1
|
Dai Y, Li Q, Deng J, Wu S, Zhang G, Hu Y, Shen Y, Liu D, Wu H, Gong J. Rhpn2 regulates the development and function of vestibular sensory hair cells through the RhoA signaling in zebrafish. J Genet Genomics 2025:S1673-8527(25)00115-8. [PMID: 40254160 DOI: 10.1016/j.jgg.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
Hearing and balance disorders are significant health issues primarily caused by developmental defects or the irreversible loss of sensory hair cells (HCs). Identifying the underlying genes involved in the morphogenesis and development of HCs is crucial. Our current study highlights rhpn2, a member of rho-binding proteins, as essential for vestibular HC development. The rhpn2 gene is highly expressed in the crista and macula HCs. Loss of rhpn2 function in zebrafish reduces the otic vesicle area and vestibular HC number, accompanied by vestibular dysfunction. Shorter stereocilia and compromised mechanotransduction channel function are found in the crista HCs of rhpn2 mutants. Transcriptome RNA sequencing analysis predicts the potential interaction of rhpn2 with rhoab. Furthermore, co-immunoprecipitation confirms that Rhpn2 directly binds to RhoA, validating the interaction of the two proteins. rhpn2 knockout leads to a decreased expression of rock2b, a canonical RhoA signaling pathway gene. Treatment with the RhoA activator or exogenous rock2b mRNA injection mitigates crista HC stereocilia defects in rhpn2 mutants. This study uncovers the role of rhpn2 in vestibular HC development and stereocilia formation via mediating the RhoA signaling pathway, providing a target for the treatment of balance disorders.
Collapse
Affiliation(s)
- Yubei Dai
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China
| | - Qianqian Li
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiaju Deng
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China
| | - Sihang Wu
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China
| | - Guiyi Zhang
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China
| | - Yuebo Hu
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China
| | - Yuqian Shen
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China
| | - Dong Liu
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China.
| | - Han Wu
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China.
| | - Jie Gong
- Department of Clinical and Translational Research Center, Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
2
|
Yao X, Zhang Y, Hong X, Xing Y, Xu Z. Esrp1 and Esrp2 regulate the stability of tmc1/ 2a mRNAs in zebrafish sensory hair cells. J Neurosci 2025; 45:e0837242025. [PMID: 40086870 PMCID: PMC12019119 DOI: 10.1523/jneurosci.0837-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
RNA-binding proteins (RBPs) are important for post-transcriptional RNA processing, including pre-mRNA alternative splicing, mRNA stability, and translation. Several RBPs have been shown to play pivotal roles in the inner ear, whose dysfunction leads to auditory and/or balance impairments. Epithelial splicing-regulatory protein 1 (ESRP1) regulates alternative splicing and mRNA stability, and mutations in ESRP1 gene have been associated with sensorineural hearing loss in humans. In Esrp1 knockout mouse embryos, alternative splicing of its target genes such as Fgfr2 is impaired, which eventually result in cochlear development deficits. However, Esrp1 knockout mice die soon after birth because of complications from cleft-lip and palate defects, impeding further investigations at later postnatal ages. In the present study, we explored the role of ESRP1 in hearing using zebrafish as a model. We showed that esrp1 and its paralog esrp2 are expressed in the inner ear and certain anterior lateral line (ALL) neuromasts. Furthermore, our data suggested that Esrp1 and Esrp2 are required for the mechano-electrical transduction (MET) function of hair cells. RNA sequencing results indicated a significant decrease in the levels of several mRNAs in esrp1/2 double knockout larvae. Among the dysregulated genes are tmc1 and tmc2a, which encode essential subunits of the MET complex. Further investigations demonstrated that Esrp1/2 could directly bind to tmc1 and tmc2a mRNAs and affect their stability. Taken together, we showed here that Esrp1 and Esrp2 regulate the MET function of zebrafish sensory hair cells by modulating the stability of tmc1 and tmc2a mRNAs.Significance statement ESRP1 is an important RNA-binding protein, whose malfunction has been associated with hearing loss in humans. Esrp1 knockout affects alternative splicing of its target mRNAs such as Fgfr2, eventually leading to cochlear development deficits in mice. However, Esrp1 knockout mice die soon after birth, precluding further investigations at later postnatal ages. In this study, we explored the role of ESRP1 in hearing using zebrafish as a model. Our results demonstrated that esrp1 and its paralog esrp2 are expressed in the zebrafish inner ear, and that esrp1/esrp2 double knockout compromised the mechano-electrical transduction (MET) function of hair cells. Additionally, we successfully identified tmc1 and tmc2a mRNAs as the targets of Esrp1/2, which encode essential subunits of the MET complex.
