1
|
Nian X, Wang B, Holford P, Beattie GAC, Tan S, Yuan W, Cen Y, He Y, Zhang S. Neuropeptide Ecdysis-Triggering Hormone and Its Receptor Mediate the Fecundity Improvement of 'Candidatus Liberibacter Asiaticus'-Infected Diaphorina citri Females and CLas Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412384. [PMID: 40112150 PMCID: PMC12079412 DOI: 10.1002/advs.202412384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Indexed: 03/22/2025]
Abstract
The severe Asiatic form of huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), threatens global citrus production via the citrus psyllid, Diaphorina citri. Culturing challenges of CLas necessitate reducing D. citri populations for disease management. CLas boosts the fecundity of CLas-positive (CLas+) D. citri and fosters its own proliferation by modulating the insect host's juvenile hormone (JH), but the intricate endocrine regulatory mechanisms remain elusive. Here, it is reported that the D. citri ecdysis-triggering hormone (DcETH) and its receptor DcETHR play pivotal roles in the reciprocal benefits between CLas and D. citri within the ovaries, influencing energy metabolism and reproductive development in host insects; miR-210, negatively regulates DcETHR expression, contributing to this symbiotic interaction. CLas infection reduces 20-hydroxyecdysone (20E) levels and stimulates DcETH release, elevating JH production via DcETHR, enhancing fecundity and CLas proliferation. Furthermore, circulating JH levels suppress 20E production in CLas+ ovaries. Collectively, the orchestrated functional interplay involving 20E, ETH, and JH increases energy metabolism and promotes the fecundity of CLas+ D. citri and CLas proliferation. These insights not only broaden the knowledge of how plant pathogens manipulate the reproductive behavior of insect hosts but also offer novel targets and strategies for combatting HLB and D. citri.
Collapse
Affiliation(s)
- Xiaoge Nian
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Bo Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Paul Holford
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | | | - Shijian Tan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Weiwei Yuan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yijing Cen
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yurong He
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Songdou Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| |
Collapse
|
2
|
Liu Q, Jia Y, Li Y, Geng S, Yu Y, Wang Z, Wang X, Fu N, Zeng J, Su X, Li H, Wang H. Potential Functions and Transmission Dynamics of Fungi Associated with Anoplophora glabripennis Across Different Life Stages, Between Sexes, and Between Habitats. INSECTS 2025; 16:273. [PMID: 40266779 PMCID: PMC11943397 DOI: 10.3390/insects16030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/25/2025]
Abstract
The fungi residing in the gut and associated habitats play a crucial role in the growth and development of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a wood-boring pest. Yet, how they are acquired and maintained across generations, and their respective roles throughout the life cycle, remain unknown. To this end, we used high-throughput ITS sequencing analysis to characterize the fungal composition and diversity associated with A. glabripennis across three different life stages, between sexes, and between its habitats. Overall, the fungi composition was stage specific, with adult gut communities being more diverse than those of larvae and eggs. Male fungal communities differed significantly, while frass and female communities were more similar to each other. The top 10 most abundant genera were investigated, with Fusarium consistently observed in all samples and exhibiting the highest overall abundance. Function predictions revealed the presence of potentially beneficial fungi that may support A. glabripennis invasion across all groups. Additionally, we observed complex network structures in the fungal communities associated with eggs and males, and stronger positive correlations in those of eggs and newly hatched larvae. Source tracking analysis suggested that these fungi were vertically transmitted, following a transmission pathway of 'female gut-frass-egg-larval gut', occurring via frass deposited in oviposition sites. Our findings provide a nuanced understanding of the intricate interactions among plants, insects, and fungi, shedding light on the acquisition, maintenance, and roles of gut-associated fungi in A. glabripennis.
Collapse
Affiliation(s)
- Qing Liu
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Yuanting Jia
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Yishuo Li
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Shilong Geng
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Yanqi Yu
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Zhangyan Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Xinru Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Ningning Fu
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Jianyong Zeng
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoyu Su
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
3
|
García-Lozano M, Salem H. Microbial bases of herbivory in beetles. Trends Microbiol 2025; 33:151-163. [PMID: 39327210 DOI: 10.1016/j.tim.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
The ecological radiation of herbivorous beetles is among the most successful in the animal kingdom. It coincided with the rise and diversification of flowering plants, requiring beetles to adapt to a nutritionally imbalanced diet enriched in complex polysaccharides and toxic secondary metabolites. In this review, we explore how beetles overcame these challenges by coopting microbial genes, enzymes, and metabolites, through both horizontal gene transfer (HGT) and symbiosis. Recent efforts revealed the functional convergence governing both processes and the unique ways in which microbes continue to shape beetle digestion, development, and defense. The development of genetic and experimental tools across a diverse set of study systems has provided valuable mechanistic insights into how microbes spurred metabolic innovation and facilitated an herbivorous transition in beetles.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
4
|
Chabanol E, Gendrin M. Insects and microbes: best friends from the nursery. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101270. [PMID: 39293738 DOI: 10.1016/j.cois.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Insects host microbes and interact with them throughout their life cycle. This microbiota is an important, if not essential, partner participating in many aspects of insect physiology. Recent omics studies have contributed to considerable advances in the current understanding of the molecular implications of microbiota during insect development. In this review, we present an overview of the current knowledge about the mechanisms underlying interactions between developing insects and their microbial companions. The microbiota is implicated in nutrition, both via compensating for metabolic pathways lacking in the host and via regulating host metabolism. Furthermore, the microbiota plays a protective role, enhancing the insect's tolerance to, or resistance against, various environmental stresses.
