1
|
Tabares M, Kashefi K, Reguera G. Adaptive responses of Trichlorobacter lovleyi to nitrite detoxification reveal overlooked contributions of Geobacterales to nitrate ammonification. THE ISME JOURNAL 2025; 19:wraf054. [PMID: 40101204 PMCID: PMC11972089 DOI: 10.1093/ismejo/wraf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
Poorly understood microorganisms "short-circuit" the nitrogen cycle via the dissimilatory nitrate reduction to ammonium to retain the element in agricultural lands and stimulate crop productivity. The prevalence of Geobacterales closely related to Trichlorobacter lovleyi in nitrate ammonification hotspots motivated us to investigate adaptive responses contributing to ammonification rates in the laboratory type strain T. lovleyi SZ. Here, we describe the identification of tightly regulated pathways for efficient nitrate foraging and respiration with acetate, an important intermediate of organic matter degradation that Geobacterales efficiently assimilate and oxidize. Challenging the established dogma that high carbon/nitrate ratios stimulate the reduction of nitrate to ammonium, T. lovleyi doubled rapidly across a wide range of ratios provided nitrate concentrations were low enough to prevent the accumulation of the toxic nitrite intermediate. Yet, excess electrons during hydrogenotrophic growth alleviated nitrite toxicity and stimulated the reduction of nitrate to ammonium even under conditions of severe acetate limitation. These findings underscore the importance of nitrite toxicity in the ammonification of nitrate by Geobacterales and provide much needed mechanistic understanding of microbial adaptations contributing to soil nitrogen conservation. This information is critical to enhance the predictive value of genomic-based traits in environmental surveys and to guide strategies for sustainable management of nitrogen fertilization as well as mitigation of green-house emissions and agrochemical leaching from agricultural lands.
Collapse
Affiliation(s)
- Marcela Tabares
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI 48824, United States
| | - Kazem Kashefi
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI 48824, United States
| | - Gemma Reguera
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
2
|
Ma Y, Kan A, Johnson DR. Metabolic interactions control the transfer and spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth. Cell Rep 2024; 43:114653. [PMID: 39213158 DOI: 10.1016/j.celrep.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Surface-associated microbial systems are hotspots for the spread of plasmid-encoded antibiotic resistance, but how surface association affects plasmid transfer and proliferation remains unclear. Surface association enables prolonged spatial proximities between different populations, which promotes plasmid transfer between them. However, surface association also fosters strong metabolic interactions between different populations, which can direct their spatial self-organization with consequences for plasmid transfer and proliferation. Here, we hypothesize that metabolic interactions direct the spatial self-organization of different populations and, in turn, regulate the spread of plasmid-encoded antibiotic resistance. We show that resource competition causes populations to spatially segregate, which represses plasmid transfer. In contrast, resource cross-feeding causes populations to spatially intermix, which promotes plasmid transfer. We further show that the spatial positionings that emerge from metabolic interactions determine the proliferation of plasmid recipients. Our results demonstrate that metabolic interactions are important regulators of both the transfer and proliferation of plasmid-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Yinyin Ma
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland.
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
3
|
Gestal MC, Oates AE, Akob DM, Criss AK. Perspectives on the future of host-microbe biology from the Council on Microbial Sciences of the American Society for Microbiology. mSphere 2024; 9:e0025624. [PMID: 38920371 PMCID: PMC11288050 DOI: 10.1128/msphere.00256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Host-microbe biology (HMB) stands on the cusp of redefinition, challenging conventional paradigms to instead embrace a more holistic understanding of the microbial sciences. The American Society for Microbiology (ASM) Council on Microbial Sciences hosted a virtual retreat in 2023 to identify the future of the HMB field and innovations needed to advance the microbial sciences. The retreat presentations and discussions collectively emphasized the interconnectedness of microbes and their profound influence on humans, animals, and environmental health, as well as the need to broaden perspectives to fully embrace the complexity of these interactions. To advance HMB research, microbial scientists would benefit from enhancing interdisciplinary and transdisciplinary research to utilize expertise in diverse fields, integrate different disciplines, and promote equity and accessibility within HMB. Data integration will be pivotal in shaping the future of HMB research by bringing together varied scientific perspectives, new and innovative techniques, and 'omics approaches. ASM can empower under-resourced groups with the goal of ensuring that the benefits of cutting-edge research reach every corner of the scientific community. Thus, ASM will be poised to steer HMB toward a future that champions inclusivity, innovation, and accessible scientific progress.
