1
|
Soule SE, Cabanellas-Reboredo M, González ÁF, Juijn H, Hernández-Urcera J. The Persistence of Memory: Behavioral Analysis and Arm Usage of a Nine-Armed Octopus vulgaris. Animals (Basel) 2025; 15:1034. [PMID: 40218427 PMCID: PMC11987900 DOI: 10.3390/ani15071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Anatomical abnormalities in octopuses, whose behavior is facilitated by flexible, neuron-rich arms, offer insights into life histories and the neurological implications of understudied conditions such as bifurcation. Although documentation is scarce, here we present in situ videos of nine-armed O. vulgaris with a functional bifurcated R1 arm. Analysis using RDAs and GLMs investigated the impact of the bifurcated arm on behavior and examined changes during growth. Analysis revealed a differential usage of between the bifurcated arms in addition to an initial specialization of the bifurcated arms for actions below the body, decreasing over time for only one of the arms as grew. Further, bifurcated and regrown arms were utilized more in safe behaviors than risky ones, with more severely injured arms showing a higher frequency of use in safe behaviors. These findings contribute to the growing knowledge of arm usage in octopuses, suggesting that arm bifurcation may lead to branchial neural differentiation and potentially indicate post-traumatic associated in O. vulgaris.
Collapse
Affiliation(s)
- Sam Ellington Soule
- ECOBIOMAR Research Group, Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Miguel Cabanellas-Reboredo
- Centro Oceanográfico de Illes Balears (COB-IEO), CSIC, Moll de Ponent s/n, 07015 Palma de Mallorca, Spain; (M.C.-R.); (H.J.)
| | - Ángel F. González
- ECOBIOMAR Research Group, Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Hidde Juijn
- Centro Oceanográfico de Illes Balears (COB-IEO), CSIC, Moll de Ponent s/n, 07015 Palma de Mallorca, Spain; (M.C.-R.); (H.J.)
| | - Jorge Hernández-Urcera
- ECOBIOMAR Research Group, Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
2
|
Gogola JV, Joyce MK, Vijayraghavan S, Barnum G, Wildenberg G. NSF Workshop Report: Exploring Measurements and Interpretations of Intelligent Behaviors Across Animal Model Systems. J Comp Neurol 2025; 533:e70035. [PMID: 40038068 PMCID: PMC11879920 DOI: 10.1002/cne.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
Defining intelligence is a challenging and fraught task, but one that neuroscientists are repeatedly confronted with. A central goal of neuroscience is to understand how phenomena like intelligent behaviors emerge from nervous systems. This requires some determination of what defines intelligence and how to measure it. The challenge is multifaceted. For instance, as we begin to describe and understand the brain in increasingly specific physical terms (e.g., anatomy, cell types, activity patterns), we amplify an ever-growing divide in how we connect measurable properties of the brain to less tangible concepts like intelligence. As our appreciation for evolutionary diversity in neuroscience grows, we are further confronted with whether there can be a unifying theory of intelligence. The National Science Foundation (NSF) NeuroNex consortium recently gathered experts from multiple animal model systems to discuss intelligence across species. We summarize here the different perspectives offered by the consortium, with the goal of promoting thought and debate of this ancient question from a modern perspective, and asking whether defining intelligence is a useful exercise in neuroscience or an ill-posed and distracting question. We present data from the vantage points of humans, macaques, ferrets, crows, octopuses, bees, and flies, highlighting some of the noteworthy capabilities of each species within the context of each species' ecological niche and how these may be challenged by climate change. We also include a remarkable example of convergent evolution between primates and crows in the circuit and molecular basis for working memory in these highly divergent animal species.