Collapse
Affiliation(s)
- Estelle Chabanol
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana.
| |
Collapse
|
5
|
Leonardi GR, Aiello D, Di Pietro C, Gugliuzzo A, Tropea Garzia G, Polizzi G, Voglmayr H. Thyridiumlauri sp. nov. (Thyridiaceae, Thyridiales): a new pathogenic fungal species of bay laurel from Italy. MycoKeys 2024; 110:211-236. [PMID: 39584031 PMCID: PMC11584904 DOI: 10.3897/mycokeys.110.129228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Laurusnobilis is an important Mediterranean tree and shrub native to Italy that is also commercially grown as spice and ornamental plant. Field surveys conducted since 2021 in Sicily (Italy) revealed that bay laurel plants in urban and private gardens and nurseries were severely affected by symptoms of stem blight and internal necrosis, which were associated with ambrosia beetle entry holes in the bark and internal wood galleries. The occurring ambrosia beetle was identified as Xylosandruscompactus, an invasive wood-boring pest previously reported from Sicily. Investigation of fungi from symptomatic tissues primarily resulted in the isolation of Thyridium-like colonies. The main symbiont of X.compactus, Ambrosiellaxylebori, was also isolated from infested plants. Phylogenetic analyses of a combined matrix of ITS, LSU, act1, rpb2, tef1, and tub2 gene regions revealed that the isolated Thyridium-like colonies represent a new fungal species within the genus Thyridium. Based on both phylogeny and morphology, the new isolated fungus is described as Thyridiumlauri sp. nov. Moreover, two recently described species, Phialemoniopsishipposidericola and Phialemoniopsisxishuangbannaensis, are transferred to the genus Thyridium due to the confirmed synonymy of both genera, as supported by molecular phylogenies. Pathogenicity test conducted on potted plants demonstrated that T.lauri is pathogenic to bay laurel, causing internal necrosis and stem blight. The new species was consistently re-isolated from the symptomatic tissue beyond the inoculation point, thereby fulfilling Koch's postulates. This study represents the first report of a new pathogenic fungus, T.lauri, causing stem blight and internal necrosis of bay laurel plants and associated with infestation of the invasive ambrosia beetle X.compactus.
Collapse
Affiliation(s)
- Giuseppa Rosaria Leonardi
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Dalia Aiello
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Chiara Di Pietro
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Antonio Gugliuzzo
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Giovanna Tropea Garzia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Giancarlo Polizzi
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, AustriaUniversity of ViennaViennaAustria
| |
Collapse
|
6
|
Nian X, Wu S, He J, Holford P, Beattie GAC, Wang D, Cen Y, He Y, Zhang S. The conserved role of miR-2 and novel miR-109 in the increase in fecundity of Diaphorina citri induced by symbiotic bacteria and pathogenic fungi. mBio 2024; 15:e0154124. [PMID: 39373536 PMCID: PMC11559015 DOI: 10.1128/mbio.01541-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/15/2024] [Indexed: 10/08/2024] Open
Abstract
Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported the pivotal role of DcKr-h1 in the fecundity improvement of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas), and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In the D. citri-CLas interaction, the expression levels of miR-2 and novel-miR-109 in the ovaries of CLas-positive psyllids were lower compared to CLas-negative individuals. Overexpression of miR-2 or novel-miR-109 significantly decreased fecundity and CLas titer in ovaries and caused reproductive defects reminiscent of DcKr-h1 knockdown. Similarly, in the D. citri-Cf interaction, the levels of miR-2 and novel-miR-109 markedly decreased in the ovaries. Upregulation of miR-2 or novel-miR-109 also resulted in reduced fecundity and ovary defects similar to those caused by DcKr-h1 silencing. Moreover, feeding antagomir-2 or antagomir-109 partially rescued the defective phenotypes caused by DcKr-h1 silencing in both model systems, and miR-2 and novel-miR-109 were repressed by juvenile hormone (JH) and regulated the genes associated with egg development. This study shows a conserved regulatory mechanism, whereby JH suppresses the expression of miR-2 and novel-miR-109 which, together with JH-induced transcription of DcKr-h1, increases female fecundity induced by both symbiotic bacteria and pathogenic fungi. IMPORTANCE Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported that DcKr-h1 plays a critical role in the increase in fecundity of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas) and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In both D. citri-CLas and D. citri-Cf interactions, the increased juvenile hormone (JH) titer and reduced abundance of miR-2 and novel-miR-109 ensure high levels of DcKr-h1 expression, consequently stimulating ovarian development and enhancing fecundity. These observations provide evidence that miR-2 and miR-109 are crucial players in the JH-dependent increase in fecundity in psyllids induced by infection with different pathogens.