Collapse
Affiliation(s)
- Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | | | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy and Minerals Science Center, Reston, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Host-Microbe Retreat Planning CommitteeFidel, Jr.Paul L.1WatnickPaula I.2YoungVincent B.3ZackularJoseph4Department of Oral and Craniofacial Biology, Louisiana State University Health, New Orleans, Louisiana, USADivision of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USADepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USAInstitute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- American Society for Microbiology, Washington, DC, USA
- U.S. Geological Survey, Geology, Energy and Minerals Science Center, Reston, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Host-Microbe Retreat SpeakersCasadevallArturo1GibbonsSean M.2HuffnagleGary B.3McFall-NgaiMargaret4NewmanDianne K.5NickersonCheryl A.6Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USAInstitute for Systems Biology, Seattle, Washington, USADepartment of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USAPacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USADivision of Biology and Biological Engineering, Caltech, Pasadena, California, USASchool of Life Sciences, Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- American Society for Microbiology, Washington, DC, USA
- U.S. Geological Survey, Geology, Energy and Minerals Science Center, Reston, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Wang RZ, Lonergan ZR, Wilbert SA, Eiler JM, Newman DK. Widespread detoxifying NO reductases impart a distinct isotopic fingerprint on N 2O under anoxia. Proc Natl Acad Sci U S A 2024; 121:e2319960121. [PMID: 38865268 PMCID: PMC11194513 DOI: 10.1073/pnas.2319960121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, can be generated by multiple biological and abiotic processes in diverse contexts. Accurately tracking the dominant sources of N2O has the potential to improve our understanding of N2O fluxes from soils as well as inform the diagnosis of human infections. Isotopic "Site Preference" (SP) values have been used toward this end, as bacterial and fungal nitric oxide reductases (NORs) produce N2O with different isotopic fingerprints, spanning a large range. Here, we show that flavohemoglobin (Fhp), a hitherto biogeochemically neglected yet widely distributed detoxifying bacterial NO reductase, imparts a distinct SP value onto N2O under anoxic conditions (~+10‰) that correlates with typical environmental N2O SP measurements. Using Pseudomonas aeruginosa as a model organism, we generated strains that only contained Fhp or the dissimilatory NOR, finding that in vivo N2O SP values imparted by these enzymes differ by over 10‰. Depending on the cellular physiological state, the ratio of Fhp:NOR varies significantly in wild-type cells and controls the net N2O SP biosignature: When cells grow anaerobically under denitrifying conditions, NOR dominates; when cells experience rapid, increased nitric oxide concentrations under anoxic conditions but are not growing, Fhp dominates. Other bacteria that only make Fhp generate similar N2O SP biosignatures to those measured from our P. aeruginosa Fhp-only strain. Fhp homologs in sequenced bacterial genomes currently exceed NOR homologs by nearly a factor of four. Accordingly, we suggest a different framework to guide the attribution of N2O biological sources in nature and disease.
