1
|
Xu G, Huang X, Liang Y, Tan S, Chen H, Xiong Z, Ma X, Zhang S, Yi K, Guo Z, Wu W. Thiolutin Is a Potential Fungicide for Controlling Phytophthora nicotianae and Its Mechanistic Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12734-12746. [PMID: 40365638 DOI: 10.1021/acs.jafc.5c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Phytophthora nicotianae is a destructive plant pathogen that causes significant agricultural losses, with current chemical control strategies leading to resistance and environmental concerns. This study identified thiolutin, a dithiopyrrolone antibiotic from Streptomyces luteireticuli ASG80, as a potent antifungal agent against multiple Phytophthora species. Thiolutin exhibited strong in vitro activity, with an EC50 value of 0.8266 μg/mL, significantly reduced disease incidence and Phytophthora abundance in vivo, outperforming conventional fungicides such as metalaxyl. Transcriptomic analysis revealed significant downregulation of key genes in energy metabolism pathways, including mitochondrial function and oxidative phosphorylation, indicating impaired energy production and cellular metabolism. Microscopic and biochemical analyses further demonstrated that thiolutin disrupts cell membrane integrity, induces reactive oxygen species accumulation, and damages mitochondria, ultimately leading to energy metabolism disruption and fungal programmed cell death. These findings highlight thiolutin's potential as an environmentally friendly alternative for managing Phytophthora-induced plant diseases.
Collapse
Affiliation(s)
- Gang Xu
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
| | - Xing Huang
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yanqiong Liang
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Shibei Tan
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Helong Chen
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zijun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, Hainan 571101, China
| | - Xiang Ma
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
| | - Shiqing Zhang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, Hainan 571101, China
| | - Kexian Yi
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan 572025, China
| | - Zhikai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, Hainan 571101, China
| | - Weihuai Wu
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| |
Collapse
|
2
|
Wang P, Niu T, Huang D, Li Y, Jiang Z, Wang X, Liao L. Molecular mechanism of programmed cell death in drug-induced neuronal damage: A special focus on ketamine-induced neurotoxicity. Toxicology 2025; 513:154102. [PMID: 40015548 DOI: 10.1016/j.tox.2025.154102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
In recent years, the abuse of ketamine as a recreational drug has been growing, and has become one of the most widely abused drugs. Continuous using ketamine poses a risk of drug addiction and complications such as attention deficit disorder, memory loss and cognitive decline. Ketamine-induced neurotoxicity is thought to play a key role in the development of these neurological complications. In this paper, we focus on the molecular mechanisms of ketamine-induced neurotoxicity. According to our analyses, drugs in causing neurotoxicity are closely associated with programmed cell death (PCD) such as apoptosis, autophagy, necroptosis, pyroptosis, and Ferroptosis. Therefore, this review will collate the existing mechanisms of programmed death in ketamine-induced neurotoxicity as well as explore the possible mechanisms by outlining the mechanisms of programmed death in other drug-induced neurotoxicity, which may be helpful in identifying potential therapeutic targets for neurotoxicity induced by ketamine abuse.
