1
|
Cousins T, Scally A, Durbin R. A structured coalescent model reveals deep ancestral structure shared by all modern humans. Nat Genet 2025; 57:856-864. [PMID: 40102687 PMCID: PMC11985351 DOI: 10.1038/s41588-025-02117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025]
Abstract
Understanding the history of admixture events and population size changes leading to modern humans is central to human evolutionary genetics. Here we introduce a coalescence-based hidden Markov model, cobraa, that explicitly represents an ancestral population split and rejoin, and demonstrate its application on simulated and real data across multiple species. Using cobraa, we present evidence for an extended period of structure in the history of all modern humans, in which two ancestral populations that diverged ~1.5 million years ago came together in an admixture event ~300 thousand years ago, in a ratio of ~80:20%. Immediately after their divergence, we detect a strong bottleneck in the major ancestral population. We inferred regions of the present-day genome derived from each ancestral population, finding that material from the minority correlates strongly with distance to coding sequence, suggesting it was deleterious against the majority background. Moreover, we found a strong correlation between regions of majority ancestry and human-Neanderthal or human-Denisovan divergence, suggesting the majority population was also ancestral to those archaic humans.
Collapse
Affiliation(s)
- Trevor Cousins
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Janivara R, Hazra U, Pfennig A, Harlemon M, Kim MS, Eaaswarkhanth M, Chen WC, Ogunbiyi A, Kachambwa P, Petersen LN, Jalloh M, Mensah JE, Adjei AA, Adusei B, Joffe M, Gueye SM, Aisuodionoe-Shadrach OI, Fernandez PW, Rohan TE, Andrews C, Rebbeck TR, Adebiyi AO, Agalliu I, Lachance J. Uncovering the genetic architecture and evolutionary roots of androgenetic alopecia in African men. HGG ADVANCES 2025; 6:100428. [PMID: 40134218 PMCID: PMC12000746 DOI: 10.1016/j.xhgg.2025.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025] Open
Abstract
Androgenetic alopecia is a highly heritable trait. However, much of our understanding about the genetics of male-pattern baldness comes from individuals of European descent. Here, we examined a dataset comprising 2,136 men from Ghana, Nigeria, Senegal, and South Africa that were genotyped using the Men of African Descent and Carcinoma of the Prostate Array. We first tested how genetic predictions of baldness generalize from Europe to Africa and found that polygenic scores from European genome-wide association studies (GWASs) yielded area under the curve statistics that ranged from 0.513 to 0.546, indicating that genetic predictions of baldness generalized poorly from European to African populations. Subsequently, we conducted an African GWAS of androgenetic alopecia, focusing on self-reported baldness patterns at age 45. After correcting for age at recruitment, population structure, and study site, we identified 266 moderately significant associations, 51 of which were independent (p < 10-5, r2 < 0.2). Most baldness associations were autosomal, and the X chromosome does not seem to have a large impact on baldness in African men. Although Neanderthal alleles have previously been associated with skin and hair phenotypes, within the limits of statistical power, we did not find evidence that continental differences in the genetic architecture of baldness are due to Neanderthal introgression. While most loci that are associated with androgenetic alopecia do not have large integrative haplotype scores or fixation index statistics, multiple baldness-associated SNPs near the EDA2R and AR genes have large allele frequency differences between continents. Collectively, our findings illustrate how population genetic differences contribute to the limited portability of polygenic predictions across ancestries.