Collapse
Affiliation(s)
- Renée Z. Wang
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA91101
| | | | - Steven A. Wilbert
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA91101
| | - John M. Eiler
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA91101
| | - Dianne K. Newman
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA91101
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA91101
| |
Collapse
|
5
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential. mBio 2024; 15:e0291823. [PMID: 38380943 PMCID: PMC10936187 DOI: 10.1128/mbio.02918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Archaea belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have been found in an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise a sizeable fraction of the archaeal community within marine oxygen-deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes (MAGs) belonging to the DPANN phyla Nanoarchaeota, Pacearchaeota, Woesearchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and the Arabian Sea. We find these archaea to be permanent, stable residents of all three major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25%-50% of archaea as estimated from read mapping to MAGs. ODZ DPANN appear to be capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs. IMPORTANCE Archaea from the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have diverse metabolic capabilities and participate in multiple biogeochemical cycles. While metagenomics and enrichments have revealed that many DPANN are characterized by ultrasmall genomes, few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their biology. We report 33 new DPANN metagenome-assembled genomes originating from the three global marine oxygen-deficient zones (ODZs), the first from these regions. We survey DPANN abundance and distribution within the ODZ water column, investigate their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as nitrous oxide consumers when attached to a host nitrous oxide producer. Our results indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the potential to produce or consume key compounds.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Skoog EJ, Bosak T. Predicted metabolic roles and stress responses provide insights into candidate phyla Hydrogenedentota and Sumerlaeota as members of the rare biosphere in biofilms from various environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13228. [PMID: 38192240 PMCID: PMC10866078 DOI: 10.1111/1758-2229.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Pustular mats from Shark Bay, Western Australia, host complex microbial communities bound within an organic matrix. These mats harbour many poorly characterized organisms with low relative abundances (<1%), such as candidate phyla Hydrogenedentota and Sumerlaeota. Here, we aim to constrain the metabolism and physiology of these candidate phyla by analyzing two representative metagenome-assembled genomes (MAGs) from a pustular mat. Metabolic reconstructions of these MAGs suggest facultatively anaerobic, chemoorganotrophic lifestyles of both organisms and predict that both MAGs can metabolize a diversity of carbohydrate substrates. Ca. Sumerlaeota possesses genes involved in degrading chitin, cellulose and other polysaccharides, while Ca. Hydrogenedentota can metabolize cellulose derivatives in addition to glycerol, fatty acids and phosphonates. Both Ca. phyla can respond to nitrosative stress and participate in nitrogen metabolism. Metabolic comparisons of MAGs from Shark Bay and those from various polyextreme environments (i.e., hot springs, hydrothermal vents, subsurface waters, anaerobic digesters, etc.) reveal similar metabolic capabilities and adaptations to hypersalinity, oxidative stress, antibiotics, UV radiation, nitrosative stress, heavy metal toxicity and life in surface-attached communities. These adaptations and capabilities may account for the widespread nature of these organisms and their contributions to biofilm communities in a range of extreme surface and subsurface environments.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Integrative Oceanography DivisionScripps Institution of Oceanography, UC San DiegoLa JollaCaliforniaUSA
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
7
|
Takahashi K, Oshiki M, Ruan C, Morinaga K, Toyofuku M, Nomura N, Johnson DR. Denitrification in low oxic environments increases the accumulation of nitrogen oxide intermediates and modulates the evolutionary potential of microbial populations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13221. [PMID: 38037543 PMCID: PMC10866065 DOI: 10.1111/1758-2229.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Denitrification in oxic environments occurs when a microorganism uses nitrogen oxides as terminal electron acceptors even though oxygen is available. While this phenomenon is well-established, its consequences on ecological and evolutionary processes remain poorly understood. We hypothesize here that denitrification in oxic environments can modify the accumulation profiles of nitrogen oxide intermediates with cascading effects on the evolutionary potentials of denitrifying microorganisms. To test this, we performed laboratory experiments with Paracoccus denitrificans and complemented them with individual-based computational modelling. We found that denitrification in low oxic environments significantly increases the accumulation of nitrite and nitric oxide. We further found that the increased accumulation of these intermediates has a negative effect on growth at low pH. Finally, we found that the increased negative effect at low pH increases the number of individuals that contribute to surface-associated growth. This increases the amount of genetic diversity that is preserved from the initial population, thus increasing the number of genetic targets for natural selection to act upon and resulting in higher evolutionary potentials. Together, our data highlight that denitrification in low oxic environments can affect the ecological processes and evolutionary potentials of denitrifying microorganisms by modifying the accumulation of nitrogen oxide intermediates.