Collapse
Affiliation(s)
- Joseph V. Gogola
- Department of MedicineThe University of ChicagoChicagoIllinoisUSA
| | - Mary Kate Joyce
- Department of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
| | - Susheel Vijayraghavan
- Department of Physiology and PharmacologySchulich School of Medicine and Dentistry, Western UniversityLondonOntarioCanada
| | - George Barnum
- Department of Computation and Neural SystemsCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Gregg Wildenberg
- Department of NeurobiologyThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Gedela NSS, Radawiec RD, Salim S, Richie J, Chestek C, Draelos A, Pelled G. In vivo electrophysiology recordings and computational modeling can predict octopus arm movement. Bioelectron Med 2025; 11:4. [PMID: 39948616 PMCID: PMC11827351 DOI: 10.1186/s42234-025-00166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
The octopus has many features that make it advantageous for revealing principles of motor circuits and control and predicting behavior. Here, an array of carbon electrodes providing single-unit electrophysiology recordings were implanted into the octopus anterior nerve cord. The number of spikes and arm movements in response to stimulation at different locations along the arm were recorded. We observed that the number of spikes occurring within the first 100 ms after stimulation were predictive of the resultant movement response. Machine learning models showed that temporal electrophysiological features could be used to predict whether an arm movement occurred with 88.64% confidence, and if it was a lateral arm movement or a grasping motion with 75.45% confidence. Both supervised and unsupervised methods were applied to gain streaming measurements of octopus arm movements and how their motor circuitry produces rich movement types in real time. For kinematic analysis, deep learning models and unsupervised dimensionality reduction identified a consistent set of features that could be used to distinguish different types of arm movements. The neural circuits and the computational models identified here generated predictions for how to evoke a particular, complex movement in an orchestrated sequence for an individual motor circuit. This study demonstrates how real-time motor behaviors can be predicted and distinguished, contributing to the development of brain-machine interfaces. The ability to accurately model and predict complex movement patterns has broad implications for advancing technologies in robotics, neuroprosthetics, and artificial intelligence, paving the way for more sophisticated and adaptable systems.
Collapse
Affiliation(s)
| | - Ryan D Radawiec
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Sachin Salim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Julianna Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Anne Draelos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Gedela NSS, Salim S, Radawiec RD, Richie J, Chestek C, Draelos A, Pelled G. Single unit electrophysiology recordings and computational modeling can predict octopus arm movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612676. [PMID: 39345497 PMCID: PMC11430158 DOI: 10.1101/2024.09.13.612676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The octopus simplified nervous system holds the potential to reveal principles of motor circuits and improve brain-machine interface devices through computational modeling with machine learning and statistical analysis. Here, an array of carbon electrodes providing single-unit electrophysiology recordings were implanted into the octopus anterior nerve cord. The number of spikes and arm movements in response to stimulation at different locations along the arm were recorded. We observed that the number of spikes occurring within the first 100ms after stimulation were predictive of the resultant movement response. Computational models showed that temporal electrophysiological features could be used to predict whether an arm movement occurred with 88.64% confidence, and if it was a lateral arm movement or a grasping motion with 75.45% confidence. Both supervised and unsupervised methods were applied to gain streaming measurements of octopus arm movements and how their motor circuitry produces rich movement types in real time. Deep learning models and unsupervised dimension reduction identified a consistent set of features that could be used to distinguish different types of arm movements. These models generated predictions for how to evoke a particular, complex movement in an orchestrated sequence for an individual motor circuit.
Collapse
Affiliation(s)
- Nitish Satya Sai Gedela
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Sachin Salim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Ryan D Radawiec
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Julianna Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Cynthia Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Anne Draelos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Godfrey-Smith P. Inferring Consciousness in Phylogenetically Distant Organisms. J Cogn Neurosci 2024; 36:1660-1666. [PMID: 38579258 DOI: 10.1162/jocn_a_02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The neural dynamics of subjectivity (NDS) approach to the biological explanation of consciousness is outlined and applied to the problem of inferring consciousness in animals phylogenetically distant from ourselves. The NDS approach holds that consciousness or felt experience is characteristic of systems whose nervous systems have been shaped to realize subjectivity through a combination of network interactions and large-scale dynamic patterns. Features of the vertebrate brain architecture that figure in other accounts of the biology of consciousness are viewed as inessential. Deep phylogenetic branchings in the animal kingdom occurred before the evolution of complex behavior, cognition, and sensing. These capacities arose independently in brain architectures that differ widely across arthropods, vertebrates, and cephalopods, but with conservation of large-scale dynamic patterns of a kind that have an apparent link to felt experience in humans. An evolutionary perspective also motivates a strongly gradualist view of consciousness; a simple distinction between conscious and nonconscious animals will probably be replaced with a view that admits differences of degree, perhaps on many dimensions.