Collapse
Affiliation(s)
- Rohini Janivara
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ujani Hazra
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maxine Harlemon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Michelle S Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Wenlong C Chen
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Paidamoyo Kachambwa
- Centre for Proteomic and Genomic Research, Cape Town, South Africa; Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Lindsay N Petersen
- Centre for Proteomic and Genomic Research, Cape Town, South Africa; Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Mohamed Jalloh
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal; Université Iba Der Thiam de Thiès, Thiès, Senegal
| | - James E Mensah
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| | | | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Oseremen I Aisuodionoe-Shadrach
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Pedro W Fernandez
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Ragsdale AP. Archaic introgression and the distribution of shared variation under stabilizing selection. PLoS Genet 2025; 21:e1011623. [PMID: 40163477 PMCID: PMC11964463 DOI: 10.1371/journal.pgen.1011623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/02/2025] [Accepted: 02/14/2025] [Indexed: 04/02/2025] Open
Abstract
Many phenotypic traits are under stabilizing selection, which maintains a population's mean phenotypic value near some optimum. The dynamics of traits and trait architectures under stabilizing selection have been extensively studied for single populations at steady state. However, natural populations are seldom at steady state and are often structured in some way. Admixture and introgression events may be common, including over human evolutionary history. Because stabilizing selection results in selection against the minor allele at a trait-affecting locus, alleles from the minor parental ancestry will be selected against after admixture. We show that the site-frequency spectrum can be used to model the genetic architecture of such traits, allowing for the study of trait architecture dynamics in complex multi-population settings. We use a simple deterministic two-locus model to predict the reduction of introgressed ancestry around trait-contributing loci. From this and individual-based simulations, we show that introgressed-ancestry is depleted around such loci. When introgression between two diverged populations occurs in both directions, as has been inferred between humans and Neanderthals, the locations of such regions with depleted introgressed ancestry will tend to be shared across populations. We argue that stabilizing selection for shared phenotypic optima may explain recent observations in which regions of depleted human-introgressed ancestry in the Neanderthal genome overlap with Neanderthal-ancestry deserts in humans.
Collapse
Affiliation(s)
- Aaron P Ragsdale
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Tagore D, Akey JM. Archaic hominin admixture and its consequences for modern humans. Curr Opin Genet Dev 2025; 90:102280. [PMID: 39577372 PMCID: PMC11770379 DOI: 10.1016/j.gde.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
As anatomically modern humans dispersed out of Africa, they encountered and mated with now extinct hominins, including Neanderthals and Denisovans. It is now well established that all non-African individuals derive approximately 2% of their genome from Neanderthal ancestors and individuals of Melanesian and Australian aboriginal ancestry inherited an additional 2%-5% of their genomes from Denisovan ancestors. Attention has started to shift from documenting amounts of archaic admixture and identifying introgressed segments to understanding their molecular, phenotypic, and evolutionary consequences and refining models of human history. Here, we review recent insights into admixture between modern and archaic humans, emphasizing methodological innovations and the functional and phenotypic effects Neanderthal and Denisovan sequences have in contemporary individuals.
Collapse
Affiliation(s)
- Debashree Tagore
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton 08540, USA. https://twitter.com/@TagoreDebashree
| | - Joshua M Akey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton 08540, USA.
| |
Collapse
|
5
|
Black AN, Jeon JY, Mularo AJ, Allen NM, Heenkenda E, Buchanan-Schwanke JC, Bickham JW, Lowe ZE, DeWoody JA. Thematic Layers of Genomic Susceptibility for Conservation Monitoring. Mol Ecol 2024:e17582. [PMID: 39513992 DOI: 10.1111/mec.17582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Population genomics has great potential to inform applied conservation management and associated policy. However, the bioinformatic analyses and interpretation of population genomic datasets can be daunting and difficult to convey to nonspecialists, including on-the-ground conservationists that work with many state, federal and international agencies. We think that individual population genomic metrics of interest can be interpolated and ultimately distilled into thematic GIS layers that represent spatiotemporal genomic potential (or conversely, susceptibility) in conservation monitoring. As examples relevant to ongoing conservation efforts, we use introgressive hybridisation and individual heterozygosity to illustrate a conceptual approach for mapping population genomic susceptibility. The general framework of thematic layers could be extended to integrate key genomic metrics (e.g., runs of homozygosity and genomic load) that are relevant to many conservation efforts.
Collapse
Affiliation(s)
- Andrew N Black
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Jong Yoon Jeon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Andrew J Mularo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Natalie M Allen
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Erangi Heenkenda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | | | - John W Bickham
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Zachary E Lowe
- Western Association of Fish and Wildlife Agencies, Boise, Idaho, USA
| | - J Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
6
|
Otto M, Zheng Y, Grablowitz P, Wiehe T. Detecting adaptive changes in gene copy number distribution accompanying the human out-of-Africa expansion. Hum Genome Var 2024; 11:37. [PMID: 39313504 PMCID: PMC11420239 DOI: 10.1038/s41439-024-00293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 09/25/2024] Open
Abstract
Genes with multiple copies are likely to be maintained by stabilizing selection, which puts a bound to unlimited expansion of copy number. We designed a model in which copy number variation is generated by unequal recombination, which fits well with several genes surveyed in three human populations. Based on this theoretical model and computer simulations, we were interested in determining whether the gene copy number distribution in the derived European and Asian populations can be explained by a purely demographic scenario or whether shifts in the distribution are signatures of adaptation. Although the copy number distribution in most of the analyzed gene clusters can be explained by a bottleneck, such as in the out-of-Africa expansion of Homo sapiens 60-10 kyrs ago, we identified several candidate genes, such as AMY1A and PGA3, whose copy numbers are likely to differ among African, Asian, and European populations.