Collapse
Affiliation(s)
- Xiaoge Nian
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Shujie Wu
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jielan He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, Australia
| | | | - Desen Wang
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yurong He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Hoang KL, Read TD, King KC. Defense Heterogeneity in Host Populations Gives Rise to Pathogen Diversity. Am Nat 2024; 204:370-380. [PMID: 39326061 DOI: 10.1086/731996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractHost organisms can harbor microbial symbionts that defend them from pathogen infection in addition to the resistance encoded by the host genome. Here, we investigated how variation in defenses, generated from host genetic background and symbiont presence, affects the emergence of pathogen genetic diversity across evolutionary time. We passaged the opportunistic pathogen Pseudomonas aeruginosa through populations of the nematode Caenorhabditis elegans varying in genetic-based defenses and prevalence of a protective symbiont. After 14 passages, we assessed the amount of genetic variation accumulated in evolved pathogen lineages. We found that diversity begets diversity. An overall greater level of pathogen whole-genome and per-gene genetic diversity was measured in pathogens evolved in mixed host populations compared with those evolved in host populations composed of one type of defense. Our findings directly demonstrate that symbiont-generated heterogeneity in host defense can be a significant contributor to pathogen genetic variation.
Collapse
|
8
|
Srivastava V, Patra K, Pai H, Aguilar-Pontes MV, Berasategui A, Kamble A, Di Pietro A, Redkar A. Molecular Dialogue During Host Manipulation by the Vascular Wilt Fungus Fusarium oxysporum. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:97-126. [PMID: 38885471 DOI: 10.1146/annurev-phyto-021722-034823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Vascular wilt fungi are a group of hemibiotrophic phytopathogens that infect diverse crop plants. These pathogens have adapted to thrive in the nutrient-deprived niche of the plant xylem. Identification and functional characterization of effectors and their role in the establishment of compatibility across multiple hosts, suppression of plant defense, host reprogramming, and interaction with surrounding microbes have been studied mainly in model vascular wilt pathogens Fusarium oxysporum and Verticillium dahliae. Comparative analysis of genomes from fungal isolates has accelerated our understanding of genome compartmentalization and its role in effector evolution. Also, advances in recent years have shed light on the cross talk of root-infecting fungi across multiple scales from the cellular to the ecosystem level, covering their interaction with the plant microbiome as well as their interkingdom signaling. This review elaborates on our current understanding of the cross talk between vascular wilt fungi and the host plant, which eventually leads to a specialized lifestyle in the xylem. We particularly focus on recent findings in F. oxysporum, including multihost associations, and how they have contributed to understanding the biology of fungal adaptation to the xylem. In addition, we discuss emerging research areas and highlight open questions and future challenges.
