1
|
Nern A, Loesche F, Takemura SY, Burnett LE, Dreher M, Gruntman E, Hoeller J, Huang GB, Januszewski M, Klapoetke NC, Koskela S, Longden KD, Lu Z, Preibisch S, Qiu W, Rogers EM, Seenivasan P, Zhao A, Bogovic J, Canino BS, Clements J, Cook M, Finley-May S, Flynn MA, Hameed I, Fragniere AMC, Hayworth KJ, Hopkins GP, Hubbard PM, Katz WT, Kovalyak J, Lauchie SA, Leonard M, Lohff A, Maldonado CA, Mooney C, Okeoma N, Olbris DJ, Ordish C, Paterson T, Phillips EM, Pietzsch T, Salinas JR, Rivlin PK, Schlegel P, Scott AL, Scuderi LA, Takemura S, Talebi I, Thomson A, Trautman ET, Umayam L, Walsh C, Walsh JJ, Xu CS, Yakal EA, Yang T, Zhao T, Funke J, George R, Hess HF, Jefferis GSXE, Knecht C, Korff W, Plaza SM, Romani S, Saalfeld S, Scheffer LK, Berg S, Rubin GM, Reiser MB. Connectome-driven neural inventory of a complete visual system. Nature 2025:10.1038/s41586-025-08746-0. [PMID: 40140576 DOI: 10.1038/s41586-025-08746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
Vision provides animals with detailed information about their surroundings and conveys diverse features such as colour, form and movement across the visual scene. Computing these parallel spatial features requires a large and diverse network of neurons. Consequently, from flies to humans, visual regions in the brain constitute half its volume. These visual regions often have marked structure-function relationships, with neurons organized along spatial maps and with shapes that directly relate to their roles in visual processing. More than a century of anatomical studies have catalogued in detail cell types in fly visual systems1-3, and parallel behavioural and physiological experiments have examined the visual capabilities of flies. To unravel the diversity of a complex visual system, careful mapping of the neural architecture matched to tools for targeted exploration of this circuitry is essential. Here we present a connectome of the right optic lobe from a male Drosophila melanogaster acquired using focused ion beam milling and scanning electron microscopy. We established a comprehensive inventory of the visual neurons and developed a computational framework to quantify their anatomy. Together, these data establish a basis for interpreting how the shapes of visual neurons relate to spatial vision. By integrating this analysis with connectivity information, neurotransmitter identity and expert curation, we classified the approximately 53,000 neurons into 732 types. These types are systematically described and about half are newly named. Finally, we share an extensive collection of split-GAL4 lines matched to our neuron-type catalogue. Overall, this comprehensive set of tools and data unlocks new possibilities for systematic investigations of vision in Drosophila and provides a foundation for a deeper understanding of sensory processing.
Collapse
Affiliation(s)
- Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Frank Loesche
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Laura E Burnett
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Judith Hoeller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gary B Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Nathan C Klapoetke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sanna Koskela
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kit D Longden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephan Preibisch
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wei Qiu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edward M Rogers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Brandon S Canino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael Cook
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Miriam A Flynn
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Imran Hameed
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alexandra M C Fragniere
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Zoology, Cambridge University, Cambridge, UK
| | - Kenneth J Hayworth
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Philip M Hubbard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William T Katz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shirley A Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meghan Leonard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alanna Lohff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Charli A Maldonado
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Caroline Mooney
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nneoma Okeoma
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tyler Paterson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily M Phillips
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tobias Pietzsch
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp Schlegel
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Zoology, Cambridge University, Cambridge, UK
| | - Ashley L Scott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Louis A Scuderi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alexander Thomson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric T Trautman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Claire Walsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - John J Walsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily A Yakal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gregory S X E Jefferis
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Zoology, Cambridge University, Cambridge, UK
| | - Christopher Knecht
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
4
|
Tian X, Lin TY, Lin PT, Tsai MJ, Chen H, Chen WJ, Lee CM, Tu CH, Hsu JC, Hsieh TH, Tung YC, Wang CK, Lin S, Chu LA, Tseng FG, Hsueh YP, Lee CH, Chen P, Chen BC. Rapid lightsheet fluorescence imaging of whole Drosophila brains at nanoscale resolution by potassium acrylate-based expansion microscopy. Nat Commun 2024; 15:10911. [PMID: 39738207 PMCID: PMC11685761 DOI: 10.1038/s41467-024-55305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio. Here we show that at a tile scanning speed of ~1 min/mm3 with 1012 pixels over 14 hours, we image the centimeter-sized fly brain at an effective resolution comparable to electron microscopy, allowing us to visualize mitochondria within presynaptic compartments and Bruchpilot (Brp) scaffold proteins distributed in the central complex, enabling robust analyses of neurobiological topics.
Collapse
Affiliation(s)
- Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Ting Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Min-Ju Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Jie Chen
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-Hui Tu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jui-Cheng Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Tung-Han Hsieh
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Kai Wang
- Department of Mechanical Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Fan-Gang Tseng
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
8
|
Cornean J, Molina-Obando S, Gür B, Bast A, Ramos-Traslosheros G, Chojetzki J, Lörsch L, Ioannidou M, Taneja R, Schnaitmann C, Silies M. Heterogeneity of synaptic connectivity in the fly visual system. Nat Commun 2024; 15:1570. [PMID: 38383614 PMCID: PMC10882054 DOI: 10.1038/s41467-024-45971-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Visual systems are homogeneous structures, where repeating columnar units retinotopically cover the visual field. Each of these columns contain many of the same neuron types that are distinguished by anatomic, genetic and - generally - by functional properties. However, there are exceptions to this rule. In the 800 columns of the Drosophila eye, there is an anatomically and genetically identifiable cell type with variable functional properties, Tm9. Since anatomical connectivity shapes functional neuronal properties, we identified the presynaptic inputs of several hundred Tm9s across both optic lobes using the full adult female fly brain (FAFB) electron microscopic dataset and FlyWire connectome. Our work shows that Tm9 has three major and many sparsely distributed inputs. This differs from the presynaptic connectivity of other Tm neurons, which have only one major, and more stereotypic inputs than Tm9. Genetic synapse labeling showed that the heterogeneous wiring exists across individuals. Together, our data argue that the visual system uses heterogeneous, distributed circuit properties to achieve robust visual processing.
Collapse
Affiliation(s)
- Jacqueline Cornean
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Sebastian Molina-Obando
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Annika Bast
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonas Chojetzki
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Lena Lörsch
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Maria Ioannidou
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Rachita Taneja
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Christopher Schnaitmann
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany.
| |
Collapse
|