Collapse
Affiliation(s)
- Peipei Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tong Niu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Degao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuanlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xia Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Linchuan Liao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Cao J, Li A, Zhou H, Yan Y, Luo G. Identification of mitochondrial function and programmed cell death associated key biomarkers and the circRNA-miRNA-mRNA regulatory network in systemic lupus erythematosus. Front Mol Biosci 2025; 12:1586294. [PMID: 40297850 PMCID: PMC12034568 DOI: 10.3389/fmolb.2025.1586294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives Systemic Lupus Erythematosus (SLE) is a highly heterogeneous autoimmune disease with complex pathogenic mechanisms. Mitochondrial function and programmed cell death (PCD) play important roles in SLE. This study aims to screen biomarkers related to mitochondrial function and programmed cell death in SLE and analyze their underlying mechanisms. Methods SLE-related databases were derived from the GEO database, where three SLE databases were merged into one database as the training set. Genes related to mitochondrial function and PCD were sourced from the MitoCarta 3.0 database. Key genes were identified through bioinformatics and machine learning, and their expression levels and diagnostic efficacy were validated using two SLE-related datasets as the validation set. The relationship between diagnostic genes and immune cells was analyzed through CIBERSORT immune infiltration analysis. Diagnostic genes-related miRNAs were predicted using online databases. Differential circRNAs were screened in SLE circRNA datasets, and the relationship between circRNAs and miRNAs is predicted through circbank, finally constructing a circRNA-miRNA-mRNA ceRNA regulatory network. Results From the 448 differential genes in the SLE training set, two key genes, IFI27 and LAMP3, were identified through machine learning and WGCNA. Enrichment analysis revealed that they were mainly enriched in pathways such as cell cycle, systemic lupus erythematosus, cytosolic DNA sensing pathway, toll-like receptor (TLR) signaling pathway and nod-like receptor (NLR) signaling pathway. Immune infiltration analysis found that compared with normal group, 11 immune cells were differentially expressed, with IFI27 related 9 types of immune cells and LAMP3 related 10 types of immune cells. The final constructed circRNA-miRNA-mRNA ceRNA regulatory network consists of 2 mRNAs, 5 miRNAs, and 4 circRNAs. Conclusion Our study ultimately identified two biomarkers (IFI27 and LAMP3) related to mitochondrial function and programmed cell death that play an important role in SLE. In the future, IFI27 and LAMP3 have the potential to become important biomarkers in the diagnosis and treatment of SLE. Their role in the immune response may provide new strategies for the treatment of SLE.
Collapse
Affiliation(s)
- Junjie Cao
- Department of Laboratory Medicine, Xi’an Fifth Hospital, Xi’an, Shaanxi, China
| | - Aifang Li
- Department of Laboratory Medicine, Xi’an Chest Hospital, Xi’an, Shaanxi, China
| | - Hui Zhou
- Department of Cardiovascular, Xi’an Fifth Hospital, Xi’an, Shaanxi, China
| | - Yujie Yan
- Medical Collage, Xi’an Peihua University, Xi’an, Shaanxi, China
| | - Gaiying Luo
- Department of Laboratory Medicine, Xi’an Fifth Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Liu H, Wang H, Lin X, Xu M, Lan W, Wang J. Harnessing natural saponins: Advancements in mitochondrial dysfunction and therapeutic applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156383. [PMID: 39848019 DOI: 10.1016/j.phymed.2025.156383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Mitochondrial dysfunction plays a crucial role in the development of a variety of diseases, notably neurodegenerative disorders, cardiovascular diseases, metabolic syndrome, and cancer. Natural saponins, which are intricate glycosides characterized by steroidal or triterpenoid structures, have attracted interest due to their diverse pharmacological benefits, including anti-inflammatory, antiviral, and anti-aging effects. PURPOSE This review synthesizes recent advancements in understanding mitochondrial dysfunction and explores how saponins can modulate mitochondrial function. It focuses on their potential applications in neuroprotection, cardiovascular health, and oncology. STUDY DESIGN The review incorporates a comprehensive literature analysis, highlighting the interplay between saponins and mitochondrial signaling pathways. Specific attention is given to the effects of saponins like ginsenoside Rg2 and 20(S)-protopanaxatriol on mitophagy and their neuroprotective, anti-aging, and synergistic therapeutic effects when combined. METHODS We conducted a comprehensive review of current research and clinical trials using PubMed, Google Scholar, and SciFinder databases. The search focused on saponins' role in mitochondrial function and their therapeutic effects, including "saponins", "mitochondria" and "mitochondrial function". The analysis primarily focused on articles published between 2011 and 2024. RESULTS The findings indicate that certain saponins can enhance mitophagy and modulate mitochondrial signaling pathways, showing promise in neuroprotection and anti-aging. Additionally, combinations of saponins have demonstrated synergistic effects in myocardial protection and cancer therapy, potentially improving therapeutic outcomes. CONCLUSION Although saponins exhibit significant potential in modulating mitochondrial functions and developing innovative therapeutic strategies, their clinical applications are constrained by low bioavailability. Rigorous clinical trials are essential to translate these findings into effective clinical therapies, ultimately improving patient outcomes through a deeper understanding of saponins' impact on mitochondrial function.