Collapse
Affiliation(s)
- Vidha Srivastava
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India;
| | - Kuntal Patra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India;
| | - Hsuan Pai
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | - Aileen Berasategui
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Avinash Kamble
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | | | - Amey Redkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India;
| |
Collapse
|
9
|
Berasategui A, Salem H, Moller AG, Christopher Y, Vidaurre Montoya Q, Conn C, Read TD, Rodrigues A, Ziemert N, Gerardo N. Genomic insights into the evolution of secondary metabolism of Escovopsis and its allies, specialized fungal symbionts of fungus-farming ants. mSystems 2024; 9:e0057624. [PMID: 38904377 PMCID: PMC11265373 DOI: 10.1128/msystems.00576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
The metabolic intimacy of symbiosis often demands the work of specialists. Natural products and defensive secondary metabolites can drive specificity by ensuring infection and propagation across host generations. But in contrast to bacteria, little is known about the diversity and distribution of natural product biosynthetic pathways among fungi and how they evolve to facilitate symbiosis and adaptation to their host environment. In this study, we define the secondary metabolism of Escovopsis and closely related genera, symbionts in the gardens of fungus-farming ants. We ask how the gain and loss of various biosynthetic pathways correspond to divergent lifestyles. Long-read sequencing allowed us to define the chromosomal features of representative Escovopsis strains, revealing highly reduced genomes composed of seven to eight chromosomes. The genomes are highly syntenic with macrosynteny decreasing with increasing phylogenetic distance, while maintaining a high degree of mesosynteny. An ancestral state reconstruction analysis of biosynthetic pathways revealed that, while many secondary metabolites are shared with non-ant-associated Sordariomycetes, 56 pathways are unique to the symbiotic genera. Reflecting adaptation to diverging ant agricultural systems, we observe that the stepwise acquisition of these pathways mirrors the ecological radiations of attine ants and the dynamic recruitment and replacement of their fungal cultivars. As different clades encode characteristic combinations of biosynthetic gene clusters, these delineating profiles provide important insights into the possible mechanisms underlying specificity between these symbionts and their fungal hosts. Collectively, our findings shed light on the evolutionary dynamic nature of secondary metabolism in Escovopsis and its allies, reflecting adaptation of the symbionts to an ancient agricultural system.IMPORTANCEMicrobial symbionts interact with their hosts and competitors through a remarkable array of secondary metabolites and natural products. Here, we highlight the highly streamlined genomic features of attine-associated fungal symbionts. The genomes of Escovopsis species, as well as species from other symbiont genera, many of which are common with the gardens of fungus-growing ants, are defined by seven chromosomes. Despite a high degree of metabolic conservation, we observe some variation in the symbionts' potential to produce secondary metabolites. As the phylogenetic distribution of the encoding biosynthetic gene clusters coincides with attine transitions in agricultural systems, we highlight the likely role of these metabolites in mediating adaptation by a group of highly specialized symbionts.
Collapse
Affiliation(s)
- Aileen Berasategui
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Cluster of Excellence-Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hassan Salem
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany
| | - Abraham G. Moller
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuliana Christopher
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Panamá City, Panama
| | - Quimi Vidaurre Montoya
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Caitlin Conn
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Department of Biology, Berry College, Mount Berry, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Nadine Ziemert
- Cluster of Excellence-Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Nicole Gerardo
- Department of Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Li J, Holford P, Beattie GAC, Wu S, He J, Tan S, Wang D, He Y, Cen Y, Nian X. Adipokinetic hormone signaling mediates the enhanced fecundity of Diaphorina citri infected by ' Candidatus Liberibacter asiaticus'. eLife 2024; 13:RP93450. [PMID: 38985571 PMCID: PMC11236419 DOI: 10.7554/elife.93450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Diaphorina citri serves as the primary vector for 'Candidatus Liberibacter asiaticus (CLas),' the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3' untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.
Collapse
Affiliation(s)
- Jiayun Li
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, Australia
| | | | - Shujie Wu
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jielan He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shijian Tan
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Desen Wang
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yurong He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaoge Nian
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
11
|
Li Z, Tong H, Ni M, Zheng Y, Yang X, Tan Y, Li Z, Jiang M. An at-leg pellet and associated Penicillium sp. provide multiple protections to mealybugs. Commun Biol 2024; 7:580. [PMID: 38755282 PMCID: PMC11099121 DOI: 10.1038/s42003-024-06287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Beneficial fungi are well known for their contribution to insects' adaptation to diverse habitats. However, where insect-associated fungi reside and the underlying mechanisms of insect-fungi interaction are not well understood. Here, we show a pellet-like structure on the legs of mealybugs, a group of economically important insect pests. This at-leg pellet, formed by mealybugs feeding on tomato but not by those on cotton, potato, or eggplant, originates jointly from host secretions and mealybug waxy filaments. A fungal strain, Penicillium citrinum, is present in the pellets and it colonizes honeydew. P. citrinum can inhibit mealybug fungal pathogens and is highly competitive in honeydew. Compounds within the pellets also have inhibitory activity against mealybug pathogens. Further bioassays suggest that at-leg pellets can improve the survival rate of Phenacoccus solenopsis under pathogen pressure, increase their sucking frequency, and decrease the defense response of host plants. Our study presents evidences on how a fungi-associated at-leg pellet provides multiple protections for mealybugs through suppressing pathogens and host defense, providing new insights into complex insect × fungi × plant interactions and their coevolution.