Collapse
|
6
|
Ferrari PF, Baldi J. Social neuroscience: Primate research goes wireless. Curr Biol 2024; 34:R536-R539. [PMID: 38834026 DOI: 10.1016/j.cub.2024.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A new study leads the way to a more ethical and ethologically meaningful way of investigating brain functions of complex behaviors in social animals.
Collapse
Affiliation(s)
- Pier Francesco Ferrari
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, 69675 Bron Cedex, France; Université Claude Bernard Lyon 1, 69622 Lyon Cedex, France; Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Jacopo Baldi
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, 69675 Bron Cedex, France; Université Claude Bernard Lyon 1, 69622 Lyon Cedex, France
| |
Collapse
|
7
|
Shook EN, Barlow GT, Garcia-Rosales D, Gibbons CJ, Montague TG. Dynamic skin behaviors in cephalopods. Curr Opin Neurobiol 2024; 86:102876. [PMID: 38652980 DOI: 10.1016/j.conb.2024.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied mollusks that exhibit a wealth of complex behaviors, including dynamic camouflage, object mimicry, skin-based visual communication, and dynamic body patterns during sleep. Many of these behaviors are visually driven and engage the animals' color changing skin, a pixelated display that is directly controlled by neurons projecting from the brain. Thus, cephalopod skin provides a direct readout of neural activity in the brain. During camouflage, cephalopods recreate on their skin an approximation of what they see, providing a window into perceptual processes in the brain. Additionally, cephalopods communicate their internal state during social encounters using innate skin patterns, and create waves of pigmentation on their skin during periods of arousal. Thus, by leveraging the visual displays of cephalopods, we can gain insight into how the external world is represented in the brain and how this representation is transformed into a recapitulation of the world on the skin. Here, we describe the rich skin behaviors of the coleoid cephalopods, what is known about cephalopod neuroanatomy, and how advancements in gene editing, machine learning, optical imaging, and electrophysiological tools may provide an opportunity to explore the neural bases of these fascinating behaviors.
Collapse
Affiliation(s)
- Erica N Shook
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - George Thomas Barlow
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Daniella Garcia-Rosales
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Connor J Gibbons
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Tessa G Montague
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
8
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
9
|
Wang ZY. Octopus death and dying. Integr Comp Biol 2023; 63:1209-1213. [PMID: 37437909 DOI: 10.1093/icb/icad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Affiliation(s)
- Z Yan Wang
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Olson CS, Ragsdale CW. Toward an Understanding of Octopus Arm Motor Control. Integr Comp Biol 2023; 63:1277-1284. [PMID: 37327080 PMCID: PMC10755184 DOI: 10.1093/icb/icad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Octopuses have the extraordinary ability to control eight prehensile arms with hundreds of suckers. With these highly flexible limbs, they engage in a wide variety of tasks, including hunting, grooming, and exploring their environment. The neural circuitry generating these movements engages every division of the octopus nervous system, from the nerve cords of the arms to the supraesophegeal brain. In this review, the current knowledge on the neural control of octopus arm movements is discussed, highlighting open questions and areas for further study.