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Xu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Wenying Lan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
5
|
Wu Q, Jin C, Liu X, Zhang Q, Jiao B, Yu H. 1-Bromopropane induces mitochondrial damage and lipid metabolism imbalance in respiratory epithelial cells through the PGC-1α/PPARα pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117492. [PMID: 39644563 DOI: 10.1016/j.ecoenv.2024.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
1-Bromopropane (1-BP) has become a new air pollutant in occupational and living environments due to its advantages in industrial applications and as a representative compound of volatile organic compounds (VOCs). As an irritant, its damaging effects on respiratory epithelium are worthy of further study. This study aimed to explore the damage effects of 1-BP on respiratory epithelial cells and reveal its underlying mechanisms. We found that exposure to 1-BP markedly reduced the viability of respiratory epithelial cells in a dose-dependent manner, and induced oxidative stress and vacuolation changes in respiratory epithelial cells. Subsequently, through RNA-seq analysis, we identified that the 1-BP-induced damage of respiratory epithelial cells was related to the mitochondrial function pathway and further verified that 1-BP caused mitochondrial damage of respiratory epithelial cells, which was manifested as ultrastructural damage, decreased membrane potential, ATP, and MFN2 levels. These damages were associated with cellular oxidative stress responses. Pretreating cells with the agonists of PGC-1α and PPARα, we revealed that 1-BP affected the expression of PGC-1α and interfered with its coactivator PPARα levels, causing an increase in the expression of lipid-producing genes and a decrease in the expression of lipid-decomposing genes, thus leading to a lipid accumulation in respiratory epithelial cells. Meanwhile, the imbalance of lipid metabolism in respiratory epithelial cells induced by 1-BP further caused mitochondrial damage, and the effect was bidirectional. These findings suggested that 1-BP has a potential role in inducing respiratory epithelial cell damage and is associated with the PGC-1α/PPARα signaling pathway.
Collapse
Affiliation(s)
- Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, China.
| | - Chunmeng Jin
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Liu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Qianyi Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Biyang Jiao
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongmin Yu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
6
|
Wang Q, Du J, Yang F, Wu S, Zhu L, Li X, Yang H, Miao Y, Li Y. Charge Separation-Engineered Piezoelectric Ultrathin Nanorods Modulate Tumor Stromal Microenvironment and Enhance Cell Immunogenicity for Synergistically Piezo-Thermal-Immune Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408038. [PMID: 39548936 DOI: 10.1002/smll.202408038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Indexed: 11/18/2024]
Abstract
The tumor microenvironment (TME) is characterized by hypoxia and low immunogenicity, with a dense and rigid extracellular matrix (ECM) that impedes the diffusion of therapeutic agents and immune cells, thereby limiting the efficacy of immunotherapy. To overcome these challenges, an oxygen defect piezoelectric-photothermal sensitizer, bismuth vanadate nanorod-supported platinum nanodots (BVP) is developed. The integration of platinum enhances the photothermal effect and improves charge separation efficiency under ultrasound, leading to increased heat generation and the production of reactive oxygen species (ROS) and oxygen. Platinum also catalyzes the conversion of hydrogen peroxide in the TME to oxygen, which serves as both a ROS source and a means to alleviate tumor hypoxia, thereby reversing the immunosuppressive TME. Moreover, the coordination of bismuth ions with glutathione further amplifies cellular oxidative stress. The generated heat and ROS not only denature the collagen in the ECM, facilitating the deeper penetration of BVP into the tumor but also induce immunogenic cell death in tumor cells. Through the "degeneration and penetration" strategy, photoacoustic therapy effectively activates immune cells, inhibiting both tumor growth and metastasis. This study introduces a pioneering approach in the design of antitumor nanomedicines aimed at reversing the immunosuppressive characteristics of the TME.