Collapse
Affiliation(s)
- Zicheng Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Haojie Tong
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Meihong Ni
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yiran Zheng
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Xinyi Yang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yumei Tan
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zihao Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Mingxing Jiang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
García-Lozano M, Henzler C, Porras MÁG, Pons I, Berasategui A, Lanz C, Budde H, Oguchi K, Matsuura Y, Pauchet Y, Goffredi S, Fukatsu T, Windsor D, Salem H. Paleocene origin of a streamlined digestive symbiosis in leaf beetles. Curr Biol 2024; 34:1621-1634.e9. [PMID: 38377997 DOI: 10.1016/j.cub.2024.01.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Timing the acquisition of a beneficial microbe relative to the evolutionary history of its host can shed light on the adaptive impact of a partnership. Here, we investigated the onset and molecular evolution of an obligate symbiosis between Cassidinae leaf beetles and Candidatus Stammera capleta, a γ-proteobacterium. Residing extracellularly within foregut symbiotic organs, Stammera upgrades the digestive physiology of its host by supplementing plant cell wall-degrading enzymes. We observe that Stammera is a shared symbiont across tortoise and hispine beetles that collectively comprise the Cassidinae subfamily, despite differences in their folivorous habits. In contrast to its transcriptional profile during vertical transmission, Stammera elevates the expression of genes encoding digestive enzymes while in the foregut symbiotic organs, matching the nutritional requirements of its host. Despite the widespread distribution of Stammera across Cassidinae beetles, symbiont acquisition during the Paleocene (∼62 mya) did not coincide with the origin of the subfamily. Early diverging lineages lack the symbiont and the specialized organs that house it. Reconstructing the ancestral state of host-beneficial factors revealed that Stammera encoded three digestive enzymes at the onset of symbiosis, including polygalacturonase-a pectinase that is universally shared. Although non-symbiotic cassidines encode polygalacturonase endogenously, their repertoire of plant cell wall-degrading enzymes is more limited compared with symbiotic beetles supplemented with digestive enzymes from Stammera. Highlighting the potential impact of a symbiotic condition and an upgraded metabolic potential, Stammera-harboring beetles exploit a greater variety of plants and are more speciose compared with non-symbiotic members of the Cassidinae.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Christine Henzler
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Inès Pons
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Aileen Berasategui
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam 1081 HV, the Netherlands
| | - Christa Lanz
- Genome Center, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Heike Budde
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Kohei Oguchi
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; Misaki Marine Biological Station, The University of Tokyo, Miura 238-0225, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Shana Goffredi
- Department of Biology, Occidental College, Los Angeles, CA 90041, USA
| | - Takema Fukatsu
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama.
| |
Collapse
|
13
|
Nishino T, Mukai H, Moriyama M, Hosokawa T, Tanahashi M, Tachikawa S, Nikoh N, Koga R, Fukatsu T. Defensive fungal symbiosis on insect hindlegs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586038. [PMID: 38585921 PMCID: PMC10996522 DOI: 10.1101/2024.03.25.586038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tympanal organs as "insect ears" have evolved repeatedly. Dinidorid stinkbugs were reported to possess a conspicuous tympanal organ on female's hindlegs. Here we report an unexpected discovery that the stinkbug's "tympanal organ" is actually a novel symbiotic organ. The stinkbug's "tympanum" is not membranous but a porous cuticle, where each pore connects to glandular secretory cells. In reproductive females, the hindleg organ is covered with fungal hyphae growing out of the pores. Upon oviposition, the females skillfully transfer the fungi from the organ to the eggs. The eggs are quickly covered with hyphae and physically protected against wasp parasitism. The fungi are mostly benign Cordycipitaceae entomopathogens and show considerable diversity among insect individuals and populations, indicating environmental acquisition of specific fungal associates. These results uncover a novel external fungal symbiosis in which host's elaborate morphological, physiological and behavioral specializations underpin the selective recruitment of benign entomopathogens for a defensive purpose.
Collapse
Affiliation(s)
- Takanori Nishino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Mukai
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takahiro Hosokawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Masahiko Tanahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shuji Tachikawa
- Association for Nature Restoration and Conservation, Tokyo, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, Chiba, Japan
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Shang J, Hong S, Wang C. Fights on the surface prior to fungal invasion of insects. PLoS Pathog 2024; 20:e1011994. [PMID: 38386619 PMCID: PMC10883574 DOI: 10.1371/journal.ppat.1011994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Entomopathogenic fungi (EPF) infect insects by landing on and penetrating cuticles. Emerging evidence has shown that, prior to the invasion of insects, fungal cells have to battle and overcome diverse challenges, including the host behavioral defenses, colonization resistance mediated by ectomicrobiotas, host recognition, and generation of enough penetration pressure. The ascomycete EPF such as Metarhizium and Beauveria can thus produce adhesive proteins and/or the exopolysaccharide mucilage to tightly glue fungal cells on cuticles. Producing antimicrobial peptides and chemical compounds can enable EPF to outcompete cuticular defensive microbes. The use of divergent membrane receptors, accumulation, and quick degradation of lipid droplets in conidial cells can help EPF recognize proper hosts and build up cellular turgor to breach cuticles for systematic invasion. Further investigations are still required to unveil the multifaceted and intricate relationships between EPF and insect hosts.