Collapse
Affiliation(s)
- Xuebo Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaying Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yanyi Xing
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
3
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Aponte Rivera R, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. eLife 2025; 12:RP89719. [PMID: 39773557 PMCID: PMC11709434 DOI: 10.7554/elife.89719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud PJ Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill UniversityMontrealCanada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
- Department of Biochemistry and Molecular Biology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Ophthalmology and Visual Sciences, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Ono K, Jarysta A, Hughes NC, Jukic A, Chang HHV, Deans MR, Eatock RA, Cullen KE, Kindt KS, Tarchini B. Contributions of mirror-image hair cell orientation to mouse otolith organ and zebrafish neuromast function. eLife 2024; 13:RP97674. [PMID: 39531034 PMCID: PMC11556791 DOI: 10.7554/elife.97674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Otolith organs in the inner ear and neuromasts in the fish lateral-line harbor two populations of hair cells oriented to detect stimuli in opposing directions. The underlying mechanism is highly conserved: the transcription factor EMX2 is regionally expressed in just one hair cell population and acts through the receptor GPR156 to reverse cell orientation relative to the other population. In mouse and zebrafish, loss of Emx2 results in sensory organs that harbor only one hair cell orientation and are not innervated properly. In zebrafish, Emx2 also confers hair cells with reduced mechanosensory properties. Here, we leverage mouse and zebrafish models lacking GPR156 to determine how detecting stimuli of opposing directions serves vestibular function, and whether GPR156 has other roles besides orienting hair cells. We find that otolith organs in Gpr156 mouse mutants have normal zonal organization and normal type I-II hair cell distribution and mechano-electrical transduction properties. In contrast, gpr156 zebrafish mutants lack the smaller mechanically evoked signals that characterize Emx2-positive hair cells. Loss of GPR156 does not affect orientation-selectivity of afferents in mouse utricle or zebrafish neuromasts. Consistent with normal otolith organ anatomy and afferent selectivity, Gpr156 mutant mice do not show overt vestibular dysfunction. Instead, performance on two tests that engage otolith organs is significantly altered - swimming and off-vertical-axis rotation. We conclude that GPR156 relays hair cell orientation and transduction information downstream of EMX2, but not selectivity for direction-specific afferents. These results clarify how molecular mechanisms that confer bi-directionality to sensory organs contribute to function, from single hair cell physiology to animal behavior.