Collapse
Affiliation(s)
- Cassady S Olson
- Committee on Computational Neuroscience, University of Chicago, Chicago 60637, USA
| | | |
Collapse
|
11
|
Di Cosmo A, Maselli V, Cirillo E, Norcia M, de Zoysa HKS, Polese G, Winlow W. The Use of Isoflurane and Adjunctive Magnesium Chloride Provides Fast, Effective Anaesthetization of Octopus vulgaris. Animals (Basel) 2023; 13:3579. [PMID: 38003196 PMCID: PMC10668643 DOI: 10.3390/ani13223579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
A wide variety of substances have been used to anaesthetise invertebrates, but many are not anaesthetics and merely incapacitate animals rather than preventing pain. In essence, the role of an ideal general anaesthetic is to act as a muscle relaxant, an analgesic, an anaesthetic, and an amnesic. To achieve all these properties with a single substance is difficult, and various adjuvants usually need to be administered, resulting in a cocktail of drugs. In a clinical setting, the vast majority of patients are unaware of surgery being carried out and have no memory of it, so they can claim to have felt no pain, but this is much more difficult to demonstrate in invertebrates. Here, we show that 1% MgCl2, a muscle relaxant, is a useful adjuvant for the clinical anaesthetic isoflurane on Octopus vulgaris when applied alone in seawater for 10 min before the clinical anaesthetic. After this, full anaesthesia can be achieved in 5 min using 1% isoflurane insufflated into the saline still containing MgCl2. Full recovery takes place rapidly in about 10 to 15 min. The depth of anaesthesia was monitored using changes in respiratory rate, chromatophore pattern, and withdrawal movements of the arms and siphon. This methodology reduces stress on the animal and minimises the quantity of anaesthetic used.
Collapse
Affiliation(s)
- Anna Di Cosmo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
- PNRR “MNESYS”, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
| | - Emanuela Cirillo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
- PNRR “MNESYS”, University of Naples Federico II, 80126 Naples, Italy
| | - Mariangela Norcia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
| | - Heethaka K. S. de Zoysa
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
| | - William Winlow
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
12
|
Pungor JR, Niell CM. The neural basis of visual processing and behavior in cephalopods. Curr Biol 2023; 33:R1106-R1118. [PMID: 37875093 PMCID: PMC10664291 DOI: 10.1016/j.cub.2023.08.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Coleoid cephalopods (octopuses, squids and cuttlefishes) are the only branch of the animal kingdom outside of vertebrates to have evolved both a large brain and camera-type eyes. They are highly dependent on vision, with the majority of their brain devoted to visual processing. Their excellent vision supports a range of advanced visually guided behaviors, from navigation and prey capture, to the ability to camouflage based on their surroundings. However, their brain organization is radically different from that of vertebrates, as well as other invertebrates, providing a unique opportunity to explore how a novel neural architecture for vision is organized and functions. Relatively few studies have examined the cephalopod visual system using current neuroscience approaches, to the extent that there has not even been a measurement of single-cell receptive fields in their central visual system. Therefore, there remains a tremendous amount that is unknown about the neural basis of vision in these extraordinary animals. Here, we review the existing knowledge of the organization and function of the cephalopod visual system to provide a framework for examining the neural circuits and computational mechanisms mediating their remarkable visual capabilities.
Collapse
Affiliation(s)
- Judit R Pungor
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
13
|
Martin C. Stranger than fiction. Curr Biol 2023; 33:R1067. [PMID: 37875085 DOI: 10.1016/j.cub.2023.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Martin introduces a special issue on cephalopods, showcasing their fascinating biology and highlighting recent developments in the field.