Collapse
Affiliation(s)
- Moritz Otto
- Institue for Genetics, University of Cologne, Cologne, Germany
| | - Yichen Zheng
- Institue for Genetics, University of Cologne, Cologne, Germany
| | - Paul Grablowitz
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Thomas Wiehe
- Institue for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Pfennig A, Lachance J. The evolutionary fate of Neanderthal DNA in 30,780 admixed genomes with recent African-like ancestry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605203. [PMID: 39091830 PMCID: PMC11291122 DOI: 10.1101/2024.07.25.605203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Following introgression, Neanderthal DNA was initially purged from non-African genomes, but the evolutionary fate of remaining introgressed DNA has not been explored yet. To fill this gap, we analyzed 30,780 admixed genomes with African-like ancestry from the All of Us research program, in which Neanderthal alleles encountered novel genetic backgrounds during the last 15 generations. Observed amounts of Neanderthal DNA approximately match expectations based on ancestry proportions, suggesting neutral evolution. Nevertheless, we identified genomic regions that have significantly less or more Neanderthal ancestry than expected and are associated with spermatogenesis, innate immunity, and other biological processes. We also identified three novel introgression desert-like regions in recently admixed genomes, whose genetic features are compatible with hybrid incompatibilities and intrinsic negative selection. Overall, we find that much of the remaining Neanderthal DNA in human genomes is not under strong selection, and complex evolutionary dynamics have shaped introgression landscapes in our species.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, 30332, GA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, 30332, GA, USA
| |
Collapse
|
8
|
Li L, Comi TJ, Bierman RF, Akey JM. Recurrent gene flow between Neanderthals and modern humans over the past 200,000 years. Science 2024; 385:eadi1768. [PMID: 38991054 DOI: 10.1126/science.adi1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/14/2024] [Indexed: 07/13/2024]
Abstract
Although it is well known that the ancestors of modern humans and Neanderthals admixed, the effects of gene flow on the Neanderthal genome are not well understood. We develop methods to estimate the amount of human-introgressed sequences in Neanderthals and apply it to whole-genome sequence data from 2000 modern humans and three Neanderthals. We estimate that Neanderthals have 2.5 to 3.7% human ancestry, and we leverage human-introgressed sequences in Neanderthals to revise estimates of Neanderthal ancestry in modern humans, show that Neanderthal population sizes were significantly smaller than previously estimated, and identify two distinct waves of modern human gene flow into Neanderthals. Our data provide insights into the genetic legacy of recurrent gene flow between modern humans and Neanderthals.
Collapse
Affiliation(s)
- Liming Li
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Troy J Comi
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Rob F Bierman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Joshua M Akey
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
9
|
Tellini N, De Chiara M, Mozzachiodi S, Tattini L, Vischioni C, Naumova ES, Warringer J, Bergström A, Liti G. Ancient and recent origins of shared polymorphisms in yeast. Nat Ecol Evol 2024; 8:761-776. [PMID: 38472432 DOI: 10.1038/s41559-024-02352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
Shared genetic polymorphisms between populations and species can be ascribed to ancestral variation or to more recent gene flow. Here, we mapped shared polymorphisms in Saccharomyces cerevisiae and its sister species Saccharomyces paradoxus, which diverged 4-6 million years ago. We used a dense map of single-nucleotide diagnostic markers (mean distance 15.6 base pairs) in 1,673 sequenced S. cerevisiae isolates to catalogue 3,852 sequence blocks (≥5 consecutive markers) introgressed from S. paradoxus, with most being recent and clade-specific. The highly diverged wild Chinese S. cerevisiae lineages were depleted of introgressed blocks but retained an excess of individual ancestral polymorphisms derived from incomplete lineage sorting, perhaps due to less dramatic population bottlenecks. In the non-Chinese S. cerevisiae lineages, we inferred major hybridization events and detected cases of overlapping introgressed blocks across distinct clades due to either shared histories or convergent evolution. We experimentally engineered, in otherwise isogenic backgrounds, the introgressed PAD1-FDC1 gene pair that independently arose in two S. cerevisiae clades and revealed that it increases resistance against diverse antifungal drugs. Overall, our study retraces the histories of divergence and secondary contacts across S. cerevisiae and S. paradoxus populations and unveils a functional outcome.
