1
|
Storchi R. Measuring intentions in natural behaviours from body kinematic Comment on "Kinematic coding: Measuring information in naturalistic behaviour" by Cristina Becchio, Kiri Pullar, Eugenio Scaliti, Stefano Panzeri. Phys Life Rev 2025; 53:223-224. [PMID: 40147070 DOI: 10.1016/j.plrev.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Affiliation(s)
- R Storchi
- University of Manchester, Manchester M139PL, United Kingdom.
| |
Collapse
|
2
|
Lorenz GM, Engel NM, Celotto M, Koçillari L, Curreli S, Fellin T, Panzeri S. MINT: A toolbox for the analysis of multivariate neural information coding and transmission. PLoS Comput Biol 2025; 21:e1012934. [PMID: 40233091 PMCID: PMC12043240 DOI: 10.1371/journal.pcbi.1012934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/30/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
Information theory has deeply influenced the conceptualization of brain information processing and is a mainstream framework for analyzing how neural networks in the brain process information to generate behavior. Information theory tools have been initially conceived and used to study how information about sensory variables is encoded by the activity of small neural populations. However, recent multivariate information theoretic advances have enabled addressing how information is exchanged across areas and used to inform behavior. Moreover, its integration with dimensionality-reduction techniques has enabled addressing information encoding and communication by the activity of large neural populations or many brain areas, as recorded by multichannel activity measurements in functional imaging and electrophysiology. Here, we provide a Multivariate Information in Neuroscience Toolbox (MINT) that combines these new methods with statistical tools for robust estimation from limited-size empirical datasets. We demonstrate the capabilities of MINT by applying it to both simulated and real neural data recorded with electrophysiology or calcium imaging, but all MINT functions are equally applicable to other brain-activity measurement modalities. We highlight the synergistic opportunities that combining its methods afford for reverse engineering of specific information processing and flow between neural populations or areas, and for discovering how information processing functions emerge from interactions between neurons or areas. MINT works on Linux, Windows and macOS operating systems, is written in MATLAB (requires MATLAB version 2018b or newer) and depends on 4 native MATLAB toolboxes. The calculation of one possible way to compute information redundancy requires the installation and compilation of C files (made available by us also as pre-compiled files). MINT is freely available at https://github.com/panzerilab/MINT with DOI doi.org/10.5281/zenodo.13998526 and operates under a GNU GPLv3 license.
Collapse
Affiliation(s)
- Gabriel Matías Lorenz
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Nicola Marie Engel
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marco Celotto
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Loren Koçillari
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
3
|
Klimczak P, Alcaide J, Gramuntell Y, Castillo-Gómez E, Varea E, Perez-Rando M, Nacher J. Long-term effects of a double hit murine model for schizophrenia on parvalbumin expressing cells and plasticity-related molecules in the thalamic reticular nucleus and the habenula. Transl Psychiatry 2024; 14:450. [PMID: 39448557 PMCID: PMC11502763 DOI: 10.1038/s41398-024-03166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
The exposure to aversive experiences during early-life affects brain maturation and induces changes in behavior. Additionally, when these experiences coincide with subtle neurodevelopmental alterations, they may contribute to the emergence of psychiatric disorders, such as schizophrenia. Studies in patients and animal models have identified changes in parvalbumin (PV) expressing inhibitory neurons, highlighting their significance in the etiology of this disorder. Most studies have been focused on the cortex, but PV+ neurons also provide inhibitory input to diencephalic regions, particularly to the thalamus (through cells in the thalamic reticular nucleus, TRN) and the habenula. Remarkably, alterations in both nuclei have been described in schizophrenia. Some of these changes in PV+ cells may be mediated by perineuronal nets (PNN), specialized regions of the extracellular matrix that often surround them and regulate their synaptic input and activity. Interestingly, the physiological maturation and integration of PV+ neurons, which involves the assembly of PNN, occurs during early postnatal life. Plasticity molecules associated to inhibitory neurons, such as PSA-NCAM, or NMDA receptors (NMDAR) can also influence the structure and function of these cells. Growing evidence also indicates that glial cells regulate the physiology of PV+ neurons by influencing their maturation and modulating their synaptic connectivity. To explore the impact of early-life aversive experiences and concomitant subtle neurodevelopmental alterations on diencephalic PV+ cells, we analyzed adult male mice subjected to a double-hit model (DHM) of schizophrenia, combining a single injection of an NMDAR antagonist at P7 and post-weaning social isolation. We observed that exploratory behavior, PV+ neurons and their associated PNN, as well as PSA-NCAM and NMDAR expression and glial cells, in the TRN and the habenula were affected by the DHM or one of its factors. To our knowledge, this is the first report on such alterations in these diencephalic structures in an animal model combining neurodevelopmental alterations and early-life stress during adolescence. Our findings complement previous work on PV+ neurons in cortical regions and underscore the importance of studying diencephalic inhibitory networks and their intricate interactions with aversive experiences and neurodevelopmental alterations during early life in the context of schizophrenia.