Collapse
Affiliation(s)
- Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
15
|
Schott J, Rakei J, Remus-Emsermann M, Johnston P, Mbedi S, Sparmann S, Hilker M, Paniagua Voirol LR. Microbial associates of the elm leaf beetle: uncovering the absence of resident bacteria and the influence of fungi on insect performance. Appl Environ Microbiol 2024; 90:e0105723. [PMID: 38179921 PMCID: PMC10807431 DOI: 10.1128/aem.01057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial symbionts play crucial roles in the biology of many insects. While bacteria have been the primary focus of research on insect-microbe symbiosis, recent studies suggest that fungal symbionts may be just as important. The elm leaf beetle (ELB, Xanthogaleruca luteola) is a serious pest species of field elm (Ulmus minor). Using culture-dependent and independent methods, we investigated the abundance and species richness of bacteria and fungi throughout various ELB life stages and generations, while concurrently analyzing microbial communities on elm leaves. No persistent bacterial community was found to be associated with the ELB or elm leaves. By contrast, fungi were persistently present in the beetle's feeding life stages and on elm leaves. Fungal community sequencing revealed a predominance of the genera Penicillium and Aspergillus in insects and on leaves. Culture-dependent surveys showed a high prevalence of two fungal colony morphotypes closely related to Penicillium lanosocoeruleum and Aspergillus flavus. Among these, the Penicillium morphotype was significantly more abundant on feeding-damaged compared with intact leaves, suggesting that the fungus thrives in the presence of the ELB. We assessed whether the detected prevalent fungal morphotypes influenced ELB's performance by rearing insects on (i) surface-sterilized leaves, (ii) leaves inoculated with Penicillium spores, and (iii) leaves inoculated with Aspergillus spores. Insects feeding on Penicillium-inoculated leaves gained more biomass and tended to lay larger egg clutches than those consuming surface-sterilized leaves or Aspergillus-inoculated leaves. Our results demonstrate that the ELB does not harbor resident bacteria and that it might benefit from associating with Penicillium fungi.IMPORTANCEOur study provides insights into the still understudied role of microbial symbionts in the biology of the elm leaf beetle (ELB), a major pest of elms. Contrary to expectations, we found no persistent bacterial symbionts associated with the ELB or elm leaves. Our research thus contributes to the growing body of knowledge that not all insects rely on bacterial symbionts. While no persistent bacterial symbionts were detectable in the ELB and elm leaf samples, our analyses revealed the persistent presence of fungi, particularly Penicillium and Aspergillus on both elm leaves and in the feeding ELB stages. Moreover, when ELB were fed with fungus-treated elm leaves, we detected a potentially beneficial effect of Penicillium on the ELB's development and fecundity. Our results highlight the significance of fungal symbionts in the biology of this insect.
Collapse
Affiliation(s)
- Johanna Schott
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - Juliette Rakei
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | | | - Paul Johnston
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Susan Mbedi
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Museum für Naturkunde Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Sarah Sparmann
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | | |
Collapse
|
16
|
Christensen SM, Srinivas SN, McFrederick QS, Danforth BN, Buchmann SL, Vannette RL. Symbiotic bacteria and fungi proliferate in diapause and may enhance overwintering survival in a solitary bee. THE ISME JOURNAL 2024; 18:wrae089. [PMID: 38767866 PMCID: PMC11177884 DOI: 10.1093/ismejo/wrae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Host-microbe interactions underlie the development and fitness of many macroorganisms, including bees. Whereas many social bees benefit from vertically transmitted gut bacteria, current data suggests that solitary bees, which comprise the vast majority of species diversity within bees, lack a highly specialized gut microbiome. Here, we examine the composition and abundance of bacteria and fungi throughout the complete life cycle of the ground-nesting solitary bee Anthophora bomboides standfordiana. In contrast to expectations, immature bee stages maintain a distinct core microbiome consisting of Actinobacterial genera (Streptomyces, Nocardiodes) and the fungus Moniliella spathulata. Dormant (diapausing) larval bees hosted the most abundant and distinctive bacteria and fungi, attaining 33 and 52 times their initial copy number, respectively. We tested two adaptive hypotheses regarding microbial functions for diapausing bees. First, using isolated bacteria and fungi, we found that Streptomyces from brood cells inhibited the growth of multiple pathogenic filamentous fungi, suggesting a role in pathogen protection during overwintering, when bees face high pathogen pressure. Second, sugar alcohol composition changed in tandem with major changes in fungal abundance, suggesting links with bee cold tolerance or overwintering biology. We find that A. bomboides hosts a conserved core microbiome that may provide key fitness advantages through larval development and diapause, which raises the question of how this microbiome is maintained and faithfully transmitted between generations. Our results suggest that focus on microbiomes of mature or active insect developmental stages may overlook stage-specific symbionts and microbial fitness contributions during host dormancy.