Collapse
Affiliation(s)
- Qian Wang
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, 200433, China
| | - Sijia Wu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Luna Zhu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Han Yang
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
7
|
Liu Q, Wang D, Cui M, Li M, Zhang XE. A genetically encoded fluorescent protein sensor for mitochondrial membrane damage detection. Biochem Biophys Res Commun 2024; 709:149836. [PMID: 38564937 DOI: 10.1016/j.bbrc.2024.149836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Mitochondria are essential cellular organelles; detecting mitochondrial damage is crucial in cellular biology and toxicology. Compared with existing chemical probe detection methods, genetically encoded fluorescent protein sensors can directly indicate cellular and molecular events without involving exogenous reagents. In this study, we introduced a molecular sensor system, MMD-Sensor, for monitoring mitochondrial membrane damage. The sensor consists of two molecular modules. Module I is a fusion structure of the mitochondrial localization sequence (MLS), AIF cleavage site sequence (CSS), nuclear localization sequence (NLS), N-terminus of mNeonGreen and mCherry. Module II is a fusion structure of the C-terminus of mNeonGreen, NLS sequence, and mtagBFP2. Under normal condition, Module I is constrained in the inner mitochondrial membrane anchored by MLS, while Module II is restricted to the nucleus by its NLS fusion component. If the mitochondrial membrane is damaged, CSS is cut from the inner membrane, causing Module I to shift into the nucleus guided by the NLS fusion component. After Module I enters the nucleus, the N- and C-terminus of mNeonGreen meet each other and rebuild its intact 3D structure through fragment complementation and thus generates green fluorescence in the nucleus. Dynamic migration of red fluorescence from mitochondria to the nucleus and generation of green fluorescence in the nucleus indicate mitochondrial membrane damage. Using the MMD-Sensor, mitochondrial membrane damage induced by various reagents, such as uncoupling agents, ATP synthase inhibitors, monovalent cationic carriers, and ROS, in HeLa and 293T cells are directly observed and evaluated.
Collapse
Affiliation(s)
- Qian Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengmeng Cui
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Yuan Y, Li Y, Deng Q, Yang J, Zhang J. Selenadiazole-Induced Hela Cell Apoptosis through the Redox Oxygen Species-Mediated JAK2/STAT3 Signaling Pathway. ACS OMEGA 2024; 9:20919-20926. [PMID: 38764630 PMCID: PMC11097172 DOI: 10.1021/acsomega.3c10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Cervical cancer is a significant global health concern, and novel therapeutic strategies are continually being sought to combat this disease. In recent years, selenadiazole found latent therapeutic effects on tumors. Herein, investigating the mechanism of selenadiazole in Hela cells holds promise for advancing cervical cancer treatment. Hela cells, a widely utilized model for studying cervical cancer, were treated with selenadiazole, and cell viability was assessed by using the cell counting kit-8 (CCK-8) assay. Changes in mitochondrial membrane potential were evaluated using JC-1 staining, while apoptosis induction was examined using AnnexinV-PI double staining. Intracellular ROS levels were measured by using specific fluorescent probes and the ELIASA system. Additionally, Western blotting was performed to assess the activation of related proteins in response to selenadiazole. Data analysis was performed using GraphPad. Exposure to selenadiazole led to a substantial increase in intracellular redox oxygen species (ROS) levels in Hela cells. Importantly, the induction of ROS by selenadiazole was associated with a marked increase in mitochondrial apoptosis, as evidenced by elevated levels of AnnexinV-positive cells, the JC-1 monomer, caspase-9, and Bcl-2. Furthermore, activation of the JAK2/STAT3 pathway was observed following the selenadiazole treatment. Selenadiazole holds the potential to suppress tumor growth in cervical cancer cells by increasing reactive oxygen species (ROS) levels and inducing mitochondrial apoptosis via the JAK2/STAT3 pathway. This study offers valuable insights into potential cervical cancer therapies and underscores the need for further research into the specific mechanisms of selenadiazole.