Collapse
Affiliation(s)
- Cyrus Martin
- Cyrus Martin is Current Biology's Senior Scientific Editor.
| |
Collapse
|
14
|
Montague TG, Rieth IJ, Gjerswold-Selleck S, Garcia-Rosales D, Aneja S, Elkis D, Zhu N, Kentis S, Rubino FA, Nemes A, Wang K, Hammond LA, Emiliano R, Ober RA, Guo J, Axel R. A brain atlas for the camouflaging dwarf cuttlefish, Sepia bandensis. Curr Biol 2023:S0960-9822(23)00757-1. [PMID: 37343557 DOI: 10.1016/j.cub.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied marine mollusks that exhibit an array of interesting biological phenomena, including dynamic camouflage, complex social behaviors, prehensile regenerating arms, and large brains capable of learning, memory, and problem-solving.1,2,3,4,5,6,7,8,9,10 The dwarf cuttlefish, Sepia bandensis, is a promising model cephalopod species due to its small size, substantial egg production, short generation time, and dynamic social and camouflage behaviors.11 Cuttlefish dynamically camouflage to their surroundings by changing the color, pattern, and texture of their skin. Camouflage is optically driven and is achieved by expanding and contracting hundreds of thousands of pigment-filled saccules (chromatophores) in the skin, which are controlled by motor neurons emanating from the brain. We generated a dwarf cuttlefish brain atlas using magnetic resonance imaging (MRI), deep learning, and histology, and we built an interactive web tool (https://www.cuttlebase.org/) to host the data. Guided by observations in other cephalopods,12,13,14,15,16,17,18,19,20 we identified 32 brain lobes, including two large optic lobes (75% the total volume of the brain), chromatophore lobes whose motor neurons directly innervate the chromatophores of the color-changing skin, and a vertical lobe that has been implicated in learning and memory. The brain largely conforms to the anatomy observed in other Sepia species and provides a valuable tool for exploring the neural basis of behavior in the experimentally facile dwarf cuttlefish.
Collapse
Affiliation(s)
- Tessa G Montague
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| | - Isabelle J Rieth
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Sabrina Gjerswold-Selleck
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Daniella Garcia-Rosales
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Sukanya Aneja
- Interactive Telecommunications Program, New York University, New York, NY 10003, USA
| | - Dana Elkis
- Interactive Telecommunications Program, New York University, New York, NY 10003, USA
| | - Nanyan Zhu
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Sabrina Kentis
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Frederick A Rubino
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana Nemes
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Katherine Wang
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Luke A Hammond
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Roselis Emiliano
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Rebecca A Ober
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Jia Guo
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Richard Axel
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
15
|
Flash T, Zullo L. Biomechanics, motor control and dynamic models of the soft limbs of the octopus and other cephalopods. J Exp Biol 2023; 226:307147. [PMID: 37083140 DOI: 10.1242/jeb.245295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Muscular hydrostats are organs composed entirely of packed arrays of incompressible muscles and lacking any skeletal support. Found in both vertebrates and invertebrates, they are of great interest for comparative biomechanics from engineering and evolutionary perspectives. The arms of cephalopods (e.g. octopus and squid) are particularly interesting muscular hydrostats because of their flexibility and ability to generate complex behaviors exploiting elaborate nervous systems. Several lines of evidence from octopus studies point to the use of both brain and arm-embedded motor control strategies that have evolved to simplify the complexities associated with the control of flexible and hyper-redundant limbs and bodies. Here, we review earlier and more recent experimental studies on octopus arm biomechanics and neural motor control. We review several dynamic models used to predict the kinematic characteristics of several basic motion primitives, noting the shortcomings of the current models in accounting for behavioral observations. We also discuss the significance of impedance (stiffness and viscosity) in controlling the octopus's motor behavior. These factors are considered in light of several new models of muscle biomechanics that could be used in future research to gain a better understanding of motor control in the octopus. There is also a need for updated models that encompass stiffness and viscosity for designing and controlling soft robotic arms. The field of soft robotics has boomed over the past 15 years and would benefit significantly from further progress in biomechanical and motor control studies on octopus and other muscular hydrostats.
Collapse
Affiliation(s)
- Tamar Flash
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Letizia Zullo
- Bioinspired Soft Robotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
16
|
How to measure the brain of an octopus. Nature 2023; 615:11. [PMID: 36823273 DOI: 10.1038/d41586-023-00493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|