Collapse
Affiliation(s)
- Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Emilio Varea
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain.
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain.
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
4
|
Tipado Z, Kuypers KPC, Sorger B, Ramaekers JG. Visual hallucinations originating in the retinofugal pathway under clinical and psychedelic conditions. Eur Neuropsychopharmacol 2024; 85:10-20. [PMID: 38648694 DOI: 10.1016/j.euroneuro.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Psychedelics like LSD (Lysergic acid diethylamide) and psilocybin are known to modulate perceptual modalities due to the activation of mostly serotonin receptors in specific cortical (e.g., visual cortex) and subcortical (e.g., thalamus) regions of the brain. In the visual domain, these psychedelic modulations often result in peculiar disturbances of viewed objects and light and sometimes even in hallucinations of non-existent environments, objects, and creatures. Although the underlying processes are poorly understood, research conducted over the past twenty years on the subjective experience of psychedelics details theories that attempt to explain these perceptual alterations due to a disruption of communication between cortical and subcortical regions. However, rare medical conditions in the visual system like Charles Bonnet syndrome that cause perceptual distortions may shed new light on the additional importance of the retinofugal pathway in psychedelic subjective experiences. Interneurons in the retina called amacrine cells could be the first site of visual psychedelic modulation and aid in disrupting the hierarchical structure of how humans perceive visual information. This paper presents an understanding of how the retinofugal pathway communicates and modulates visual information in psychedelic and clinical conditions. Therefore, we elucidate a new theory of psychedelic modulation in the retinofugal pathway.
Collapse
Affiliation(s)
- Zeus Tipado
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
5
|
Crombie D, Spacek MA, Leibold C, Busse L. Spiking activity in the visual thalamus is coupled to pupil dynamics across temporal scales. PLoS Biol 2024; 22:e3002614. [PMID: 38743775 PMCID: PMC11093384 DOI: 10.1371/journal.pbio.3002614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
The processing of sensory information, even at early stages, is influenced by the internal state of the animal. Internal states, such as arousal, are often characterized by relating neural activity to a single "level" of arousal, defined by a behavioral indicator such as pupil size. In this study, we expand the understanding of arousal-related modulations in sensory systems by uncovering multiple timescales of pupil dynamics and their relationship to neural activity. Specifically, we observed a robust coupling between spiking activity in the mouse dorsolateral geniculate nucleus (dLGN) of the thalamus and pupil dynamics across timescales spanning a few seconds to several minutes. Throughout all these timescales, 2 distinct spiking modes-individual tonic spikes and tightly clustered bursts of spikes-preferred opposite phases of pupil dynamics. This multi-scale coupling reveals modulations distinct from those captured by pupil size per se, locomotion, and eye movements. Furthermore, coupling persisted even during viewing of a naturalistic movie, where it contributed to differences in the encoding of visual information. We conclude that dLGN spiking activity is under the simultaneous influence of multiple arousal-related processes associated with pupil dynamics occurring over a broad range of timescales.
Collapse
Affiliation(s)
- Davide Crombie
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Martin A. Spacek
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
| | - Christian Leibold
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| |
Collapse
|
6
|
Davidson MJ, Keys RT, Szekely B, MacNeilage P, Verstraten F, Alais D. Continuous peripersonal tracking accuracy is limited by the speed and phase of locomotion. Sci Rep 2023; 13:14864. [PMID: 37684285 PMCID: PMC10491677 DOI: 10.1038/s41598-023-40655-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Recent evidence suggests that perceptual and cognitive functions are codetermined by rhythmic bodily states. Prior investigations have focused on the cardiac and respiratory rhythms, both of which are also known to synchronise with locomotion-arguably our most common and natural of voluntary behaviours. Compared to the cardiorespiratory rhythms, walking is easier to voluntarily control, enabling a test of how natural and voluntary rhythmic action may affect sensory function. Here we show that the speed and phase of human locomotion constrains sensorimotor performance. We used a continuous visuo-motor tracking task in a wireless, body-tracking virtual environment, and found that the accuracy and reaction time of continuous reaching movements were decreased at slower walking speeds, and rhythmically modulated according to the phases of the step-cycle. Decreased accuracy when walking at slow speeds suggests an advantage for interlimb coordination at normal walking speeds, in contrast to previous research on dual-task walking and reach-to-grasp movements. Phasic modulations of reach precision within the step-cycle also suggest that the upper limbs are affected by the ballistic demands of motor-preparation during natural locomotion. Together these results show that the natural phases of human locomotion impose constraints on sensorimotor function and demonstrate the value of examining dynamic and natural behaviour in contrast to the traditional and static methods of psychological science.