Collapse
Affiliation(s)
- Yi Yuan
- Center
Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yinghua Li
- Center
Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Qinglin Deng
- Nanfang
Hospital, Southern Medical University, Guangzhou 510120, China
| | - Jinying Yang
- Department
of Obstetrics, Longgang District Maternity
and Child Healthcare Hospital of Shenzhen City (Longgang Maternity
and Child Clinical Institute of Shantou University Medical College), Shenzhen 510080, China
| | - Jing Zhang
- Department
of Interventional Radiology, Guangdong Provincial People’s
Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
9
|
Cheng W, Ren Y, Yu C, Zhou T, Zhang Y, Lu L, Liu Y, Xu D. CyHV-2 infection triggers mitochondrial-mediated apoptosis in GiCF cells by upregulating the pro-apoptotic gene ccBAX. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109400. [PMID: 38253137 DOI: 10.1016/j.fsi.2024.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Apoptosis is a physiological cell death phenomenon, representing one of the fundamental physiological mechanisms for maintaining homeostasis in living organisms. Previous studies have observed typical apoptotic features in Carassius auratus gibelio caudal fin cell (GiCF) infected with Cyprinid herpesvirus 2 (CyHV-2), and found a significant up-regulation of ccBAX expression in these infected cells. However, the specific apoptotic mechanism involved remains unclear. In this study, we utilized the GiCF cell line to investigate the apoptotic mechanism during CyHV-2 infection. Immunofluorescence staining revealed translocation of ccBAX into mitochondria upon CyHV-2 infection. Flow cytometry analysis demonstrated that overexpression of ccBAX expedited virus-induced apoptosis, characterized by heightened mitochondrial depolarization, increased transcriptional levels of Cytochrome c (Cyto c) in both the cytoplasm and mitochondria, and augmented Caspase 3/7 enzyme activity. Bax inhibitor peptide V5 (BIP-V5), an inhibitor interfering with the function of Bax proteins, inhibited Bax-mediated apoptotic events through the mitochondrial pathway and attenuated apoptosis induced by CyHV-2. In this study, it was identified for the first time that CyHV-2 induces apoptosis via the mitochondrial pathway in GiCF cells, bridging an important gap in our understanding regarding cell death mechanisms induced by herpesvirus infections in fish species. These findings provide a theoretical basis for comprehending viral apoptotic regulation mechanisms and the prevention and control of cellular pathologies caused by CyHV-2 infection.
Collapse
Affiliation(s)
- Wenjie Cheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yilin Ren
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Tianqi Zhou
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Yu X, Huang Y, Tao Y, Fan L, Zhang Y. Mitochondria-targetable small molecule fluorescent probes for the detection of cancer-associated biomarkers: A review. Anal Chim Acta 2024; 1289:342060. [PMID: 38245195 DOI: 10.1016/j.aca.2023.342060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024]
Abstract
Cancer represents a global threat to human health, and effective strategies for improved cancer early diagnosis and treatment are urgently needed. The detection of tumor biomarkers has been one of the important auxiliary means for tumor screening and diagnosis. Mitochondria are crucial subcellular organelles that produce most chemical energy used by cells, control metabolic processes, and maintain cell function. Evidence suggests the close involvement of mitochondria with cancer development. As a consequence, the identification of cancer-associated biomarker expression levels in mitochondria holds significant importance in the diagnosis of early-stage diseases and the monitoring of therapy efficacy. Small-molecule fluorescent probes are effective for the identification and visualization of bioactive entities within biological systems, owing to their heightened sensitivity, expeditious non-invasive analysis and real-time detection capacities. The design principles and sensing mechanisms of mitochondrial targeted fluorescent probes are summarized in this review. Additionally, the biomedical applications of these probes for detecting cancer-associated biomarkers are highlighted. The limitations and challenges of fluorescent probes in vivo are also considered and some future perspectives are provided. This review is expected to provide valuable insights for the future development of novel fluorescent probes for clinical imaging, thereby contributing to the advancement of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunong Huang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunqi Tao
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China.