Collapse
Affiliation(s)
- Shawn M Christensen
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Sriram N Srinivas
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, United States
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Ithaca, NY 14853, United States
| | - Stephen L Buchmann
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85719, United States
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
17
|
González Porras MÁ, Pons I, García-Lozano M, Jagdale S, Emmerich C, Weiss B, Salem H. Extracellular symbiont colonizes insect during embryo development. ISME COMMUNICATIONS 2024; 4:ycae005. [PMID: 38439943 PMCID: PMC10910848 DOI: 10.1093/ismeco/ycae005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 03/06/2024]
Abstract
Insects typically acquire their beneficial microbes early in development. Endosymbionts housed intracellularly are commonly integrated during oogenesis or embryogenesis, whereas extracellular microbes are only known to be acquired after hatching by immature instars such as larvae or nymphs. Here, however, we report on an extracellular symbiont that colonizes its host during embryo development. Tortoise beetles (Chrysomelidae: Cassidinae) host their digestive bacterial symbiont Stammera extracellularly within foregut symbiotic organs and in ovary-associated glands to ensure its vertical transmission. We outline the initial stages of symbiont colonization and observe that although the foregut symbiotic organs develop 3 days prior to larval emergence, they remain empty until the final 24 h of embryo development. Infection by Stammera occurs during that timeframe and prior to hatching. By experimentally manipulating symbiont availability to embryos in the egg, we describe a 12-h developmental window governing colonization by Stammera. Symbiotic organs form normally in aposymbiotic larvae, demonstrating that these Stammera-bearing structures develop autonomously. In adults, the foregut symbiotic organs are already colonized following metamorphosis and host a stable Stammera population to facilitate folivory. The ovary-associated glands, however, initially lack Stammera. Symbiont abundance subsequently increases within these transmission organs, thereby ensuring sufficient titers at the onset of oviposition ~29 days following metamorphosis. Collectively, our findings reveal that Stammera colonization precedes larval emergence, where its proliferation is eventually decoupled in adult beetles to match the nutritional and reproductive requirements of its host.
Collapse
Affiliation(s)
| | - Inès Pons
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Shounak Jagdale
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Christiane Emmerich
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Republic of Panama
| |
Collapse
|
18
|
Nian X, Luo Y, He X, Wu S, Li J, Wang D, Holford P, Beattie GAC, Cen Y, Zhang S, He Y. Infection with 'Candidatus Liberibacter asiaticus' improves the fecundity of Diaphorina citri aiding its proliferation: A win-win strategy. Mol Ecol 2024; 33:e17214. [PMID: 38018658 DOI: 10.1111/mec.17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
The evolution of insect vector-pathogen relationships has long been of interest in the field of molecular ecology. One system of special relevance, due to its economic impacts, is that between Diaphorina citri and 'Candidatus Liberibacter asiaticus' (CLas), the cause of the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts, boosting opportunities for pathogens to acquire new vector hosts. The molecular mechanism behind this life-history shift remains unclear. Here, we found that CLas promoted ovarian development and increased the expression of the vitellogenin receptor (DcVgR) in ovaries. DcVgR RNAi significantly decreased fecundity and CLas titer in ovaries, extended the preoviposition period, shortened the oviposition period and blocked ovarian development. Given their importance in gene regulation, we explored the role of miRNAs in shaping these phenotypes and their molecular triggers. Our results showed that one miRNA, miR-275, suppressed DcVgR expression by binding to its 3' UTR. Overexpression of miR-275 knocked down DcVgR expression and CLas titer in ovaries, causing reproductive defects that mimicked DcVgR knockdown phenotypes. We focused, further, on roles of the Juvenile Hormone (JH) pathway in shaping the observed fecundity phenotype, given its known impacts on ovarian development. After CLas infection, this pathway was upregulated, thereby increasing DcVgR expression. From these combined results, we conclude that CLas hijacks the JH signalling pathway and miR-275, thereby targeting DcVgR to increase D. citri fecundity. These changes simultaneously increase CLas replication, suggesting a pathogen-vector host mutualism, or a seemingly helpful, but cryptically costly life-history manipulation.