Collapse
Affiliation(s)
| | | | - Brian Szekely
- Department of Psychology, University of Nevada, Reno, USA
| | | | - Frans Verstraten
- School of Psychology, The University of Sydney, Sydney, Australia
| | - David Alais
- School of Psychology, The University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Saleem AB, Busse L. Interactions between rodent visual and spatial systems during navigation. Nat Rev Neurosci 2023; 24:487-501. [PMID: 37380885 DOI: 10.1038/s41583-023-00716-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Many behaviours that are critical for animals to survive and thrive rely on spatial navigation. Spatial navigation, in turn, relies on internal representations about one's spatial location, one's orientation or heading direction and the distance to objects in the environment. Although the importance of vision in guiding such internal representations has long been recognized, emerging evidence suggests that spatial signals can also modulate neural responses in the central visual pathway. Here, we review the bidirectional influences between visual and navigational signals in the rodent brain. Specifically, we discuss reciprocal interactions between vision and the internal representations of spatial position, explore the effects of vision on representations of an animal's heading direction and vice versa, and examine how the visual and navigational systems work together to assess the relative distances of objects and other features. Throughout, we consider how technological advances and novel ethological paradigms that probe rodent visuo-spatial behaviours allow us to advance our understanding of how brain areas of the central visual pathway and the spatial systems interact and enable complex behaviours.
Collapse
Affiliation(s)
- Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany.
- Bernstein Centre for Computational Neuroscience Munich, Munich, Germany.
| |
Collapse
|
8
|
Ebrahimi AS, Orlowska-Feuer P, Huang Q, Zippo AG, Martial FP, Petersen RS, Storchi R. Three-dimensional unsupervised probabilistic pose reconstruction (3D-UPPER) for freely moving animals. Sci Rep 2023; 13:155. [PMID: 36599877 PMCID: PMC9813182 DOI: 10.1038/s41598-022-25087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/24/2022] [Indexed: 01/05/2023] Open
Abstract
A key step in understanding animal behaviour relies in the ability to quantify poses and movements. Methods to track body landmarks in 2D have made great progress over the last few years but accurate 3D reconstruction of freely moving animals still represents a challenge. To address this challenge here we develop the 3D-UPPER algorithm, which is fully automated, requires no a priori knowledge of the properties of the body and can also be applied to 2D data. We find that 3D-UPPER reduces by [Formula: see text] fold the error in 3D reconstruction of mouse body during freely moving behaviour compared with the traditional triangulation of 2D data. To achieve that, 3D-UPPER performs an unsupervised estimation of a Statistical Shape Model (SSM) and uses this model to constrain the viable 3D coordinates. We show, by using simulated data, that our SSM estimator is robust even in datasets containing up to 50% of poses with outliers and/or missing data. In simulated and real data SSM estimation converges rapidly, capturing behaviourally relevant changes in body shape associated with exploratory behaviours (e.g. with rearing and changes in body orientation). Altogether 3D-UPPER represents a simple tool to minimise errors in 3D reconstruction while capturing meaningful behavioural parameters.
Collapse
Affiliation(s)
- Aghileh S Ebrahimi
- Division of Neuroscience, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Patrycja Orlowska-Feuer
- Division of Neuroscience, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Qian Huang
- Division of Neuroscience, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antonio G Zippo
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Franck P Martial
- Division of Neuroscience, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rasmus S Petersen
- Division of Neuroscience, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Riccardo Storchi
- Division of Neuroscience, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Bonato J, Panzeri S. Neural coding: Looking up and down the visual thalamus. Curr Biol 2022; 32:R941-R943. [PMID: 36167039 DOI: 10.1016/j.cub.2022.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Integrating sensory and postural information is essential for perception and behavior. A new study shows that information about whether mice are looking up or down is combined with visual information in the primary visual thalamus, an early sensory stage of visual processing.
Collapse
Affiliation(s)
- Jacopo Bonato
- Department of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Istituto Italiano di Tecnologia, Genova, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Panzeri
- Department of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|