Collapse
Affiliation(s)
- Kohei Takahashi
- Graduate School of Sciences and TechnologiesUniversity of TsukubaTsukubaIbarakiJapan
- Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Mamoru Oshiki
- Division of Environmental Engineering, Faculty of EngineeringHokkaido UniversitySapporoHokkaidoJapan
| | - Chujin Ruan
- Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Kana Morinaga
- Graduate School of Sciences and TechnologiesUniversity of TsukubaTsukubaIbarakiJapan
| | - Masanori Toyofuku
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Microbiology Research Center for SustainabilityUniversity of TsukubaTsukubaIbarakiJapan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Microbiology Research Center for SustainabilityUniversity of TsukubaTsukubaIbarakiJapan
| | - David R. Johnson
- Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
8
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen deficient zones with diverse metabolic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564641. [PMID: 37961710 PMCID: PMC10634959 DOI: 10.1101/2023.10.30.564641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Archaea belonging to the DPANN superphylum have been found within an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise 15-26% of the archaeal community within marine oxygen deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes belonging to DPANN phyla Nanoarchaeota, Pacearchaeota, Woesarchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and Arabian Sea. We find these archaea to be permanent, stable residents of all 3 major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25-50% of archaea. ODZ DPANN appear capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Wilbert
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Wang RZ, Lonergan ZR, Wilbert SA, Eiler JM, Newman DK. Widespread detoxifying NO reductases impart a distinct isotopic fingerprint on N 2O under anoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562248. [PMID: 37873075 PMCID: PMC10592819 DOI: 10.1101/2023.10.13.562248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, can be generated by compositionally complex microbial populations in diverse contexts. Accurately tracking the dominant biological sources of N2O has the potential to improve our understanding of N2O fluxes from soils as well as inform the diagnosis of human infections. Isotopic "Site Preference" (SP) values have been used towards this end, as bacterial and fungal nitric oxide reductases produce N2O with different isotopic fingerprints. Here we show that flavohemoglobin, a hitherto biogeochemically neglected yet widely distributed detoxifying bacterial NO reductase, imparts a distinct SP value onto N2O under anoxic conditions that correlates with typical environmental N2O SP measurements. We suggest a new framework to guide the attribution of N2O biological sources in nature and disease.
Collapse
Affiliation(s)
- Renée Z. Wang
- Division of Geological and Planetary Sciences, Caltech; Pasadena, 91101, USA
| | - Zachery R. Lonergan
- Division of Biology and Biological Engineering, Caltech; Pasadena, 91101, USA
| | - Steven A. Wilbert
- Division of Biology and Biological Engineering, Caltech; Pasadena, 91101, USA
- Current Address: Department of Environmental Health and Engineering, Johns Hopkins; Baltimore, 21218, USA
| | - John M. Eiler
- Division of Geological and Planetary Sciences, Caltech; Pasadena, 91101, USA
| | - Dianne K. Newman
- Division of Geological and Planetary Sciences, Caltech; Pasadena, 91101, USA
- Division of Biology and Biological Engineering, Caltech; Pasadena, 91101, USA
| |
Collapse
|
10
|
Gowda K, Kuehn S. Microbial biofilms: An ecological tale of Jekyll and Hyde. Curr Biol 2022; 32:R1349-R1351. [PMID: 36538887 DOI: 10.1016/j.cub.2022.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecules of life can be double-edged, performing both beneficial and detrimental roles depending on the environmental context. New work reveals how the Jekyll and Hyde nature of nitric oxide shapes complexity in microbial biofilms, from ecological interactions to spatial structure.
Collapse
Affiliation(s)
- Karna Gowda
- Department of Ecology and Evolution and Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL, USA
| | - Seppe Kuehn
- Department of Ecology and Evolution and Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|