Collapse
Affiliation(s)
- Xiaoge Nian
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yaru Luo
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xinyu He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shujie Wu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jiayun Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Desen Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Yijing Cen
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yurong He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Yang C, Liao C, Xu J, Liu P, Staines CL, Dai X. Field survey of Cassidinae beetles (Coleoptera, Chrysomelidae) and their host plants in southern Guangxi, China. Biodivers Data J 2023; 11:e107523. [PMID: 37559909 PMCID: PMC10407652 DOI: 10.3897/bdj.11.e107523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Few systematic studies have been conducted on the faunal composition and food web structure of Cassidinae of China. During 2013-2019, we systematically investigated Cassidinae beetles and their host plants in the southern Guangxi. A total of 2,255 Cassidinae individuals from 66 species, 23 genera and ten tribes were collected in southern Guangxi. Most species belonged to the tribe Hispini (23 species, 34.8%), followed by the tribe Gonophorini (13 species, 19.7%), Cassidini (eight species, 12.1%) and Aspidimorphini (six species, 9.1%). The others (16 species) belonged to the tribes Anisoderini, Botryonopini, Callispini, Oncocephalini, Notosacanthini and Leptispini. The tribe Notosacanthini was recorded from Guangxi for the first time. The genera Neownesia (Botryonopini), Gonophora (Gonophorini), Micrispa (Gonophorini), Notosacantha (Notosacanthini) and Prionispa (Oncocephalini) were firstly recorded in Guangxi. In total, we obtained 47 newly-recorded species in southern Guangxi and 33 newly-recorded species in the whole Guangxi, of which, Callispafrontalis Medvedev, 1992 was newly recorded in China. Dactylispafeae Gestro (625 individuals) and D.chinensis Weise (565 individuals) were the most common species. A total of 69 species, 53 genera and 19 families of host plants were identified for Cassidinae in southern Guangxi. Many host plant associations are new records for Cassidinae. Quantitative food web analysis indicated that Cassidinae species in southern Guangxi primarily fed on Poaceae, Convolvulaceae, Cyperaceae and Rosaceae. Generally, the plant-Cassidinae food webs were moderately complex and stable in southern Guangxi. This is the first large contribution to the knowledge of the species composition and host plant diversity of Cassidinae in southern Guangxi.
Collapse
Affiliation(s)
- Chaokun Yang
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou, ChinaLeafminer Group, School of Life Sciences, Gannan Normal UniversityGanzhouChina
| | - Chengqing Liao
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou, ChinaLeafminer Group, School of Life Sciences, Gannan Normal UniversityGanzhouChina
| | - Jiasheng Xu
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou, ChinaLeafminer Group, School of Life Sciences, Gannan Normal UniversityGanzhouChina
| | - Peng Liu
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou, ChinaLeafminer Group, School of Life Sciences, Gannan Normal UniversityGanzhouChina
| | - Charles L. Staines
- Smithsonian Environmental Research Center, Edgewater, United States of AmericaSmithsonian Environmental Research CenterEdgewaterUnited States of America
| | - Xiaohua Dai
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou, ChinaLeafminer Group, School of Life Sciences, Gannan Normal UniversityGanzhouChina
- National Navel-Orange Engineering Research Center, Ganzhou, ChinaNational Navel-Orange Engineering Research CenterGanzhouChina
- Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou, ChinaGanzhou Key Laboratory of Nanling Insect BiologyGanzhouChina
| |
Collapse
|
20
|
Salem H, Biedermann PHW, Fukatsu T. Editorial: Diversity of beetles and associated microorganisms. Front Microbiol 2023; 14:1252736. [PMID: 37564291 PMCID: PMC10411724 DOI: 10.3389/fmicb.2023.1252736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany
| | - Peter H. W. Biedermann
- Chair of Forest Entomology and Protection, University of Freiburg, Freiburg im Breisgau, Germany
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Abstract
As vectors of numerous plant pathogens, herbivorous insects play a key role in the epidemiology of plant disease. But how phytopathogens impact the metabolism, physiology, and fitness of their insect vectors is often unexplored within these tripartite interactions. Here, we examine the diverse symbioses forged between insects and members of the ascomycete fungal genus Fusarium. While Fusarium features numerous plant pathogens that are causal to diseases such as wilts and rots, many of these microbes also engage in stable mutualisms across several insect clades. Matching a diversity in symbiont localization and transmission routes, we highlight the various roles fusaria fulfill towards their insect hosts, from upgrading their nutritional physiology to providing defense against natural enemies. But as the insect partner is consistently herbivorous, we emphasize the convergent benefit Fusarium derives in exchange: propagation to a novel host plant. Collectively, we point to the synergy arising between a phytopathogen and its insect vector, and the consequences inflicted on their shared plant.
Collapse
Affiliation(s)
- Aileen Berasategui
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| | - Shounak Jagdale
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
22
|
Tetsch L. Schutzschild für die Puppe. CHEM UNSERER ZEIT 2022. [DOI: 10.1002/ciuz.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Hoang KL, King KC. Symbiosis: Partners in crime. Curr Biol 2022; 32:R1018-R1020. [PMID: 36220090 DOI: 10.1016/j.cub.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Defensive symbionts protect their hosts against imminent threats. A new study uncovers a symbiosis whereby a fungus safeguards its beetle host from predation, but also exploits the beetle as a vector to help it attack plants and cause disease.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK; Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Kayla C King
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|