| |
Collapse
|
11
|
Wang W, Chen S, Xu S, Liao G, Li W, Yang X, Li T, Zhang H, Huang H, Zhou Y, Pan H, Lin C. Jianpi Shengqing Huazhuo Formula improves abnormal glucose and lipid metabolism in obesity by regulating mitochondrial biogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117102. [PMID: 37660955 DOI: 10.1016/j.jep.2023.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Shengqing Huazhuo Formula (JSH) is a modified prescription based on traditional Chinese medicine theory and classic prescriptions (Buzhong Yiqi Decoction and Yuye Decoction). It has been found that JSH has a good effect on obese patients with early abnormal glucose and lipid metabolism. Therefore, this experiment was conducted to study its clinical efficacy and pharmacological effect. AIM OF THE STUDY To observe the clinical efficacy of JSH and explore the mechanism of the formula to improve glucose and lipid metabolism in obese rats. MATERIALS AND METHODS 1. CLINICAL OBSERVATION 10 overweight/obese patients with abnormal glucose and lipid metabolism were selected to observe the indicators of serum glucose, serum lipids and liver damage of the patients before and after treatment with JSH. 2. Animal experiments: Fifty Sprague-Dawley (SD) rats were randomly divided into control group, model group, Metformin group (120 mg/kg/day), JSH-L group (5 g/kg/day) and JSH-H group (20 g/kg/day), with 10 rats in each group. The obese SD rat model was produced by feeding 60% high-fat diet for 8 weeks, and the drug group was given prophylactic administration for 8 weeks. At the end of the experiment, body weight, abdominal fat, plasma glucose, plasma lipids, plasma alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were measured. The levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in plasma were detected by Elisa, and the changes of malondialdehyde (MDA), glutathione (GSH) and catalase (CAT) in plasma and liver tissue were detected by kits. The pathological changes and lipid deposition in liver were observed by HE staining and oil red O staining, and the changes in the number of mitochondria in liver cells were observed by transmission electron microscopy. RT-qPCR and Western Blot (WB) were used to detect the mitochondrial regulation-related indicators PGC-1α, NRF1, TFAM, MFN2, DRP1 and apoptosis-related indicators Bcl-2, Bax, caspase 8 in liver tissue. RESULTS 1. CLINICAL OBSERVATION After one month administration, the patient's body weight, BMI, 2 h oral glucose tolerance test (2hOGTT), glycated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) decreased significantly, and the indicators of liver damage AST and ALT also decreased significantly. 2. Animal experiments: JSH can significantly reduce body weight and abdominal fat area, improve glucose and lipid metabolism, and also reduce plasma IL-6, IL-1β and TNF-α content in obese rats, and improve oxidative stress; HE staining and oil red O staining also showed that JSH can alleviate liver damage and lipid deposition in the liver. Further observations of liver cell ultrastructure showed that JSH can ameliorate the reduction of liver mitochondria caused by a high-fat diet and promote the expression of indicators of mitochondrial biogenesis related to PGC-1α, NRF1, and TFAM. Moreover, JSH could promote the expression of MFN2 and DRP1, decrease Bcl-2 and increase Bax in the liver. CONCLUSIONS 1. CLINICAL OBSERVATION JSH can reduce body weight, serum glucose, serum lipid, and liver injury in overweight/obese patients. 2. Animal experiments: JSH regulates PGC-1α/NRF1/TFAM signaling pathway promotes liver mitochondrial biogenesis, improves glucose and lipid metabolism in obese rats, and regulates mitochondrial dependent apoptosis indicators Bcl-2/Bax to reduce liver injury.
Collapse
Affiliation(s)
- Wenkai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shanshan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shuting Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Guangyi Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Weihao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xiao Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Tingting Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Huifen Zhang
- Department of Endocrinology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, China.
| | - Huanhuan Huang
- Department of Endocrinology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, China.
| | - Yuqing Zhou
- Department of Endocrinology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, China.
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chuanquan Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|