Collapse
Affiliation(s)
- Kazuya Ono
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | | | - Natasha C Hughes
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Hui Ho Vanessa Chang
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Michael R Deans
- Department of Neurobiology, Spencer Fox Eccles School of Medicine, University of UtahSalt Lake CityUnited States
- Department of Otolaryngology - Head & Neck Surgery, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
| | - Ruth Anne Eatock
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Basile Tarchini
- The Jackson LaboratoryBar HarborUnited States
- Tufts University School of MedicineBostonUnited States
| |
Collapse
|
5
|
David S, Pinter K, Nguyen KK, Lee DS, Lei Z, Sokolova Y, Sheets L, Kindt KS. Kif1a and intact microtubules maintain synaptic-vesicle populations at ribbon synapses in zebrafish hair cells. J Physiol 2024:10.1113/JP286263. [PMID: 39373584 PMCID: PMC11973241 DOI: 10.1113/jp286263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This transmission necessitates rapid and sustained neurotransmitter release, which depends on a large pool of synaptic vesicles at the hair-cell presynapse. While previous work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, the mechanisms of this process in hair cells remain unclear. Our study demonstrates that the kinesin motor protein Kif1a, along with an intact microtubule network, is essential for enriching synaptic vesicles at the presynapse in hair cells. Through genetic and pharmacological approaches, we disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. These manipulations led to a significant reduction in synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, in vivo calcium imaging, and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1aa mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Furthermore, kif1aa mutants exhibit impaired rheotaxis, a behaviour reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-mediated microtubule transport is critical to enrich synaptic vesicles at the active zone, a process that is vital for proper ribbon-synapse function in hair cells. KEY POINTS: Kif1a mRNAs are present in zebrafish hair cells. Loss of Kif1a disrupts the enrichment of synaptic vesicles at ribbon synapses. Disruption of microtubules depletes synaptic vesicles at ribbon synapses. Kif1aa mutants have impaired ribbon-synapse and sensory-system function.
Collapse
Affiliation(s)
- Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
- National Institutes of Health-Brown University Graduate Partnership Program, Bethesda, Maryland, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Keziah-Khue Nguyen
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David S Lee
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Yuliya Sokolova
- Advanced Imaging Core, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Lavinia Sheets
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Ono K, Jarysta A, Hughes NC, Jukic A, Chang HHV, Deans MR, Eatock RA, Cullen KE, Kindt K, Tarchini B. Contributions of mirror-image hair cell orientation to mouse otolith organ and zebrafish neuromast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586740. [PMID: 39282410 PMCID: PMC11398332 DOI: 10.1101/2024.03.26.586740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Otolith organs in the inner ear and neuromasts in the fish lateral-line harbor two populations of hair cells oriented to detect stimuli in opposing directions. The underlying mechanism is highly conserved: the transcription factor EMX2 is regionally expressed in just one hair cell population and acts through the receptor GPR156 to reverse cell orientation relative to the other population. In mouse and zebrafish, loss of Emx2 results in sensory organs that harbor only one hair cell orientation and are not innervated properly. In zebrafish, Emx2 also confers hair cells with reduced mechanosensory properties. Here, we leverage mouse and zebrafish models lacking GPR156 to determine how detecting stimuli of opposing directions serves vestibular function, and whether GPR156 has other roles besides orienting hair cells. We find that otolith organs in Gpr156 mouse mutants have normal zonal organization and normal type I-II hair cell distribution and mechano-electrical transduction properties. In contrast, gpr156 zebrafish mutants lack the smaller mechanically-evoked signals that characterize Emx2-positive hair cells. Loss of GPR156 does not affect orientation-selectivity of afferents in mouse utricle or zebrafish neuromasts. Consistent with normal otolith organ anatomy and afferent selectivity, Gpr156 mutant mice do not show overt vestibular dysfunction. Instead, performance on two tests that engage otolith organs is significantly altered - swimming and off-vertical-axis rotation. We conclude that GPR156 relays hair cell orientation and transduction information downstream of EMX2, but not selectivity for direction-specific afferents. These results clarify how molecular mechanisms that confer bi-directionality to sensory organs contribute to function, from single hair cell physiology to animal behavior.
