, with this turn-over approaching the daily gross primary production of the reef ecosystem. In this study, we collected samples of detritus in the epilithic algal matrix (EAM) and samples from potential sources of detritus over two seasons from the forereef at Carrie Bow Cay, Belize. We chose this location to maximize the likelihood of finding support for the sponge loop hypothesis because Caribbean reefs have higher sponge abundances than other tropical reefs worldwide and the Mesoamerican barrier reef is an archetypal coral reef ecosystem. We used stable isotope analyses and eDNA metabarcoding to determine the composition of the detritus. We determined that the EAM detritus was derived from a variety of benthic and pelagic sources, with primary producers (micro- and macroalgae) as major contributors and metazoans (Arthropoda, Porifera, Cnidaria, Mollusca) as minor contributors. None of the sponge species that reportedly produce detritus were present in EAM detritus. The cnidarian signature in EAM detritus was dominated by octocorals, with a scarcity of hard corals. The composition of detritus also varied seasonally. The negligible contribution of sponges to reef detritus contrasts with the detrital pathway originally proposed in the sponge loop hypothesis. The findings indicate a mix of pelagic and benthic sources in the calmer summer and primarily benthic sources in the more turbulent spring.
Collapse
Affiliation(s)
- Lauren K. Olinger
- Center for Marine and Environmental Studies, University of the Virgin Islands, St Thomas, Virgin Islands, U.S. Virgin Islands, United States of America
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | | | - Mehrdad Hajibabaei
- eDNAtec Inc., Newfoundland and Labrador, St. John’s, Canada
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicole Fahner
- eDNAtec Inc., Newfoundland and Labrador, St. John’s, Canada
| | | | - Hoda Rajabi
- eDNAtec Inc., Newfoundland and Labrador, St. John’s, Canada
| | - Patrick Erwin
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Chad S. Lane
- Department of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Joseph R. Pawlik
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| |
Collapse
|
9
|
Xiang X, Vilar Gomez AA, Blomberg SP, Yuan H, Degnan BM, Degnan SM. Potential for host-symbiont communication via neurotransmitters and neuromodulators in an aneural animal, the marine sponge Amphimedon queenslandica. Front Neural Circuits 2023; 17:1250694. [PMID: 37841893 PMCID: PMC10570526 DOI: 10.3389/fncir.2023.1250694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Interkingdom signalling within a holobiont allows host and symbionts to communicate and to regulate each other's physiological and developmental states. Here we show that a suite of signalling molecules that function as neurotransmitters and neuromodulators in most animals with nervous systems, specifically dopamine and trace amines, are produced exclusively by the bacterial symbionts of the demosponge Amphimedon queenslandica. Although sponges do not possess a nervous system, A. queenslandica expresses rhodopsin class G-protein-coupled receptors that are structurally similar to dopamine and trace amine receptors. When sponge larvae, which express these receptors, are exposed to agonists and antagonists of bilaterian dopamine and trace amine receptors, we observe marked changes in larval phototactic swimming behaviour, consistent with the sponge being competent to recognise and respond to symbiont-derived trace amine signals. These results indicate that monoamines synthesised by bacterial symbionts may be able to influence the physiology of the host sponge.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandie M. Degnan
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Durden JM, Clare MA, Vad J, Gates AR. First in-situ monitoring of sponge response and recovery to an industrial sedimentation event. MARINE POLLUTION BULLETIN 2023; 191:114870. [PMID: 37071940 DOI: 10.1016/j.marpolbul.2023.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Assessment of risks to seabed habitats from industrial activities is based on the resilience and potential for recovery. Increased sedimentation, a key impact of many offshore industries, results in burial and smothering of benthic organisms. Sponges are particularly vulnerable to increases in suspended and deposited sediment, but response and recovery have not been observed in-situ. We quantified the impact of sedimentation from offshore hydrocarbon drilling over ∼5 days on a lamellate demosponge, and its recovery in-situ over ∼40 days using hourly time-lapse photographs with measurements of backscatter (a proxy of suspended sediment) and current speed. Sediment accumulated on the sponge then cleared largely gradually but occasionally sharply, though it did not return to the initial state. This partial recovery likely involved a combination of active and passive removal. We discuss the use of in-situ observing, which is critical to monitoring impacts in remote habitats, and need for calibration to laboratory conditions.
Collapse
|
12
|
Moroz LL, Romanova DY. Alternative neural systems: What is a neuron? (Ctenophores, sponges and placozoans). Front Cell Dev Biol 2022; 10:1071961. [PMID: 36619868 PMCID: PMC9816575 DOI: 10.3389/fcell.2022.1071961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
How to make a neuron, a synapse, and a neural circuit? Is there only one 'design' for a neural architecture with a universally shared genomic blueprint across species? The brief answer is "No." Four early divergent lineages from the nerveless common ancestor of all animals independently evolved distinct neuroid-type integrative systems. One of these is a subset of neural nets in comb jellies with unique synapses; the second lineage is the well-known Cnidaria + Bilateria; the two others are non-synaptic neuroid systems in sponges and placozoans. By integrating scRNA-seq and microscopy data, we revise the definition of neurons as synaptically-coupled polarized and highly heterogenous secretory cells at the top of behavioral hierarchies with learning capabilities. This physiological (not phylogenetic) definition separates 'true' neurons from non-synaptically and gap junction-coupled integrative systems executing more stereotyped behaviors. Growing evidence supports the hypothesis of multiple origins of neurons and synapses. Thus, many non-bilaterian and bilaterian neuronal classes, circuits or systems are considered functional rather than genetic categories, composed of non-homologous cell types. In summary, little-explored examples of convergent neuronal evolution in representatives of early branching metazoans provide conceptually novel microanatomical and physiological architectures of behavioral controls in animals with prospects of neuro-engineering and synthetic biology.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova, Moscow, Russia
| |
Collapse
|
13
|
How a sponge 'sneezes' mucus: against the flow. Nature 2022. [PMID: 35948683 DOI: 10.1038/d41586-022-02132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|