Collapse
Affiliation(s)
- Nicolò Tellini
- CNRS, INSERM, IRCAN, Côte d'Azur University, Nice, France
| | | | | | | | | | - Elena S Naumova
- Kurchatov Complex for Genetic Research (GosNIIgenetika), National Research Center 'Kurchatov Institute', Moscow, Russia
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Gianni Liti
- CNRS, INSERM, IRCAN, Côte d'Azur University, Nice, France.
| |
Collapse
|
10
|
Janivara R, Hazra U, Pfennig A, Harlemon M, Kim MS, Eaaswarkhanth M, Chen WC, Ogunbiyi A, Kachambwa P, Petersen LN, Jalloh M, Mensah JE, Adjei AA, Adusei B, Joffe M, Gueye SM, Aisuodionoe-Shadrach OI, Fernandez PW, Rohan TE, Andrews C, Rebbeck TR, Adebiyi AO, Agalliu I, Lachance J. Uncovering the genetic architecture and evolutionary roots of androgenetic alopecia in African men. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575396. [PMID: 38293167 PMCID: PMC10827056 DOI: 10.1101/2024.01.12.575396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Androgenetic alopecia is a highly heritable trait. However, much of our understanding about the genetics of male pattern baldness comes from individuals of European descent. Here, we examined a novel dataset comprising 2,136 men from Ghana, Nigeria, Senegal, and South Africa that were genotyped using a custom array. We first tested how genetic predictions of baldness generalize from Europe to Africa, finding that polygenic scores from European GWAS yielded AUC statistics that ranged from 0.513 to 0.546, indicating that genetic predictions of baldness in African populations performed notably worse than in European populations. Subsequently, we conducted the first African GWAS of androgenetic alopecia, focusing on self-reported baldness patterns at age 45. After correcting for present age, population structure, and study site, we identified 266 moderately significant associations, 51 of which were independent (p-value < 10-5, r2 < 0.2). Most baldness associations were autosomal, and the X chromosomes does not appear to have a large impact on baldness in African men. Finally, we examined the evolutionary causes of continental differences in genetic architecture. Although Neanderthal alleles have previously been associated with skin and hair phenotypes, we did not find evidence that European-ascertained baldness hits were enriched for signatures of ancient introgression. Most loci that are associated with androgenetic alopecia are evolving neutrally. However, multiple baldness-associated SNPs near the EDA2R and AR genes have large allele frequency differences between continents. Collectively, our findings illustrate how evolutionary history contributes to the limited portability of genetic predictions across ancestries.
Collapse
Affiliation(s)
- Rohini Janivara
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ujani Hazra
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Maxine Harlemon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biology, Morgan State University, Baltimore, Maryland, USA
| | - Michelle S Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Human Genetics University of Michigan, Ann Arbor, Michigan, USA
| | | | - Wenlong C Chen
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Paidamoyo Kachambwa
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
- Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Lindsay N Petersen
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
- Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Mohamed Jalloh
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
- Université Iba Der Thiam de Thiès, Thiès, Senegal
| | - James E Mensah
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| | | | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Oseremen I Aisuodionoe-Shadrach
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Pedro W Fernandez
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Ragsdale AP. Human evolution: Neanderthal footprints in African genomes. Curr Biol 2023; 33:R1197-R1200. [PMID: 37989099 DOI: 10.1016/j.cub.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Human and Neanderthal populations met and mixed on multiple occasions over evolutionary time, resulting in the exchange of genetic material. New genomic analyses of diverse African populations reveal a history of bidirectional gene flow and selection acting on introgressed alleles.
Collapse
Affiliation(s)
- Aaron P Ragsdale
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|