Collapse
Affiliation(s)
- Kazuya Ono
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | | | - Natasha C Hughes
- Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205 MD, USA
| | - Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MA, USA
| | - Hui Ho Vanessa Chang
- Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205 MD, USA
| | - Michael R Deans
- Department of Neurobiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Otolaryngology - Head & Neck Surgery, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah, USA
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Kathleen E Cullen
- Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205 MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore 21205 MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore 21205 MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore 21205 MD, USA
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MA, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
7
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Rivera RA, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542533. [PMID: 37398045 PMCID: PMC10312449 DOI: 10.1101/2023.05.26.542533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud P J Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Sun P, Smith E, Nicolson T. Transmembrane Channel-Like (Tmc) Subunits Contribute to Frequency Sensitivity in the Zebrafish Utricle. J Neurosci 2024; 44:e1298232023. [PMID: 37952940 PMCID: PMC10851681 DOI: 10.1523/jneurosci.1298-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 11/14/2023] Open
Abstract
Information about dynamic head motion is conveyed by a central "striolar" zone of vestibular hair cells and afferent neurons in the inner ear. How vestibular hair cells are tuned to transduce dynamic stimuli at the molecular level is not well understood. Here we take advantage of the differential expression pattern of tmc1, tmc2a, and tmc2b, which encode channel subunits of the mechanotransduction complex in zebrafish vestibular hair cells. To test the role of various combinations of Tmc subunits in transducing dynamic head movements, we measured reflexive eye movements induced by high-frequency stimuli in single versus double tmc mutants. We found that Tmc2a function correlates with the broadest range of frequency sensitivity, whereas Tmc2b mainly contributes to lower-frequency responses. Tmc1, which is largely excluded from the striolar zone, plays a minor role in sensing lower-frequency stimuli. Our study suggests that the Tmc subunits impart functional differences to the mechanotransduction of dynamic stimuli.Significance Statement Information about dynamic head movements is transmitted by sensory receptors, known as hair cells, in the labyrinth of the inner ear. The sensitivity of hair cells to fast or slow movements of the head differs according to cell type. Whether the mechanotransduction complex that converts mechanical stimuli into electrical signals in hair cells participates in conveying frequency information is not clear. Here we find that the transmembrane channel-like 1/2 genes, which encode a central component of the complex, are differentially expressed in the utricle and contribute to frequency sensitivity in zebrafish.
Collapse
Affiliation(s)
- Peng Sun
- Department of Otolaryngology, Stanford University, Stanford, California 94304
| | - Eliot Smith
- Department of Otolaryngology, Stanford University, Stanford, California 94304
| | - Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, California 94304
| |
Collapse
|
9
|
Smith ET, Sun P, Yu SK, Raible DW, Nicolson T. Differential expression of mechanotransduction complex genes in auditory/vestibular hair cells in zebrafish. Front Mol Neurosci 2023; 16:1274822. [PMID: 38035267 PMCID: PMC10682102 DOI: 10.3389/fnmol.2023.1274822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Ciliated sensory cells such as photo- and olfactory receptors employ multiple types of opsins or hundreds of unique olfactory G-protein coupled receptors to respond to various wavelengths of light or odorants. With respect to hearing and balance, the mechanotransduction machinery involves fewer variants; however, emerging evidence suggests that specialization occurs at the molecular level. To address how the mechanotransduction complex varies in the inner ear, we characterized the expression of paralogous genes that encode components required for mechanotransduction in zebrafish hair cells using RNA-FISH and bioinformatic analysis. Our data indicate striking zonal differences in the expression of two components of the mechanotransduction complex which are known to physically interact, the transmembrane channel-like 1 and 2 (tmc1/2) family members and the calcium and integrin binding 2 and 3 (cib2/3) paralogues. tmc1, tmc2b, and cib3 are largely expressed in peripheral or extrastriolar hair cells, whereas tmc2a and cib2 are enriched in central or striolar hair cells. In addition, a gene implicated in deaf-blindness, ush1c, is highly enriched in a subset of extrastriolar hair cells. These results indicate that specific combinations of these components may optimize responses to mechanical stimuli in subtypes of sensory receptors within the inner ear.
Collapse
Affiliation(s)
- Eliot T. Smith
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| | - Peng Sun
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| | - Shengyang Kevin Yu
- Department of Otolaryngology-HNS and Biological Structure, Viginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-HNS and Biological Structure, Viginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Teresa Nicolson
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| |
Collapse
|